JPH0290050A - Method and apparatus for measuring characteristic of heat - Google Patents

Method and apparatus for measuring characteristic of heat

Info

Publication number
JPH0290050A
JPH0290050A JP24299388A JP24299388A JPH0290050A JP H0290050 A JPH0290050 A JP H0290050A JP 24299388 A JP24299388 A JP 24299388A JP 24299388 A JP24299388 A JP 24299388A JP H0290050 A JPH0290050 A JP H0290050A
Authority
JP
Japan
Prior art keywords
temperature
sample
specimen
resonant frequency
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24299388A
Other languages
Japanese (ja)
Other versions
JPH0682106B2 (en
Inventor
Masayuki Suda
正之 須田
Hiroshi Muramatsu
宏 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP63242993A priority Critical patent/JPH0682106B2/en
Publication of JPH0290050A publication Critical patent/JPH0290050A/en
Publication of JPH0682106B2 publication Critical patent/JPH0682106B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To make it possible to measure the characteristics of heat in a short time by using only a small amount of sample by using, e.g. an AT cut quartz resonator as a detector, and continuously measuring the resonant frequency change or impedance change of the quartz resonator. CONSTITUTION:An AT cut quartz resonator 8 is sealed into a plastic holder 9 having a structure wherein only one surface is in contact with a specimen with a silicone resin. The specimen is fixed on an AT cut quartz resonator cell 1 and inputted into a constant temperature even 2. The temperature of the oven 2, i.e. the specimen is controlled with a temperature controlling device 3 at a temperature set with a microcomputer 5. When the temperature of the oven 2 is changed at a constant speed with the computer 5 and the device 3, the resonant frequency and the loss resistance value of the resonator 8 become the value reflecting the viscoelasticity of the specimen at the temperature in measurement. The resonant frequency and the loss resistance value can be measured by using an impedance measuring device 4. When both measured values are compared, the viscosity change and the elasticity change of the specimen can be considered.

Description

【発明の詳細な説明】 [産業上の利用分野) この発明は、化学、高分子化学、及び化学工業分野にお
ける。融解、凝固などの熱力学的状態変化を伴う反応の
分析、及びそれを利用した材料の熱特性の試験、評価を
行なう装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] This invention is in the fields of chemistry, polymer chemistry, and chemical industry. This field relates to an apparatus for analyzing reactions involving thermodynamic state changes such as melting and solidification, and for testing and evaluating thermal properties of materials using the analysis.

[発明の概要) この発明の熱特性計測方法及び装置は、圧電素子に試料
を接触させ、熱による試料の粘弾性変化を圧電素子の共
振周波数の変化もしくは、インピーダンスの変化として
検出し、計測を行なうことを特徴としている。
[Summary of the Invention] The method and device for measuring thermal characteristics of the present invention include bringing a sample into contact with a piezoelectric element, detecting changes in the viscoelasticity of the sample due to heat as changes in the resonant frequency of the piezoelectric element or changes in impedance, and performing measurements. It is characterized by doing.

この発明のうち熱特性計測装置の方は、少なくとも圧電
素子と共振周波数を測定する装置もしくはインピーダン
スを測定する装置のいずれかより構成される。
The thermal characteristic measuring device of the present invention is comprised of at least a piezoelectric element and either a device for measuring resonance frequency or a device for measuring impedance.

[従来の技術] 従来、試料の熱的特性を計測する方法及び装置としては
示差熱分析(DTAl法や示唆熱量分析(DSC)法が
主に用いられてきた。これらは基準物質と試料を同時に
一定の速度で加熱し、試料に相変化や熱分解などの熱的
特性の変化が生じたときに、基準物質と試料との間に発
生する温度差を検出することにより試料の熱特性を分析
する装置である。
[Prior Art] Conventionally, differential thermal analysis (DTAl method) and suggestive calorimetry (DSC) method have been mainly used as methods and devices for measuring the thermal properties of samples. Analyzes the thermal properties of a sample by detecting the temperature difference that occurs between the reference material and the sample when the sample undergoes a change in thermal properties such as a phase change or thermal decomposition when heated at a constant rate. It is a device that does

この他に、熱的性質を計測する手法としては熱膨張を測
定する方法、比熱を測定する方法などがある。
Other methods for measuring thermal properties include a method of measuring thermal expansion and a method of measuring specific heat.

