JPH0290968A - Production equipment of organic thin film - Google Patents

Production equipment of organic thin film

Info

Publication number
JPH0290968A
JPH0290968A JP63239625A JP23962588A JPH0290968A JP H0290968 A JPH0290968 A JP H0290968A JP 63239625 A JP63239625 A JP 63239625A JP 23962588 A JP23962588 A JP 23962588A JP H0290968 A JPH0290968 A JP H0290968A
Authority
JP
Japan
Prior art keywords
trough
barrier
water surface
side walls
monomolecular film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63239625A
Other languages
Japanese (ja)
Inventor
Takashi Ekusa
俊 江草
Toshio Nakayama
中山 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63239625A priority Critical patent/JPH0290968A/en
Publication of JPH0290968A publication Critical patent/JPH0290968A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain a uniform and stable Langmuir-Blodgett's membrane by equipping a trough for holding water surface on which a monomolecular membrane is developed, a barrier compressing the monomolecular membrane and a surface pressure gauge for measuring the surface pressure of the monomolecular membrane. CONSTITUTION:The ultrasonic wave-generating sources being a disturbing and impressing groove 5 are attached along both side walls 4 of a trough. As a water flow system, two rollers becoming the disturbing and impressing mechanism 5 are provided under the water surface near to both side walls 4 are rotated with a motor from the outside by driving a roller belt. Thereby surface water flow is caused toward the center of the trough from the side walls 4. As an air flow system, the shape of the barrier is regulated to 1-2mm thickness and the air nozzles becoming the disturbing and impressing mechanism 5 are arranged along both side walls 4. The air nozzles are set to such direction that the air flow is allowed to slantingly collided against water surface near to the side walls from the direction of 45 deg. and the surface water flow is caused.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、ラングミュア、プロジェット法により有機薄
膜を製造する有機薄膜の製造装置である。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention] (Industrial Application Field) The present invention is an organic thin film manufacturing apparatus for manufacturing an organic thin film by the Langmuir-Prodgett method.

(従来の技術) ラングミュア、プロジェット(LB)法は、単分子膜を
水面上に圧縮形成し、この単分子膜を基板上に累積して
有機超薄膜を形成できる方法であり、近年時IC電気素
子や光学素子への応用が期待され、研究が盛んになって
きた。
(Prior art) The Langmuir-Prodgett (LB) method is a method in which a monomolecular film is compressed and formed on a water surface, and this monomolecular film is accumulated on a substrate to form an ultra-thin organic film. It is expected to be applied to electrical and optical devices, and research has become active.

従来のLB膜作製装置は、分子を展開する水面を保持す
るトラフと、展開された単分子膜を圧縮するためのバリ
アーと、その圧縮状態をモニターする表面圧計と、基板
を保持し累積操作を行う累積装置とから成る。トラフ形
状は矩形をしており、バリアーを1本備えた1方向圧縮
力式、あるいは2本備えた2方向圧縮方式が一般的であ
る。
Conventional LB film production equipment consists of a trough that holds the water surface where molecules are spread, a barrier that compresses the spread monomolecular film, a surface pressure gauge that monitors the compression state, and a surface pressure gauge that holds the substrate and performs cumulative operations. It consists of an accumulator and an accumulator. The trough has a rectangular shape, and is generally a unidirectional compression type with one barrier or a two-way compression type with two barriers.

