JPH0289290A - Static type integration circuit memory - Google Patents

Static type integration circuit memory

Info

Publication number
JPH0289290A
JPH0289290A JP63241907A JP24190788A JPH0289290A JP H0289290 A JPH0289290 A JP H0289290A JP 63241907 A JP63241907 A JP 63241907A JP 24190788 A JP24190788 A JP 24190788A JP H0289290 A JPH0289290 A JP H0289290A
Authority
JP
Japan
Prior art keywords
memory
circuit
power source
time constant
circuit memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63241907A
Other languages
Japanese (ja)
Inventor
Shigenobu Nagasawa
長沢 重信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63241907A priority Critical patent/JPH0289290A/en
Publication of JPH0289290A publication Critical patent/JPH0289290A/en
Pending legal-status Critical Current

Links

Landscapes

  • Static Random-Access Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To initialize the states of every memory cells within the short period of time immediately after power source apply by building-in a circuit to automatically initialize the value of every memory elements into the memory when the power source is supplied. CONSTITUTION:The circuit to initialize for every memory elements is built-in the memory itself when the power source is applied. This circuit consists of the time constant circuit of a resistance R and a capacity C and the circuit able to simultaneously write initialization information, all '0' for instance, into every memory element within the short period of time immediately after the power source apply to the memory with the use of this time constant. Thus, the state of every memory cell can be initialized within the short period of time immediately after the power source apply.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は集積回路メモIへ特にスタティック型の集積回
路メモリの電源投入時における初期設定の回路に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an initial setting circuit for an integrated circuit memory I, particularly when a static type integrated circuit memory is turned on.

[従来の技術およびその問題点コ 集積回路メモリには、そのメモリ素子に「0」または「
1」を記憶させる方法として、ダイナミック型メモリと
スタティック型メモリの2’f!gNがある。以降の文
中におけるメモリとはすへて記憶侃持に関し、特殊な動
作を不要としたスタティック型集積回路メモリを意味す
る。またメモリ素子とはメモリ中の情報を記憶する単位
セルを意味するものとする。
[Prior art and its problems] An integrated circuit memory has a memory element that contains "0" or "0".
2'f!' in dynamic memory and static memory. There is gN. In the following text, the term "memory" refers to a static integrated circuit memory that does not require any special operation in terms of storage retention. Furthermore, the term "memory element" refers to a unit cell that stores information in a memory.

プリント板に搭載されているメモリに関して、電源投入
直後のメモリ素子の値はrOJまたは「1」が全くラン
ダムに記憶されており、電源投入毎のその再現性も保証
されていない。従って通常そのメモリを搭載したプリン
ト板の単体検査を行う場合や、そのプリント板を搭載し
たシステムの検査を行う場合には、まずメモリの初ti
fI設定を行う必要がある。このために、このメモリに
対してたとえば初期状態としてすへて「0」を書込む。
Regarding the memory mounted on the printed board, the value of the memory element immediately after power is turned on is rOJ or "1", which is completely randomly stored, and its reproducibility is not guaranteed each time the power is turned on. Therefore, when inspecting a single printed circuit board equipped with the memory or a system equipped with the printed circuit board, the first thing to do is to test the memory for the first time.
It is necessary to set fI. For this purpose, for example, "0" is written into this memory as an initial state.

そのためには、全てのメモリアドレスに対し、書込デー
タ「0」を送ることになる。その後、正しく初期設定さ
れたか、否かを確認するために今度は同じメモリの前ア
ドレスに読み出し命令を送り、その正常性の確認を行う
ことになる。ところがこのような方法ではメモリのサイ
ズが大規模になるにつれ、初期設定用の書込処理の時間
も増大し、またもしメモリからの読み出しデータが期待
値と異なったときにメモリの書込回路に問題があるのか
、読み出し回路側の問題なのか、あるいはメモリ素子そ
のものの不良なのか、切りわけが難しいという問題があ
る。
To do this, write data "0" must be sent to all memory addresses. After that, in order to check whether initialization has been done correctly, a read command is sent to the previous address of the same memory, and its normality is checked. However, with this method, as the size of the memory increases, the time it takes to write the initial settings also increases, and if the data read from the memory differs from the expected value, the memory write circuit needs to The problem is that it is difficult to determine whether there is a problem, a problem with the readout circuit, or a defect in the memory element itself.