[発明が解決しようとする課題1 従来の測定法では、試料の量がある程度必要であった。[Problem to be solved by the invention 1 Conventional measurement methods require a certain amount of sample.

示差熱分析法や示唆熱量分析法では、測定の基準物質と
して、測定温度範囲で熱特性に変化を生じない物質が必
要である。比熱測定、熱膨張測定では、測定に長時間を
要し、また連続的に測定を行なうことが困難であるとい
う問題点を有している。さらに従来の測定方法では、微
少量の試料や液晶、LB膜などの試料については測定が
困難であった。
Differential thermal analysis and suggestive calorimetry require a substance whose thermal properties do not change within the measurement temperature range as a reference substance for measurement. Specific heat measurement and thermal expansion measurement have problems in that measurements require a long time and are difficult to carry out continuously. Furthermore, with conventional measurement methods, it is difficult to measure small amounts of samples, liquid crystals, LB films, and other samples.

さらに、これまで圧電素子を用いて試料の粘弾性変化を
検出することにより熱特性の計測を行なった例はなく、
本発明はまったく新しい熱特性計測方法及び装置に関す
るものである。
Furthermore, until now there has been no example of measuring thermal properties by detecting viscoelastic changes in a sample using a piezoelectric element.
The present invention relates to a completely new method and device for measuring thermal properties.

[課題を解決するための手段1 本発明の熱特性計測方法及び装置は、例えばATカット
水晶振動子を検出器とし、水晶振動子の共振周波数変化
、もしくはインピーダンス変化を連続的に計測すること
によって、ごく少量のサンプル量で、標準物質を使用す
ることなく短時間での熱特性の計測を可能にするもので
ある。
[Means for Solving the Problems 1] The method and device for measuring thermal characteristics of the present invention uses, for example, an AT-cut crystal oscillator as a detector, and continuously measures changes in the resonant frequency or impedance of the crystal oscillator. , it is possible to measure thermal properties in a short time with a very small amount of sample and without using standard materials.

また、試料を水晶振動子表面に接触させるだけで、zp
す定か可能であるため、液晶やLB膜などの従来の技術
では測定が困難であったjIt料についても測定を可能
とした。
In addition, simply by bringing the sample into contact with the crystal resonator surface, zp
Since it can be determined, it has become possible to measure jIt materials, which were difficult to measure using conventional techniques such as liquid crystals and LB films.

[作用] 圧電素子は共振周波数付近の周波数の電圧を印加するこ
とにより機械的な振動を起こす、この振動はきわめて微
小であるが、物質が接した状態で物質と圧電素子表面と
の間のせん断応力による抵抗を受ける。この機械的抵抗
の抵抗係数は、圧電素子の機械的な振動と電気的な振動
とを対応づけて考えると電気的抵抗と同等であると考え
ることができる。従って、共振周波数における損失抵抗
は、圧電素子表面の摩擦係数を反映した値と考え′られ
、この損失抵抗を連続的に計測することによって、物質
の粘弾性変化を計測することができる。また、水晶振動
子のせん断応力が水晶振動子の弾性体として振動する力
と釣りあうことから、共振周波数の変化も、粘弾性変化
と対応する。従って、共振周波数変化を測定することに
よっても、試料の粘弾性変化を追跡することができる。
[Operation] A piezoelectric element generates mechanical vibrations by applying a voltage with a frequency near the resonance frequency. Although this vibration is extremely small, it causes shear between the material and the surface of the piezoelectric element when they are in contact with each other. Resistance due to stress. The resistance coefficient of this mechanical resistance can be considered to be equivalent to the electrical resistance when considering the correspondence between the mechanical vibration and the electrical vibration of the piezoelectric element. Therefore, the loss resistance at the resonance frequency is considered to be a value reflecting the coefficient of friction on the surface of the piezoelectric element, and by continuously measuring this loss resistance, changes in the viscoelasticity of the material can be measured. Further, since the shear stress of the crystal oscillator balances the force of the quartz crystal oscillator to vibrate as an elastic body, changes in the resonance frequency also correspond to changes in viscoelasticity. Therefore, the change in viscoelasticity of the sample can also be tracked by measuring the change in resonance frequency.

