JPH0287785A - Image pickup device - Google Patents
Image pickup deviceInfo
- Publication number
- JPH0287785A JPH0287785A JP63239996A JP23999688A JPH0287785A JP H0287785 A JPH0287785 A JP H0287785A JP 63239996 A JP63239996 A JP 63239996A JP 23999688 A JP23999688 A JP 23999688A JP H0287785 A JPH0287785 A JP H0287785A
- Authority
- JP
- Japan
- Prior art keywords
- charge
- transfer section
- vertical transfer
- section
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003384 imaging method Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 10
- 238000009825 accumulation Methods 0.000 description 8
- 210000003127 knee Anatomy 0.000 description 7
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 239000007787 solid Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
Landscapes
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、ms装置に関し、更に詳しくは固体撮像素子
を使用するに適した撮像装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an MS device, and more particularly to an imaging device suitable for using a solid-state imaging device.
(発明の背景)
固体搬像素子は、写真フィルムに比較して輝度に対する
ダイナミックレンジ(ラチチュード)が非常に狭いこと
が知られている。このため、輝度レベル差の大きい風景
、例えば晴れた日の室外陽形を行う場合、高輝度部分は
白くとんでしまい、逆に低輝度部分では黒くつぶれてし
まうことが多かった。(Background of the Invention) Solid-state image carriers are known to have a much narrower dynamic range (latitude) with respect to brightness than photographic film. For this reason, when performing a scene with a large difference in brightness level, for example, an outdoor positive view on a sunny day, high brightness areas often appear white, and conversely, low brightness areas often appear black.
通常の固体撮像素子(COD、MOS等)では、入射光
量と発生電荷とはリニアな関係(γ−1)である。この
様子を第19図に示す。In a normal solid-state image sensor (COD, MOS, etc.), the amount of incident light and the generated charge have a linear relationship (γ-1). This situation is shown in FIG.
この場合、信号のダイナミックレンジが狭く、かつ高輝
度部分では直ぐに飽和してしまう。このため、出力画像
のa輝度部分は白くとんでしまい、被写体中のコン°ト
ラストを判別することができなかった。In this case, the dynamic range of the signal is narrow, and high-brightness portions quickly become saturated. For this reason, the luminance part a of the output image was blown out in white, making it impossible to distinguish the contrast in the subject.
このような欠点を解決するものとして、固体撮像素子に
ニー(Knee;膝)特性を持たせることが、1978
年テレビジョン学会全国大会報43頁〜44頁rccD
イメージセンVのK n e e特性制御」に提案され
ている。また、本件出願人も特願昭62−87393月
で、CODのニー特性についての提案を行っている。In order to solve these drawbacks, it was proposed in 1978 that solid-state image sensors be given knee characteristics.
National Conference of the Television Society of Japan, pp. 43-44 rccD
Knee characteristic control of image sensor V". The applicant of the present invention also proposed the knee characteristics of COD in Japanese Patent Application No. 1987-8739.
このニー特性とは、第20図に示すように入射光量と発
生電荷の関係にニー特性を持たせることにより、輝度に
対するダイナミックレンジを広げるしのである。This knee characteristic widens the dynamic range of luminance by providing a knee characteristic to the relationship between the amount of incident light and the generated charge, as shown in FIG.
(発明が解決しようとする課題)
以上のようなニー特性により入射ダイナミックレンジを
広げているが、受光部の蓄積電荷量又は受光部、転送部
間移動電圧を精度良く、かつ各画素間のばらつきがなく
、そして高速にtIlll!Dするのは極めて困難であ
る。(Problem to be Solved by the Invention) The above-mentioned knee characteristics widen the incident dynamic range, but it is possible to accurately control the amount of accumulated charge in the light receiving section or the transfer voltage between the light receiving section and the transfer section, and to ensure that there is no variation between each pixel. There is no problem and it is fast! It is extremely difficult to do D.
本発明は上記した問題点に鑑みてなされたもので、その
目的とするところは、固体R@水素子ダイナミックレン
ジを十分に利用し、かつ広い輝度範囲の光電変換出力を
得ることの可能な囮像装買を実現することにある。The present invention has been made in view of the above-mentioned problems, and its purpose is to provide a decoy that can fully utilize the solid-state R@hydrogen dynamic range and obtain photoelectric conversion output over a wide brightness range. The aim is to realize image purchasing.