[発明の従来技術に対する相違点] 上述した従来のメモリに対し、本発明はメモリの内部に
電源投入時に自動的に全てのメモリ素子の値を初期設定
する回路を組み込んでいる点が異なる。
[Differences between the Invention and the Prior Art] The present invention differs from the conventional memory described above in that the present invention incorporates a circuit inside the memory that automatically initializes the values of all memory elements when the power is turned on.

[問題点を解決するための手段] 本発明のメモリは、メモリ自体で電源投入時にその全て
のメモリ素子に対し、初期設定を行う回路を緒み込んで
いる。この回路は抵抗と容量の時定数回路で構成され、
この時定数を利用して、メモリに電源投入直後の短時間
のうちに全てのメモリ素子に同時に初期設定情報、例え
ば全て「0」を書込むことができる回路を構成している
[Means for Solving the Problems] The memory of the present invention incorporates a circuit that performs initial settings for all memory elements of the memory itself when power is turned on. This circuit consists of a time constant circuit of resistance and capacitance.
Utilizing this time constant, a circuit is constructed that can simultaneously write initial setting information, for example, all "0", to all memory elements within a short period of time immediately after power is turned on to the memory.

[実施例] 次に本発明の実施例について図面を参照して説明する。[Example] Next, embodiments of the present invention will be described with reference to the drawings.

第1図は従来のメモリ素子の回路に対し、本発明の第1
実施例を示す回路図である。特に本実施例を特徴付けて
いる回路を図中の一点鎖線により示しである。A1〜A
nはアドレス信号であり、デコーダ1により展開された
後、特定のワード線W1〜Wnのうちの1本を選択駆動
する。ここてWlが選択されたとき、このワード線上の
ドライバーDIOを介してトランジスタT1とT2が導
通し、メモリセル2に記憶された信号がデイジット線D
I、DIに読出される。この値はセンスアンプ3により
RD端子に読出される。一方書込動作詩はアドレス信号
A1〜Anの他、書込情報がデイジット線D2.nより
ドライバーD20゜D20を介し・てそれぞれDI、D
I−へと送られ、メモリセル2へ書き込まれろ。4はプ
リチャージ回路を示しドライバーD30により駆動され
る。
FIG. 1 shows the first circuit of the present invention, which is different from the conventional memory element circuit.
FIG. 2 is a circuit diagram showing an example. In particular, a circuit that characterizes this embodiment is shown by a chain line in the figure. A1-A
n is an address signal which, after being developed by the decoder 1, selectively drives one of the specific word lines W1 to Wn. When Wl is selected, transistors T1 and T2 are made conductive via the driver DIO on this word line, and the signal stored in memory cell 2 is transferred to digit line DIO.
It is read out to I and DI. This value is read out to the RD terminal by the sense amplifier 3. On the other hand, in the write operation, in addition to the address signals A1 to An, write information is sent to the digit line D2. DI and D through driver D20゜D20 from n
I- and written to memory cell 2. Reference numeral 4 indicates a precharge circuit, which is driven by a driver D30.

本実施例ではアドレス線およびデイジット線に強制的に
メモリセルを初期設定する回路を組み込んで電源投入後
のごく短時間で全てのメモリセルの初期設定を行う。本
実施例による抵抗Rと容量Cの中点のノートN1は、ア
ドレス線の中間に挿入されているケート回路GIO〜G
inの人力となる一方、デイジット線側にも挿入されて
いるトランジスタT3.T4.T5.T6にも直接また
はインバータG20を介して接続されている。電源投入
直後はCには電荷がないため、ノードN1の電位は0■
である。このため、ゲート010〜G 1 nの入力も
OVとなりアドレス線W1〜\Vnは低レベルとなるた
め、DIO〜Dinの出力は反転して全て高し・\ルと
なり、メモリセル2に接続されているTI、T2は導通
状態となる。一方T3とT4はその入力が低レベルであ
るため、非導通となりD20.■l1の出力はDI、D
lには伝わらない。ざらにT5の入力ゲートには、G2
0によりN1の電位0■が反転された高レベルが供給さ
れるため導通し、地気がDlに表れる。
In this embodiment, a circuit for forcibly initializing memory cells is incorporated into the address line and digit line, and all memory cells are initialized in a very short time after power is turned on. The note N1 at the midpoint between the resistance R and the capacitance C according to this embodiment is the gate circuit GIO to G inserted between the address lines.
transistor T3.in, which is also inserted on the digit line side. T4. T5. It is also connected to T6 directly or via inverter G20. Immediately after the power is turned on, there is no charge in C, so the potential of node N1 is 0■
It is. Therefore, the inputs of the gates 010 to G1n also become OV, and the address lines W1 to \Vn become low level, so the outputs of DIO to Din are inverted and all become high and connected to the memory cell 2. TI and T2, which are connected, become conductive. On the other hand, since their inputs are at low level, T3 and T4 are non-conductive and D20. ■The output of l1 is DI, D
I can't convey it to l. Roughly, the input gate of T5 has G2.
0 supplies a high level which is an inversion of the potential 0■ of N1, so conduction occurs and earth air appears on Dl.