ここで水晶振動子の共振周波数は、試料の弾性、粘性、
重量変化によって変化し、損失抵抗は粘性変化のみによ
って変化することが知られている。
Here, the resonant frequency of the crystal resonator is determined by the elasticity and viscosity of the sample.
It is known that the resistance changes depending on the weight change, and the loss resistance changes only due to the viscosity change.

従って重量変化がない場合には、共振周波数と損失抵抗
値とを比較することにより、試料の粘性的変化と弾性的
変化を考察することができる。
Therefore, when there is no weight change, viscous changes and elastic changes of the sample can be considered by comparing the resonance frequency and loss resistance value.

一方、試料に溶解や、ガラス転移などの熱力学的な転移
が生じる前後で、粘弾性に変化が生じることが知られて
おり、よって、この2つの性質を応用することにより、
試料の熱特性を計測することが可能となった。圧電素子
としては、水晶振動子の他、SAWデバイスや圧電セラ
ミック発振子などが利用可能である。
On the other hand, it is known that viscoelasticity changes before and after a thermodynamic transition such as melting or glass transition occurs in a sample. Therefore, by applying these two properties,
It has become possible to measure the thermal properties of samples. As the piezoelectric element, in addition to a crystal resonator, a SAW device, a piezoelectric ceramic resonator, etc. can be used.

[実施例1 以下、この発明の実施例を図面に基づいて説明する。第
1図は、本発明の熱特性計測装置の模式図を示したもの
である。第1図において、ATカット水晶振動子セルl
は、恒温槽2に入れられ測定周波数が任意に設定できる
インビーグンス測定器4に接続されている。また、恒温
槽2は、温度測定制御装置3に接続されている。温度制
御装置3、インビーグンス測定器4は、さらに演算また
は制御を行なうためのコンピュータ5に接続され、コン
ピュータ5にはプリンタ6、デイスプレィ7が接続され
ている。第2図は第1図の熱特性31−11111装置
の模式図のうち、ATカッ1−水晶振動子セル1部分の
構造を示したものである。ATカット水晶振動子8は、
片面のみが試↑4と接するような構造を持つプラスチッ
ク製のボルダ−9にシリコーン樹脂で封入されている。
[Embodiment 1] Hereinafter, an embodiment of the present invention will be described based on the drawings. FIG. 1 shows a schematic diagram of a thermal characteristic measuring device of the present invention. In Figure 1, AT-cut crystal resonator cell l
is placed in a constant temperature bath 2 and connected to an invigorance measuring device 4 whose measurement frequency can be set arbitrarily. Further, the constant temperature bath 2 is connected to a temperature measurement control device 3. The temperature control device 3 and the immunity measuring device 4 are further connected to a computer 5 for calculation or control, and a printer 6 and a display 7 are connected to the computer 5. FIG. 2 shows the structure of the AT cup 1-crystal resonator cell 1 portion of the schematic diagram of the thermal characteristics 31-11111 device shown in FIG. The AT cut crystal resonator 8 is
It is sealed with silicone resin in a plastic boulder 9 that has a structure in which only one side is in contact with test ↑4.

本発明の計測方法は、試料をATカット水晶振動子セル
1上に固定して恒温$12と温度制御装置3により試料
の温度を一定の速度で変化させていき、同時にATカッ
ト水晶振動子8の共振周波数付近でのインピーダンスの
測定を連続的に行“ない、温度に対するATカット水晶
振動子8の共振周波数および、損失抵抗値の変化を得る
ものである。
In the measurement method of the present invention, a sample is fixed on an AT-cut crystal resonator cell 1, and the temperature of the sample is changed at a constant rate using a constant temperature $12 and a temperature control device 3. At the same time, an AT-cut crystal resonator cell 8 The impedance is continuously measured near the resonant frequency of the AT-cut crystal resonator 8 to obtain changes in the resonant frequency and loss resistance value of the AT-cut crystal resonator 8 with respect to temperature.

本発明の計測装置において、試料はATカット水晶振動
子セルl上に固定され、恒温I!2中に入れられている
。恒温槽2の?温度は、コンピュータ5によって設定さ
れた温度に、温度制御装置3により制御片されている。
In the measuring device of the present invention, the sample is fixed on an AT-cut crystal oscillator cell l, and is kept at a constant temperature I! It is included in 2. Temperature bath 2? The temperature is controlled by a temperature control device 3 to a temperature set by a computer 5.