LB法は該水面にクロロホルムのような溶媒だ溶かされ
たLB分子を注射器などを用いて滴下し展開する。次に
バリアーを前進させて水面面積を減少させることによっ
て単分子膜を圧縮する。水面上単分子膜の表面分子密度
は、表面圧として表面圧計によってモニターされ、固体
凝縮膜になるLB膜を電気素子や光学素子に応用するこ
とを考えると、膜構造が均一で欠陥がないことが重要と
なる。このためにはまず均一な水面上単分子膜を形成し
、それを壊さないように基板上に累積する製膜技術と装
置が必要である。しかし従来装置lKよって水面上単分
子膜が均一に圧縮できるのは、脂肪族分子など極限られ
た分子だけであり、高分子や色素を含む分子はバリアー
の圧縮動作によって、不安定な膜しか形成できなかった
つこの原因は高分子や色素を含む分子からなる水面上単
分子膜が非常に大きな粘性を持っているためであると考
えられている。この粘性によってバリアーの圧縮動作時
にトラフ側壁の分子が動きに<<、単分子膜の変形が大
きいとされている。これを改善すべくムービングウオー
ル圧縮装置が市販されている。このムービングウオール
装置ではバリアーとトラフ側壁近傍における膜の変形は
ある程度改善されるが、バリアーと対峙する基板側の膜
変形がかえって大きくなり、不十分である。
In the LB method, LB molecules dissolved in a solvent such as chloroform are dropped onto the water surface using a syringe or the like and developed. The monolayer is then compressed by advancing the barrier and reducing the water surface area. The surface molecular density of the monomolecular film on the water surface is monitored by a surface pressure meter as the surface pressure, and considering that the LB film, which becomes a solid condensed film, is applied to electrical and optical elements, the film structure must be uniform and free of defects. becomes important. To achieve this, it is necessary to first form a uniform monomolecular film on the water surface, and then use film-forming technology and equipment to accumulate it on the substrate without destroying it. However, with the conventional device IK, only a limited number of molecules such as aliphatic molecules can be uniformly compressed into a monomolecular film on the water surface, and molecules containing polymers and dyes can only form an unstable film due to the compression action of the barrier. The reason for this failure is thought to be that the monomolecular film on the water surface, which consists of molecules containing polymers and pigments, has extremely high viscosity. It is said that this viscosity causes the molecules on the trough sidewall to move during the compression operation of the barrier, resulting in large deformation of the monomolecular film. Moving wall compression devices are commercially available to improve this problem. Although this moving wall device improves the deformation of the film in the vicinity of the barrier and trough sidewall to some extent, the deformation of the film on the substrate side facing the barrier increases, which is insufficient.

本発明は以上のような問題点に鑑みなされたものであり
、均一で安定なラングミュア、プロジェット膜を作製す
ることができる有機薄膜の製造装置を提供することを目
的とする。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide an organic thin film manufacturing apparatus that can produce a uniform and stable Langmuir-Prodgett film.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、単分子膜を展開する水面を保持するトラフと
、該単分子膜を圧縮するバリアーと、単分子膜の表面圧
を測定する表面圧計と、基板を保持し累積操作を行なう
累積機構と、バリアー及びトラフ内壁近傍の単分子膜の
少なくとも一部を撹乱する撹乱印加機構を備えたことを
特徴とする有機薄膜の製造装置である。
(Means for Solving the Problems) The present invention includes a trough that holds a water surface on which a monomolecular film is spread, a barrier that compresses the monomolecular film, a surface pressure meter that measures the surface pressure of the monomolecular film, and a substrate. This is an organic thin film production apparatus characterized by comprising an accumulation mechanism for holding and performing an accumulation operation, and a disturbance application mechanism for disturbing at least a portion of the monomolecular film near the barrier and the inner wall of the trough.

撹乱印加機構は、■機械的振動あるいは音波をトラフ側
壁に沿って与える方法、■側壁から水面の中央に向かっ
て水面流を発生させ、膜がトラフに付きに<<シた方法
、■側壁から水面中央に向かって水面に空気流を吹き付
け、その結果として水面流を発生させて、膜がトラフに
付きに<<シた方法、■トラフ側壁に沿って発熱機構を
備え、トラフ側壁近傍の膜の粘性を低下させる方法、■
単分子膜が表面双極子を有することを利用し、トラフ側
壁近傍に分子が反発する向きに高電界を掛けた方法、■
トラフ側壁近傍に沿って赤外光のような光照射を行なう
方法等を利用し構成される。
The disturbance application mechanism is: ■ applying mechanical vibrations or sound waves along the trough side wall; ■ generating a water surface flow from the side wall toward the center of the water surface so that the membrane adheres to the trough; and ■ starting from the side wall. A method in which an air flow is blown onto the water surface toward the center of the water surface, resulting in a surface flow that causes the membrane to stick to the trough. How to reduce the viscosity of ■
A method that takes advantage of the fact that a monomolecular film has a surface dipole and applies a high electric field near the trough sidewall in a direction that repels molecules, ■
It is constructed using a method of irradiating light such as infrared light along the vicinity of the trough side wall.