同様にT6はPチャンネル形であるため、やはり導通し
電源電圧がDIに表れる。TI、T2にも導通するため
、このDI、nの電位がメモリセル2に供給され、強制
的にセルを初期設定する。
Similarly, since T6 is of P-channel type, it is also conductive and the power supply voltage appears on DI. Since TI and T2 are also conductive, the potential of this DI and n is supplied to the memory cell 2, and the cell is forcibly initialized.

次にR,Cの時定数により定まる時間か経過するとノー
ドN1の電位は電源電圧まで上昇し、610〜GInお
よUT3.T4のゲートを開くとともにT5.T6をオ
フにし、地気および電源電圧がDI、DIに出ていくの
を防ぎ、後は前述したような通常のメモリ動作に備える
。本実施例による回路は全てのアドレス線およびデイジ
ット線に共通に接続されており、電源投入するのみで全
てのメモリセルが初期設定される。
Next, after a period of time determined by the time constants of R and C has passed, the potential of node N1 rises to the power supply voltage, and 610 to GIn and UT3. While opening the gate of T4, T5. T6 is turned off to prevent the ground voltage and power supply voltage from going out to DI and DI, and then preparation is made for normal memory operation as described above. The circuit according to this embodiment is commonly connected to all address lines and digit lines, and all memory cells are initialized simply by turning on the power.

第2図は本発明の第2実施例を示すブロック図である。FIG. 2 is a block diagram showing a second embodiment of the present invention.

第1図に示した実施例ではメモリの集積度が上がりセル
数が増えると、単一のCとRによる制御ではアドレスデ
コーダおよびデイジット線に至る配線も増え、またこれ
ら配線の抵抗、および容量を無視てきなくなるため、時
定数回路のCおよびRの値の設定値が難しくなる。そこ
で第2図に示す実施例のようにディジット線対応に初期
設定回路を用意すれば、かかる難点に対処することがで
きる。
In the embodiment shown in FIG. 1, as the degree of integration of the memory increases and the number of cells increases, the number of wirings leading to the address decoder and digit line increases with control using a single C and R, and the resistance and capacitance of these wirings increases. This makes it difficult to set the values of C and R in the time constant circuit. Therefore, if an initial setting circuit is prepared for the digit line as in the embodiment shown in FIG. 2, this difficulty can be overcome.