コンビエータ5で設定する温度を一定の速度で変化させ
ることにより、恒温槽2の温度を一定の速度で変化させ
ることが可能である。
By changing the temperature set by the combinator 5 at a constant rate, it is possible to change the temperature of the constant temperature bath 2 at a constant rate.

試料をATカット水晶振動子セルl上に固定すると1.
A Tカット水晶振動子8の共振周波数および、損失抵
抗値は、測定時の温度での試料の粘弾性を反映したもの
となり、共振周波数及び、損失抵抗値は、インピーダン
ス測定器4を用いて測定される。第3図は本実施例で用
いたインピーダンス測定器のブロックダイアグラムであ
る。信号発生部10でATカット水晶振動子8の共振周
波数付近の周波数を発生させ、信号分配部11で信号発
生部10で得られた信号を2つに分配する。2つに分配
された信号の内、一方はそのまま増幅部AI2、アッテ
ネータ部A13、対数増幅部A14を経て演算部19に
入る。他方はATカット水晶振動子8を経た後、増幅部
I315、アッテネータB16、対数増幅部BITを経
て演算部19に入る。また、アッテネータ部B16から
出てきた信号は、途中、ATカット水晶振動子8を通過
しているため、アッテネータ部A13から出てきた信号
との間には位相差がある。この位相差は位相差検出部1
8で検出され、演算部19に入力される。演算部19で
は入力された信号から・、ATカット水晶振動子8のコ
ンダクタンスおよびサセプタンスを求め、表示部20に
表示する。
When the sample is fixed on the AT cut crystal resonator cell l, 1.
The resonant frequency and loss resistance value of the AT-cut crystal resonator 8 reflect the viscoelasticity of the sample at the temperature at the time of measurement, and the resonant frequency and loss resistance value are measured using the impedance measuring device 4. be done. FIG. 3 is a block diagram of the impedance measuring device used in this example. A signal generator 10 generates a frequency near the resonance frequency of the AT-cut crystal resonator 8, and a signal distributor 11 divides the signal obtained by the signal generator 10 into two. Of the two divided signals, one enters the arithmetic unit 19 as it is through the amplification unit AI2, attenuator unit A13, and logarithmic amplification unit A14. The other signal passes through the AT-cut crystal oscillator 8, and then enters the arithmetic unit 19 via the amplification section I315, attenuator B16, and logarithmic amplification section BIT. Further, since the signal output from the attenuator section B16 passes through the AT-cut crystal resonator 8 on the way, there is a phase difference between the signal and the signal output from the attenuator section A13. This phase difference is determined by the phase difference detection section 1
8 and input to the calculation section 19. The arithmetic unit 19 calculates the conductance and susceptance of the AT-cut crystal resonator 8 from the input signal, and displays them on the display unit 20.

インピーダンス測定は、具体的には、アドミッタンスの
虚数部であるサセプタンスの最大値と最小値を与える周
波数の間に共振周波数があることから、まず最初にサセ
プタンスの最大値、最小値を周波数掃引して求め、この
間の周波数について等間隔の周波数で、コンダクタンス
とサセプタンスの測定を行なった。測定値は、コンダク
タンス及びサセプタンスのデータを円の最小自乗法によ
って処理し1円の直径を求めこの逆数を損失抵抗の値と
した。また、円の中心を求め、この中心点のサセプタン
スの値と同じサセプタンス値を示すような円上の周波数
をサセプタンスと測定周波数の多項式近似より求めこれ
を共振周波数とした。
Specifically, in impedance measurement, since there is a resonance frequency between the frequencies that give the maximum and minimum values of susceptance, which is the imaginary part of admittance, first, the maximum and minimum values of susceptance are frequency swept. The conductance and susceptance were measured at equally spaced frequencies between these frequencies. As for the measured values, conductance and susceptance data were processed by the least squares method of circles, and the diameter of one circle was determined, and the reciprocal of this was taken as the value of the loss resistance. Further, the center of the circle was found, and a frequency on the circle that showed the same susceptance value as the susceptance value at this center point was found by polynomial approximation of the susceptance and the measurement frequency, and this was taken as the resonance frequency.