(課題を解決するための手段)
上記課題を解決する本発明は、外部からの入射光を電荷
に変換する受光部、受光部からの電荷を垂直方向に転送
する垂直転送部、!f!直転退転送部の電荷を水平方向
に転送づ−ろ水平転送部を備えた固体11!i像素子と
、この固体撮像素子に駆動パルスを供給する固体撮像素
子駆動回路とを有し、前記固体搬像素子駆動手段は、1
垂直走査期間内に複数の異なる時間間隔の信号読出しの
ためのパルスを出力し、受光部で発生した電荷を複数回
の異なる時間間隔に分けて垂直転送部に移動させ、この
電荷を垂直転送部[で加算して読出すよう構成したこと
を特徴と覆るものである。(Means for Solving the Problems) The present invention that solves the above problems includes: a light receiving section that converts incident light from the outside into charges; a vertical transfer section that transfers the charges from the light receiving section in a vertical direction; f! A solid body 11 equipped with a horizontal transfer section that transfers the charge of the direct transfer section in the horizontal direction! The solid-state image sensor has an i-image element and a solid-state image sensor drive circuit that supplies a drive pulse to the solid-state image sensor, and the solid-state image sensor drive means includes: 1
Pulses for reading signals at multiple different time intervals are output during the vertical scanning period, and the charge generated in the light receiving section is divided into multiple different time intervals and transferred to the vertical transfer section. The feature is that it is configured to add and read by [.
(作用)
固体搬像素子から電荷を読み出すときは各画素の受光部
の浩積電(4を複数回の異なる時間間隔に分けて垂直転
送部に移動さV、垂直転送部上で加算してから続出?l
、。(Function) When reading the charge from the solid-state image element, the bulk charge (4) of the light receiving part of each pixel is transferred to the vertical transfer part in several different time intervals, and then added up on the vertical transfer part. One after another?l
,.
〈実施例)
以下図面を参照して、本発明の実施例を詳細に説明する
。<Examples> Examples of the present invention will be described in detail below with reference to the drawings.
第1図は本発明の一実施例の要部の構成を示1構成図で
ある。この図において、1は固体撮像素子であり、−例
どしてインターラインCODの場合について説明する。FIG. 1 is a block diagram showing the structure of a main part of an embodiment of the present invention. In this figure, numeral 1 indicates a solid-state image sensor, and the case of an interline COD will be described as an example.
2は受光量に応じた電荷を発生する受光部、3は受光部
で発生した電荷を垂直方向に転送する垂直転送部、4は
!I!直転送部からの電荷を水平方向に転送する水平転
送部である。2 is a light receiving section that generates charges according to the amount of received light, 3 is a vertical transfer section that vertically transfers the charges generated in the light receiving section, and 4 is! I! This is a horizontal transfer section that horizontally transfers charges from the direct transfer section.
ここでは、3×4画素分を示している。Here, 3×4 pixels are shown.
また、この固体1liI像素了1の受光部2と垂直転送
部3のポテンシャルは第2図もしくは第3図のようにな
っているものとする。すなわち、転送部は受光部の5倍
の電荷を蓄えることが可能であるとする。Further, it is assumed that the potentials of the light receiving section 2 and the vertical transfer section 3 of this solid state 1liI image element 1 are as shown in FIG. 2 or 3. That is, it is assumed that the transfer section can store five times as much charge as the light receiving section.
第4図はこの固体撮像素子1を駆動する際の駆動パルス
を示すタイムチャートである。尚、この駆動パルスを発
生する固体撮像素子駆動回路は、周知の回路に若干の変
更を加えることにより実現できるものであり、詳細な回
路構成は省略する。FIG. 4 is a time chart showing drive pulses when driving this solid-state image sensor 1. In FIG. Note that the solid-state image sensor drive circuit that generates this drive pulse can be realized by making some changes to a known circuit, and the detailed circuit configuration will be omitted.
以下、第1図乃至第4図を参照して本発明の実施例の動
作を説明する。The operation of the embodiment of the present invention will be described below with reference to FIGS. 1 to 4.
この第4図の△が露光、BI′fii出しの期間である
と丈ると、Δの最初にφv1〜φv4に対応する画素の
電荷を垂直転送部に移した後、逆転送により電荷を捨て
る。その侵、5回(C1,C2゜C3,C4,C5)に
分けて受光部2から垂直転送部3への電荷移動を行い、
垂直転送部3上で加輝したものをBの期間に読み出す。If △ in Fig. 4 is the period of exposure and BI'fii output, then at the beginning of ∆, the charges of pixels corresponding to φv1 to φv4 are transferred to the vertical transfer section, and then the charges are discarded by reverse transfer. . During the attack, charge is transferred from the light receiving section 2 to the vertical transfer section 3 in five steps (C1, C2° C3, C4, C5).
What has been brightened on the vertical transfer section 3 is read out during period B.
この5回の電荷移動のタイミングを変えることにより、
光量と出力信号の電圧との関係が変化する。By changing the timing of these five charge transfers,
The relationship between the amount of light and the voltage of the output signal changes.
次に、この光量と出力信同の電圧との関係について説明
する。Next, the relationship between the amount of light and the voltage of the output signal will be explained.