[発明の効果] 以上説明したように、本発明はメモリの中に初期設定用
の時定数回路を組み込み、電源投入直後の短時間内に全
てのメモリセルの状態を初期設定することが可能である
。従って、本メモリを組み込んだプリント板並びにシス
テムの試験時に試験時間を短縮することができ、障害が
発生した場合でも障害箇所の切りわけが容易に行えると
いう効果がある。
[Effects of the Invention] As explained above, the present invention incorporates a time constant circuit for initialization into the memory, and it is possible to initialize the states of all memory cells within a short time immediately after power is turned on. be. Therefore, the testing time can be shortened when testing printed circuit boards and systems incorporating this memory, and even if a fault occurs, it is possible to easily isolate the location of the fault.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示す回路図、第2図は第
2実施例のブロック図である。 1 φ ・ 舎 ・ ・ 2 ・ ・ ・ φ ・ 3 ・ ・ ・ ・ ・ 4 ・ ・ ・ ・ ・ A1〜An  ・ Wl、Wn 々 GIO,GI N1 ・ ・ ・ ・ ・アドレスデコーダ、 ・メモリセル、 ・センスアンプ、 ・プリチャージ回路、 ・アドレス線、 ・ワード線、 ・・ ・ゲート素子、 ・ノード、 DIO,Din、  D20゜ 丁子で、D30・・・・・・・・・ドライバーDI。 ■T。 D2゜ D−グ・ ・デイジット線、 TI、  T2.  T3゜ T4.T5.T6・・・・・・・トランジスタ、RD・
・・・・・・・・・・・・読み出し端子、R・ ・ ・
 ・・・・ ・・・・ ・・・抵抗、C・・・・・・・
・・・・・・・容量。 特許出1@人 日本電気株式会社
FIG. 1 is a circuit diagram showing a first embodiment of the present invention, and FIG. 2 is a block diagram of the second embodiment. 1 φ ・ ・ ・ 2 ・ ・ ・ φ ・ 3 ・ ・ ・ ・ 4 ・ ・ ・ ・ ・ A1~An ・ Wl, Wn GIO, GIN1 ・ ・ ・ ・ ・Address decoder, ・Memory cell, ・Sense Amplifier, ・Precharge circuit, ・Address line, ・Word line, ・Gate element, ・Node, DIO, Din, D20°, D30... Driver DI. ■T. D2゜D-digit line, TI, T2. T3゜T4. T5. T6・・・・・・Transistor, RD・
... Read terminal, R...
・・・・・・ ・・・Resistance, C・・・・・・
·······capacity. Patent issued 1 @ Nippon Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 各記憶素子が自己保持機能を有するスタティック型集積
回路メモリおいて、抵抗と容量とを直列に接続した時定
数回路を構成し、電源投入直後の該時定数回路の抵抗と
容量の接続点における電位変化を利用してアドレス線お
よび書込線を同時に制御し、該メモリ内の全ての記憶素
子に同一データを書き込むことを特徴とするスタティッ
ク型集積回路メモリ。
In a static integrated circuit memory in which each storage element has a self-holding function, a time constant circuit is formed by connecting a resistor and a capacitor in series, and the potential at the connection point of the resistor and capacitor of the time constant circuit immediately after power is turned on. 1. A static integrated circuit memory characterized in that address lines and write lines are simultaneously controlled using changes to write the same data to all storage elements within the memory.
JP63241907A 1988-09-27 1988-09-27 Static type integration circuit memory Pending JPH0289290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63241907A JPH0289290A (en) 1988-09-27 1988-09-27 Static type integration circuit memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63241907A JPH0289290A (en) 1988-09-27 1988-09-27 Static type integration circuit memory

Publications (1)

Publication Number Publication Date
JPH0289290A true JPH0289290A (en) 1990-03-29

Family

ID=17081327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63241907A Pending JPH0289290A (en) 1988-09-27 1988-09-27 Static type integration circuit memory

Country Status (1)

Country Link
JP (1) JPH0289290A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684366A (en) * 1992-09-04 1994-03-25 Matsushita Electric Ind Co Ltd Semiconductor memory
JP2009032387A (en) * 2007-06-29 2009-02-12 Semiconductor Energy Lab Co Ltd Semiconductor memory device and semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684366A (en) * 1992-09-04 1994-03-25 Matsushita Electric Ind Co Ltd Semiconductor memory
JP2009032387A (en) * 2007-06-29 2009-02-12 Semiconductor Energy Lab Co Ltd Semiconductor memory device and semiconductor device

Similar Documents

Publication Publication Date Title
US4612630A (en) EEPROM margin testing design
US4464750A (en) Semiconductor memory device
KR950000959B1 (en) Semiconductor memory device
US6584025B2 (en) Read compression in a memory
KR950015040B1 (en) Semiconductor memory device
US20050286326A1 (en) Method and apparatus for data compression in memory devices
EP0920032B1 (en) Ferroelectric random access memory device having short-lived cell detector available for life test for ferroelectric capacitor and method for testing ferroelectric memory cells
KR100228530B1 (en) Wafer burn-in test circuit for semiconductor memory device
US6615391B2 (en) Current controlled multi-state parallel test for semiconductor device
KR100286913B1 (en) A semiconductor memory device having a burn-in test function
US5008857A (en) Semiconductor memory device provided with an improved system for detecting the positions using a redundant structure
US7184337B2 (en) Method for testing an integrated semiconductor memory
US5894434A (en) MOS static memory array
JPH0289290A (en) Static type integration circuit memory
JPH04276392A (en) Eeprom circuit
US6611929B1 (en) Test circuit for memory
JP2754499B2 (en) Circuit for checking the integrity of information contained in an integrated circuit
US6381718B1 (en) Current controlled multi-state parallel test for semiconductor device
JP2804212B2 (en) Semiconductor storage device
JPH0479098A (en) Semiconductor storage device
US6408411B1 (en) Two pass multi-state parallel test for semiconductor device
JP3251253B2 (en) Semiconductor storage device
JPH0359899A (en) Semiconductor memory
JP2862943B2 (en) Semiconductor memory device
JP2000132999A (en) Semiconductor integrated circuit