インピーダンス測定およびtnn低抵抗値共振周波ご女
を求めるための演算の処理は、コンピュータ5によって
自動的に行なわれ、その結果はデイスプレィ6およびプ
リンタフに表示、印刷される。
Impedance measurement and arithmetic processing for determining the tnn low resistance value resonance frequency are automatically performed by the computer 5, and the results are displayed and printed on the display 6 and printer.

また、本実施例では、ATカット水晶振動子を検出器と
したが、GTカット水晶振動子や他の圧電材料、例えば
、SAWデバイスや圧電セラミνり発振子を用いても同
様の測定が可能であることが示されている。
Furthermore, in this example, an AT-cut crystal resonator was used as the detector, but similar measurements can be made using a GT-cut crystal resonator or other piezoelectric materials, such as a SAW device or a piezoelectric ceramic oscillator. It has been shown that

次に本計測方法及び装置を用いて、測定を行なった結果
について説明する。
Next, the results of measurements performed using this measurement method and apparatus will be explained.

(液晶材料の相転移温度測定への応用)第4図に示す構
造を持つ、ti品材1(K21)を試料とし、温度を2
0〜70℃まで変化させた場合の損失抵抗値の変化を測
定した結果を第5図(a)に、及び共振周(flgの変
化を測定した結果を第5図(b)にそれぞれ示す1本実
施例で用いた液晶の液晶から液体への相転移点は、42
.8℃であるが、その付近の温度において相転移に起因
する応答が現れている(第5図(a)A部分、第5図(
b)B部分)。即ち、本測定法および本測定装置により
、液晶(イ科の相転移温度の測定が可能であることが示
された6 (高分子フィルムの融点測定への応用)高分子フィルム
(ポリエチレンMarIex50)を試料とし測定を行
った結果、液晶材料の場合と同様に高分子フィルムの融
点である137℃で相転移に起因する応答が得られた。
(Application to measurement of phase transition temperature of liquid crystal materials) Ti material 1 (K21) having the structure shown in Fig. 4 was used as a sample, and the temperature was
Figure 5 (a) shows the results of measuring the change in loss resistance value when changing it from 0 to 70°C, and Figure 5 (b) shows the results of measuring the change in resonance frequency (flg). The phase transition point of the liquid crystal used in this example from liquid crystal to liquid is 42
.. 8°C, but a response due to phase transition appears at a temperature around that temperature (Fig. 5(a) part A, Fig. 5(a)).
b) Part B). In other words, it has been shown that this measurement method and this measurement device can measure the phase transition temperature of liquid crystals (Application to melting point measurement of polymer films). As a result of measurements made using the sample, a response due to phase transition was obtained at 137° C., which is the melting point of the polymer film, as in the case of liquid crystal materials.

即ち、本測定法および本測定装置により、高分子フィル
ムの融点の測定が可能であることが示された。
That is, it was shown that the melting point of a polymer film can be measured by this measuring method and this measuring device.

(累積しBiiの相転移温度測定への応用)アラキシン
酸カドミウム塩をLB法により水晶振動子上に累積させ
た後、液晶材料の場合と同様に測定を行なった結果、相
転移点である78℃付近で相転移に起因する応答が得ら
れた。即ち、本測定法及び本測定装置により、累積LB
膜の相転移点の測定が可能であることが示された。
(Application to accumulation and measurement of phase transition temperature of Bii) After accumulating cadmium araxinate on a crystal resonator by the LB method, measurement was carried out in the same manner as in the case of liquid crystal materials. As a result, the phase transition temperature was 78 A response due to phase transition was obtained near °C. That is, by this measurement method and this measurement device, the cumulative LB
It was shown that it is possible to measure the phase transition point of a film.