また、撹乱される単分子膜はバリアー及びトラフ内壁近
傍の少なくとも一部であればよいが、バリアーと直交す
る位置にあるトラフ側壁の内壁近傍の単分子膜を撹乱す
ることが有効である。
Further, the monomolecular film to be disturbed may be at least a portion near the barrier and the inner wall of the trough, but it is effective to disturb the monomolecular film near the inner wall of the trough side wall located perpendicular to the barrier.

(作用) まず単分子膜が均一に圧縮されるとは、水面上単分子膜
の表面分子密度が一定に制御されなければならないとい
うことである。表面圧は水面上単分子膜の表面分子密度
の別の尺度であるから、実際には表面圧が一定になるよ
うに圧縮する必要がある。また、累積にとっても表面圧
が所定の値に均一に制御されていることが重要となる。
(Function) First, uniform compression of the monomolecular film means that the surface molecular density of the monomolecular film on the water surface must be controlled to be constant. Since surface pressure is another measure of the surface molecular density of a monolayer on a water surface, it is actually necessary to compress it so that the surface pressure is constant. Also, it is important for the accumulation that the surface pressure is uniformly controlled to a predetermined value.

バリアーの圧縮動作による水面上単分子膜の変形につい
ては、変形の大小が問題ではなく、この変形が表面圧の
不均一性につながっtいるかどうかが問題となる。そこ
で発明者らは第2図に示すように表面圧計を複数個用い
た多点計測を行った。
Regarding the deformation of the monomolecular film on the water surface due to the compression action of the barrier, the issue is not the magnitude of the deformation, but whether or not this deformation leads to non-uniformity of the surface pressure. Therefore, the inventors performed multi-point measurement using a plurality of surface pressure gauges as shown in FIG.

その結果バリアーとトラフの交点近傍で最も表面圧が高
いことが分かった(第9図)。第10図に示すように、
流体力学では液体が管の中を流れる場合、管壁では液体
の流速は零である。そして壁より離れるほど流速は速く
なり、本来の流速になる。この低流速領域を境界層と呼
び、この境界層の厚さδは流速Vが大きいほど減少し、
液体の粘性ηが大きいほど増加する。
As a result, it was found that the surface pressure was highest near the intersection of the barrier and the trough (Figure 9). As shown in Figure 10,
In fluid mechanics, when a liquid flows through a tube, the velocity of the liquid at the tube wall is zero. The further away from the wall, the faster the flow velocity becomes, reaching the original flow velocity. This low flow velocity region is called a boundary layer, and the thickness δ of this boundary layer decreases as the flow velocity V increases.
It increases as the viscosity η of the liquid increases.

これと同様なことが水面上単分子膜のように2次元系で
も考えられる。すなわちバリアーの圧縮動作により僅か
ではあるが水面上単分子膜は前方へ流れる。トラフ側壁
では膜の流速は零となり境界層が形成される。脂肪族分
子では膜の粘性は非常に小さいためこの境界層の厚さδ
は非常に小さく無視できる。しかし高分子や色素を含む
分子は膜の粘性は桁違いに大きく、δも数cm以上にな
る。
A similar situation can be considered in a two-dimensional system such as a monomolecular film on a water surface. That is, due to the compressive action of the barrier, the monomolecular film on the water surface flows forward, albeit slightly. At the trough sidewall, the membrane flow velocity becomes zero and a boundary layer is formed. For aliphatic molecules, the viscosity of the membrane is very small, so the thickness of this boundary layer δ
is very small and can be ignored. However, molecules containing polymers and dyes have an order of magnitude higher film viscosity, and δ is several cm or more.