[発明の効果1 本発明の熱特性計測方法及び装置により、従来の方法で
は困難であった微少量の試料や、液晶材料、LB膜など
の試料についても熱特性の測定が可能となった。
[Effect of the Invention 1] The method and apparatus for measuring thermal properties of the present invention make it possible to measure the thermal properties of very small samples, liquid crystal materials, LB films, and other samples, which was difficult with conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の熱特性計測装置の模式図、第2図はA
Tカット水晶振動子セルの構造を示す説明図、第3図は
本実施例で用いたインピーダンス測定器のブロックダイ
アグラム、第4図は本実施例で用いた液晶材料の114
造式の説明図、第5図(a)は液晶材料を試料とした場
合の温度による損失抵抗の変化を示す説明図、第5図(
b)は液晶材料を試料とした場合の温度による共振周波
数の変化を示す説明図である。 1・・・ATカット水晶振動子セル 4・・・インピーダンス測定器 5・・・コンピュータ 8・・・ATカット水晶振動子 以上 出願人 セイコー電子工業株式会社 代理人 弁理士  林   敬 之 助第2図 ATカット水晶1后勤子セルの構造を示す説明図1(方
式) 昭和63年12 月28 へ 事件の表ボ 昭和63年 特許願 ff1242993号発明の名称 熱特性計測方法及び装置 補正をする者 事件との関係 特許出願人 東京都江東区亀戸6丁1”131番1号(232) 4
z イコf47 工’J、 n K 会社代表取締役 
 原 禮之助
Figure 1 is a schematic diagram of the thermal characteristic measuring device of the present invention, and Figure 2 is A
An explanatory diagram showing the structure of a T-cut crystal resonator cell, FIG. 3 is a block diagram of the impedance measuring device used in this example, and FIG.
Figure 5(a) is an explanatory diagram of the construction formula, and Figure 5(a) is an explanatory diagram showing the change in loss resistance due to temperature when a liquid crystal material is used as a sample.
b) is an explanatory diagram showing changes in resonance frequency depending on temperature when a liquid crystal material is used as a sample. 1...AT-cut crystal oscillator cell 4...Impedance measuring device 5...Computer 8...AT-cut crystal oscillator and above Applicant: Seiko Electronic Industries Co., Ltd. Agent Patent attorney: Keisuke Hayashi Figure 2 Explanatory diagram 1 (method) showing the structure of an AT-cut crystal 1 cell Relationship: Patent applicant No. 131-1, 6-1 Kameido, Koto-ku, Tokyo (232) 4
z Ico f47 Engineering'J, nK Company Representative Director
Reinosuke Hara

Claims (2)

【特許請求の範囲】[Claims] (1)圧電素子の少なくとも片面を試料と接触させ、試
料の温度を連続的に変化させていき、圧電素子の共振周
波数あるいは、損失抵抗値を連続的に測定して試料の粘
弾性変化を検出することにより、試料の熱特性の計測を
行なうことを特徴とする熱特性計測方法。
(1) At least one side of the piezoelectric element is brought into contact with the sample, the temperature of the sample is continuously changed, and the resonant frequency or loss resistance value of the piezoelectric element is continuously measured to detect changes in the viscoelasticity of the sample. A thermal property measurement method characterized by measuring the thermal properties of a sample.
(2)少なくとも圧電素子と圧電素子の共振周波数を測
定する装置、あるいは、圧電素子の損失抵抗値を測定す
る装置とから構成され、圧電素子の少なくとも片面を試
料と接触させ、試料の温度を連続的に変化させていき、
圧電素子の共振周波数あるいは、損失抵抗値を連続的に
測定して試料の粘弾性変化を検出することにより、試料
の熱特性の計測を行なうことを特徴とする熱特性計測装
置。
(2) Consisting of at least a piezoelectric element and a device that measures the resonant frequency of the piezoelectric element, or a device that measures the loss resistance value of the piezoelectric element, at least one side of the piezoelectric element is brought into contact with the sample, and the temperature of the sample is continuously maintained. By changing the
1. A thermal property measuring device that measures the thermal properties of a sample by continuously measuring the resonant frequency or loss resistance value of a piezoelectric element and detecting changes in viscoelasticity of the sample.
JP63242993A 1988-09-28 1988-09-28 Thermal characteristic measuring method and device Expired - Lifetime JPH0682106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63242993A JPH0682106B2 (en) 1988-09-28 1988-09-28 Thermal characteristic measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63242993A JPH0682106B2 (en) 1988-09-28 1988-09-28 Thermal characteristic measuring method and device

Publications (2)

Publication Number Publication Date
JPH0290050A true JPH0290050A (en) 1990-03-29
JPH0682106B2 JPH0682106B2 (en) 1994-10-19

Family

ID=17097297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63242993A Expired - Lifetime JPH0682106B2 (en) 1988-09-28 1988-09-28 Thermal characteristic measuring method and device

Country Status (1)