この境界層では膜が動きKくいのにバリアーが無理やり
前進するため局所的に圧縮が起き非常に高い表面圧が発
生することになる。
Although the membrane moves in this boundary layer, the barrier is forcibly advanced, causing local compression and generating a very high surface pressure.

これの境界層の影響を防ぐには、側壁を膜の流速と同一
の速度で前進させる方法がある。これがムービングウオ
ール方式の原理であるが、膜が単なる流体ではなく圧縮
によって縮む流体であるため、側壁がそれにつれて縮ま
なければならない。
One way to prevent this boundary layer effect is to advance the sidewall at the same speed as the membrane flow rate. This is the principle of the moving wall system, but since the membrane is not just a fluid but a fluid that shrinks due to compression, the sidewalls must shrink accordingly.

またバリアーと可動側壁の対面:τは基板が固定されて
おり、側壁と基板との交点近傍で局所的な圧縮が起き、
ムービングウオール方式では不完全である。
In addition, when the barrier faces the movable side wall: τ, the substrate is fixed, and local compression occurs near the intersection of the side wall and the substrate.
The moving wall method is incomplete.

本発明ではトラフ側壁に沿ってこの境界層を無くするよ
うに撹乱を与える機構を付与したことを特徴とする。そ
の作用は、音波発生方式の場合、音波がトラフ近傍の膜
に撹乱を与えることにより境界層を破壊する。
The present invention is characterized in that a mechanism is provided to provide disturbance along the trough side wall so as to eliminate this boundary layer. In the case of the sound wave generation method, the action is that the sound waves disrupt the membrane near the trough, thereby destroying the boundary layer.

水面流、空気流とも直接、間接的にトラフ側壁近傍の分
子密度を低下させ粘性を低下させ、境界層を薄くすると
ともに、さらに水面流に圧縮方向の成分も持たせること
Kよって、境界層部の流れを補助してやることになる。
Both the water surface flow and the air flow directly or indirectly lower the molecular density near the trough side wall, lowering the viscosity, thinning the boundary layer, and also making the water surface flow have a component in the compression direction. I will assist the flow of this process.

また粘性は材料を加熱することKよって低下させること
ができる。トラフ全体を加熱することは単分子膜の安定
性にとって好ましくないため、トラフ側壁近傍のみを加
熱することによって境界層部の粘性を下げる。光照射方
式も、光に赤外線を用いると同様な効果がある。
The viscosity can also be reduced by heating the material. Since heating the entire trough is unfavorable for the stability of the monomolecular film, the viscosity of the boundary layer is reduced by heating only the vicinity of the trough sidewall. The light irradiation method also has a similar effect when infrared rays are used as the light.

また圧縮中に粘性の非常に小さい分子を僅かにトラフ側
壁から供給することにより、境界層の流れをスムーズに
することができる。
Also, by supplying a small amount of molecules with very low viscosity from the trough side wall during compression, the flow in the boundary layer can be made smoother.

(実施例) トラフ1は矩形であり、長軸方向に1本バリアー2で1
方向圧縮する。表面圧系は表面圧分布測定のためバリア
ー中央と、バリア一端、トラフ中央とトラフ端にセット
されているが、このうち1個ないし2(ll!あればよ
い。
(Example) The trough 1 is rectangular, and there is one barrier 2 in the long axis direction.
Directional compression. Surface pressure systems are set at the center of the barrier, one end of the barrier, the center of the trough, and the ends of the trough to measure surface pressure distribution, and one to two of these systems are sufficient.

次に他の実施例を以下に述べる。トラフ両側壁4に沿っ
て撹乱印加構5である超音波発生源を取り付ける(第1
図)。
Next, other embodiments will be described below. An ultrasonic generation source, which is a disturbance applying structure 5, is attached along the both side walls 4 of the trough (the first
figure).

水流方式は、トラフ両側壁4近傍の水面下に撹乱印加機
構5となる2本のローラーが仕込まれている。このロー
ラーベルト駆動によって外部からモーターで回転する。
In the water flow system, two rollers serving as a disturbance applying mechanism 5 are installed under the water surface near the side walls 4 of the trough. It is rotated by an external motor using this roller belt drive.

図中に示した回転方向((ローラーを回転させると、水
面流がトラフ側壁4からトラフ中央に向かって発生する
(第3図)。
When the roller is rotated in the rotation direction shown in the figure, a water surface flow is generated from the trough side wall 4 toward the center of the trough (Fig. 3).

空気流方式は、バリアーの形状を1〜2關の厚みにして
、トラフ両側壁4に沿って撹乱印加機構5となる空気ノ
ズルを並べる。空気ノズルの向きは空気の流れが側壁近
傍の水面に斜め45°の方向から当たり、バリアー2の
圧縮方向に斜め45゜の方向に水面流を発生させる方向
にセットされる。
In the air flow method, the barrier shape is made to have a thickness of 1 to 2 mm, and air nozzles serving as the disturbance applying mechanism 5 are arranged along the both side walls 4 of the trough. The direction of the air nozzle is set so that the air flow hits the water surface near the side wall at an angle of 45 degrees and generates a water surface flow at an angle of 45 degrees to the compression direction of the barrier 2.

これKより空気流によって発生する水面流にはトラフl
中央へ流れる成分と、圧縮方向に流れる成分とがあるこ
とになる(第4図)。
From this K, the water surface flow generated by the air flow has a trough l.
There is a component flowing toward the center and a component flowing in the compression direction (Figure 4).

加熱方式は、トラフ両側@4近傍の水面下にトラフlに
沿って撹乱印加機構5となる細い発熱体を仕込む。この
発熱体に電流を流すことによって、側壁近傍の水面上単
分子膜だけを加熱することができ、粘性を下げることが
可能となる。このときトラフ1はウォータージャケット
構造をしており、これに低温恒温水を流して所望の温度
に保たれる(第5図)。
In the heating method, thin heating elements serving as the disturbance applying mechanism 5 are placed under the water surface near both sides of the trough 4 along the trough 1. By passing a current through this heating element, only the monomolecular film on the water surface near the side wall can be heated, making it possible to lower the viscosity. At this time, the trough 1 has a water jacket structure, and low-temperature constant-temperature water is flowed through it to maintain the desired temperature (FIG. 5).

光照射方式は、発熱体を水中に仕込むかわりに、水面上
から撹乱印加機構5により赤外線を照射するものである
。赤外線源は細長いビーム状に絞られている。これによ
って側壁近傍の水面上単分子膜だけを加熱することがで
きる(第6図)。
In the light irradiation method, infrared rays are irradiated from above the water surface by a disturbance application mechanism 5 instead of placing a heating element in the water. The infrared source is focused into a long, narrow beam. This makes it possible to heat only the monomolecular film on the water surface near the side wall (FIG. 6).

第2の分子を供給する方式は、水路によって所々でトラ
フ水面とつながれている側溝を側壁に沿って設ける。こ
の側溝内には例えばステアリルアルコールやステアリル
アミドなどの粘性の小すい分子を展開する(撹乱印加機
構5)。バリアー2が前進すると側溝内の分子が圧縮さ
れて細い通路からトラフl内水面に供給される。トラフ
l内水面の分子は粘性が大きいため側溝内に入ることは
ない。これによりトラフ側壁4近傍に粘性の小さい領域
が形成される(第7図)。
The second molecule supply system provides gutter along the side wall which is connected at places to the trough water surface by water channels. Molecules with low viscosity, such as stearyl alcohol or stearylamide, are deployed in this gutter (disturbance application mechanism 5). When the barrier 2 moves forward, the molecules in the side gutter are compressed and supplied to the water surface inside the trough l through the narrow passage. Molecules on the water surface inside the trough l have a high viscosity, so they do not enter the gutter. As a result, a region with low viscosity is formed near the trough side wall 4 (FIG. 7).