Country Link
JP (1) JPH0682106B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042924A (en) * 2001-07-31 2003-02-13 National Institute Of Advanced Industrial & Technology Method and instrument for measuring viscosity
JP2003532056A (en) * 2000-04-05 2003-10-28 ザ チャールズ スターク ドレイパー ラボラトリー インク Apparatus and method for measuring mass of substance
JP2011203246A (en) * 2010-03-03 2011-10-13 Noboru Wakatsuki Viscoelasticity evaluation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917790A (en) * 1972-06-05 1974-02-16
JPS5050976A (en) * 1973-07-30 1975-05-07
JPS60170741A (en) * 1984-02-16 1985-09-04 Fuji Elelctrochem Co Ltd Viscosity sensor
JPS61100626A (en) * 1984-10-24 1986-05-19 Yokogawa Hokushin Electric Corp Vibration type sensor
JPS6275331A (en) * 1985-09-27 1987-04-07 カウンシル フオ ミネラル テクノロジ Method and device for measuring or monitoring density or viscoelasticity of liquid or slurry, emulsion or dispersion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917790A (en) * 1972-06-05 1974-02-16
JPS5050976A (en) * 1973-07-30 1975-05-07
JPS60170741A (en) * 1984-02-16 1985-09-04 Fuji Elelctrochem Co Ltd Viscosity sensor
JPS61100626A (en) * 1984-10-24 1986-05-19 Yokogawa Hokushin Electric Corp Vibration type sensor
JPS6275331A (en) * 1985-09-27 1987-04-07 カウンシル フオ ミネラル テクノロジ Method and device for measuring or monitoring density or viscoelasticity of liquid or slurry, emulsion or dispersion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003532056A (en) * 2000-04-05 2003-10-28 ザ チャールズ スターク ドレイパー ラボラトリー インク Apparatus and method for measuring mass of substance
US7171844B2 (en) 2000-04-05 2007-02-06 The Charles Stark Draper Laboratory, Inc. Apparatus and method for measuring the mass of a substance
JP2003042924A (en) * 2001-07-31 2003-02-13 National Institute Of Advanced Industrial & Technology Method and instrument for measuring viscosity
JP2011203246A (en) * 2010-03-03 2011-10-13 Noboru Wakatsuki Viscoelasticity evaluation device

Also Published As

Publication number Publication date
JPH0682106B2 (en) 1994-10-19

Similar Documents

Publication Publication Date Title
US4783987A (en) System for sustaining and monitoring the oscillation of piezoelectric elements exposed to energy-absorptive media
McSkimin Ultrasonic methods for measuring the mechanical properties of liquids and solids
US4741200A (en) Method and apparatus for measuring viscosity in a liquid utilizing a piezoelectric sensor
US2707391A (en) Testing viscous liquids
Barlow et al. The effect of pressure on the viscoelastic properties of liquids
US5211054A (en) Method and system for analyzing a gelation reaction by utilizing a piezoelectric resonator
US3600933A (en) Apparatus for determining the freezing point of a solution
Mason et al. Mechanical properties of polymers at ultrasonic frequencies
Sittel et al. Method for Determining the Viscoelastic Properties of Dilute Polymer Solutions at Audio‐Frequencies
EP0304283B1 (en) Apparatus for measuring a characteristic of a liquid
Yao et al. Surface acoustic wave sensor system for the determination of total salt content in serum
Schwarz Simple system using one‐crystal composite oscillator for internal friction and modulus measurements
JPH0290050A (en) Method and apparatus for measuring characteristic of heat
US2522924A (en) Supersonic inspection apparatus
JPS6275331A (en) Method and device for measuring or monitoring density or viscoelasticity of liquid or slurry, emulsion or dispersion
JPH01311250A (en) Method and device for measuring fluid viscosity
US7350403B2 (en) Method and apparatus for determination of food quality and authenticity
SU682796A1 (en) Apparatus for the determination of shear viscosity and elasticity of media
JPH049744A (en) Quartz vibrator cell
JPH0249131A (en) Temperature measuring instrument
JP2811315B2 (en) Piezoelectric gas sensor system
JP3087190B2 (en) Method and apparatus for measuring electrical characteristics
Beukema et al. Measuring system for complex shear modulus of liquids using torsionally vibrating quartz crystals
US2903884A (en) Densitometer
Eggers et al. Oscillating plate viscometer in the Hz to kHz range

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071019

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 14

EXPY Cancellation because of completion of term