C砿を漣主 以上のべた各方式の有機簿膜の形成装置用いて粘性の大
きなステアリン酸アルミニウム分子について表面圧分布
の発生を測定した。トラフサイズはバリアーを最大に拡
げたとき幅=100闘、長さ=3001罵である。表面
王計はバリアー中央前方と・バリアー2と側壁4の交点
近傍、バリアー2の反対側の計3点にセットした。トラ
フl内に塩化アルミニウム2X10’mol/lの水溶
液を入れ、クロロホルムに溶かしたステアリン酸を展開
する。
The occurrence of surface pressure distribution on highly viscous aluminum stearate molecules was measured using various types of organic film forming apparatus using C. When the barrier is expanded to its maximum width, the trough size is 100 mm wide and 3001 mm long. The surface measurements were set at three points: in front of the center of the barrier, near the intersection of barrier 2 and side wall 4, and on the opposite side of barrier 2. An aqueous solution of 2×10' mol/l of aluminum chloride is placed in the trough 1, and stearic acid dissolved in chloroform is developed.

上記方式を実施しない従来トラフでは、圧縮速度= 5
 u+ / m i nで圧縮動作を開始すると、トラ
フ側壁4とバリアー2の交点近傍で最も大きな表面圧を
示した(第9図)。これに対し上記実施例を実施した装
置では、表面圧分布はほぼ解消した(第8図)。さらに
シリコン基板上に50FrI累積したし両についてX線
回折評価を行った結果、本発明を実施した単分子膜より
作った累積膜は高次の回折ピークを示し、層状構造がで
きていることが分かった。しかし本発明を実施しなかっ
た単分子より作つ−た累積膜からはほとんど回折ピーク
は観測されなかった。
In a conventional trough that does not implement the above method, compression speed = 5
When the compression operation was started at u+/min, the largest surface pressure was exhibited near the intersection of the trough side wall 4 and the barrier 2 (FIG. 9). On the other hand, in the apparatus in which the above embodiment was implemented, the surface pressure distribution was almost eliminated (FIG. 8). Furthermore, as a result of X-ray diffraction evaluation of 50 FrI accumulated on a silicon substrate, the accumulated film made from the monomolecular film according to the present invention showed a high-order diffraction peak, indicating that it had a layered structure. Do you get it. However, almost no diffraction peaks were observed in the cumulative films made from single molecules that were not subjected to the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明の有機薄膜の形成装置を用いることによって、均
一な表面圧すなわち表面分子密度を有する水面上単分子
膜を圧縮形成することが出来るため、良好な有機薄膜を
得ることができる。
By using the organic thin film forming apparatus of the present invention, it is possible to compressively form a monomolecular film on a water surface having a uniform surface pressure, that is, a surface molecular density, and thus a good organic thin film can be obtained.

【図面の簡単な説明】 第1図は本発明の一実施例の概略図、第2図は本発明を
説明するための図、第3図乃至第7図は本発明の一実施
例の概略図、第8図は本発明の特性を示す図、第9図は
比較例の特性を示す図、第10図は本発明の詳細な説明
するための図である。 l・・・トラフ1 2・・・バリアー、 3・・・水面、 4・・・トラフ側壁、 5・・・撹乱印加機構。 代理人 弁理士 則 近 憲 佑 同      松  山  光  之 ざ二鼾−嘉、岬鼾と ↓ て7F−才・ρ叫と ビニ′−ト暮、5軒( ル と二←−路、暑トHど θ l〃 、≧ψ 9ρθ 第 図 θ !lθ 21′θ 3ρθ べ°〕ヤー前U裡0ml 第 図 第 図
[Brief Description of the Drawings] Fig. 1 is a schematic diagram of an embodiment of the present invention, Fig. 2 is a diagram for explaining the present invention, and Figs. 3 to 7 are schematic diagrams of an embodiment of the present invention. FIG. 8 is a diagram showing the characteristics of the present invention, FIG. 9 is a diagram showing the characteristics of a comparative example, and FIG. 10 is a diagram for explaining the present invention in detail. l...Trough 1 2...Barrier, 3...Water surface, 4...Trough side wall, 5...Disturbance application mechanism. Agent Patent Attorney Noriyuki Ken Yudo Matsuyama Hikaru Noza 2-Ka, Misaki-to ↓ Te 7F- Sai, ρ-sai and Bini'-togure, 5 houses (Ru to 2 ←-ro, Natto H Doθ l〃 , ≧ψ 9ρθ Fig.θ !lθ 21′θ 3ρθ Be°〕Year front U 0ml Fig. Fig.

Claims (1)

【特許請求の範囲】[Claims] (1)単分子膜を展開する水面を保持するトラフと、該
単分子膜を圧縮するバリアーと、単分子膜の表面圧を測
定する表面圧計と、基板を保持し累積操作を行なう累積
機構と、バリアー及びトラフ内壁近傍の単分子膜の少な
くとも一部を撹乱印加機構を備えたことを特徴とする有
機薄膜の製造装置。
(1) A trough that holds the water surface on which the monomolecular film is developed, a barrier that compresses the monomolecular film, a surface pressure meter that measures the surface pressure of the monomolecular film, and an accumulation mechanism that holds the substrate and performs the cumulative operation. An apparatus for producing an organic thin film, comprising a mechanism for applying disturbance to at least a portion of the monomolecular film near the barrier and the inner wall of the trough.
JP63239625A 1988-09-27 1988-09-27 Production equipment of organic thin film Pending JPH0290968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63239625A JPH0290968A (en) 1988-09-27 1988-09-27 Production equipment of organic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63239625A JPH0290968A (en) 1988-09-27 1988-09-27 Production equipment of organic thin film

Publications (1)

Publication Number Publication Date
JPH0290968A true JPH0290968A (en) 1990-03-30

Family

ID=17047505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63239625A Pending JPH0290968A (en) 1988-09-27 1988-09-27 Production equipment of organic thin film

Country Status (1)

Country Link
JP (1) JPH0290968A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5908666A (en) * 1994-09-30 1999-06-01 Toyota Jidosha Kabushiki Kaisha Process for producing Langmuir-Blodgett film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5908666A (en) * 1994-09-30 1999-06-01 Toyota Jidosha Kabushiki Kaisha Process for producing Langmuir-Blodgett film

Similar Documents

Publication Publication Date Title
TWI762439B (en) Thin-film manufacturing apparatus, and thin-film manufacturing method
US9651862B2 (en) Drop pattern generation for imprint lithography with directionally-patterned templates
US9327447B2 (en) Liquefier assembly for additive manufacturing systems, and methods of use thereof
KR101193918B1 (en) Fluid dispensing and drop-on-demand dispensing for nano-scale menufacturing
US10086564B2 (en) Additive manufacturing process with dynamic heat flow control
CN104303104B (en) Large area imprinting photoetching
TWI472422B (en) Nano-imprinting apparatus and method
JP5613658B2 (en) Large area roll-to-roll imprint lithography
KR20190123343A (en) Optical polymer film and method for casting the same
US9700869B2 (en) Continuously producing digital micro-scale patterns on a thin polymer film
JP2011176341A (en) Imprint lithography
US20150022790A1 (en) Continuously Producing Digital Micro-Scale Patterns On A Thin Polymer Film
TW201113158A (en) Apparatus and method for processing long, continuous flexible substrates
US20170333936A1 (en) Segmented or selected-area coating
JP2002090547A (en) Device for manufacturing polarizer
JPH0290968A (en) Production equipment of organic thin film
RU2222429C2 (en) Method and device for formation of anisotropic films
Zhong et al. Roll-to-roll large-format slot die coating of photosensitive resin for UV embossing
Kinefuchi et al. Incident energy dependence of the scattering dynamics of water molecules on silicon and graphite surfaces: the effect on tangential momentum accommodation
WO2016033674A1 (en) Device for producing nanostructured coatings on a solid surface
CN107073806B (en) The manufacturing method of embossing film, laminar film, transfer object and embossing film
EP0312099B1 (en) Process for producing a polyacetylene
US5908666A (en) Process for producing Langmuir-Blodgett film
KR101929692B1 (en) Filler-filled film, sheet film, laminate film, bonded body, and method for producing filler-filled film
JP2004517754A5 (en)