第5図は、電荷蓄積時間と蓄Ff1電荷量との関係を示
す特性図である。この図のtl+・・・、t5で受光部
から垂直転送部への電荷移動を行う。また、QOは受光
部2の飽和電荷量である。ここで、実線、破線等は各輝
度における電荷のたまりかたを示している。ここでの輝
度の比は、実線△、破線B、・・・の順に2倍ずつにな
っている。また、ここではCI =02=03=04=
4xC5の場合を示している。FIG. 5 is a characteristic diagram showing the relationship between the charge accumulation time and the amount of accumulated Ff1 charge. At tl+..., t5 in this figure, charges are transferred from the light receiving section to the vertical transfer section. Moreover, QO is the amount of saturation charge of the light receiving section 2. Here, solid lines, broken lines, etc. indicate how charges accumulate at each luminance. The brightness ratio here doubles in the order of solid line Δ, broken line B, . . . . Also, here CI =02=03=04=
The case of 4xC5 is shown.
各画素の出力電圧はtl+ j2+ jl−j4゜
t5の各時点での画素の電荷mを相界したものに比例し
、この様子を第6図に示す。この図は、輝度1と出力電
圧Vとの関係を示している。ここで、(−^は第5図の
特性へにおける輝度、Lsは第5図の特性Bにおける輝
度、Lcは第5図の特性Cにおける輝度、L oは第5
図の特性りにおける輝度である。また、特性■は従来の
露光を行った場合と特性、■は第5図に示した露光<C
1=C2=C3−C4=4XC5)を行った場合の特性
、■はC1=C2=C3=C4=8XC5の露光を行っ
た場合の特性である。The output voltage of each pixel is proportional to the charge m of the pixel at each time point tl+j2+jl-j4°t5, which is shown in FIG. This figure shows the relationship between luminance 1 and output voltage V. Here, (-^ is the luminance at the characteristic shown in Fig. 5, Ls is the luminance at the characteristic B of Fig. 5, Lc is the luminance at the characteristic C of Fig. 5, and Lo is the luminance at the characteristic B of Fig. 5.
This is the brightness for the characteristics shown in the figure. In addition, the characteristic (■) is the characteristic when conventional exposure is performed, and (■) is the characteristic when the exposure < C shown in FIG.
1=C2=C3-C4=4XC5), and (2) is the characteristic when exposure is performed as C1=C2=C3=C4=8XC5.
この図の■及び■から明らかなように、第5図の露光を
行うことにより、高n度域<LA〜Lc)で出力が圧縮
されることで、通常の露光に比較して約3倍のダイナミ
ックレンジが19られる。As is clear from ■ and ■ in this figure, by performing the exposure shown in Figure 5, the output is compressed in the high n degree range < LA to Lc, which is approximately three times that of normal exposure. The dynamic range of 19.
また、CI =C2=C3=C4=8XC5の露光を行
うと、LA−LDの高輝度域で出力が圧縮されて、ダイ
ナミックレンジは約7倍になる。Furthermore, when exposure is performed with CI = C2 = C3 = C4 = 8XC5, the output is compressed in the high brightness region of LA-LD, and the dynamic range becomes about 7 times.
ところで、以上の動作で重要なのは01〜C5の比率で
あって、絶対値は・重要ではない。例えば、レンズのF
値が2.8のときとF値が4のときとでは、第6図の特
性の形は変わらないが、輝度が2倍になる。また、C1
〜C5の比率をそのままにして時間を半分にすると、第
6図の特性の形は変わらずに輝度が2倍になる。By the way, what is important in the above operation is the ratio of 01 to C5, and the absolute value is not important. For example, the F of the lens
When the value is 2.8 and when the F value is 4, the shape of the characteristics shown in FIG. 6 remains the same, but the brightness doubles. Also, C1
If the time is halved while the ratio of ~C5 remains unchanged, the shape of the characteristic shown in FIG. 6 remains unchanged, but the brightness doubles.
一例として、1.−1o=12−1.−13−jz=t
+ j3−1/250秒、t5−t4 =1/100
0秒どして説明する。輝a L cの画素はjo ”−
j+ 、 t+ ”t、4 、 t2〜t3 、 t3
〜t4の各期間の初めの1/1000秒で信号が飽和し
く第5図C)、残りの時間は露光時間としては意味がな
い。最少の1/1000秒(tn〜t5)では飽和が起
こらないため、露光時間として意味がある。従って、こ
の画素については実質的な露光時間は5X1/1000
=1/200秒となる。同様に、輝度Laの画素は1o
−1,。As an example, 1. -1o=12-1. -13-jz=t
+ j3-1/250 seconds, t5-t4 =1/100
I'll explain in 0 seconds. The bright a L c pixel is jo ”-
j+, t+ "t, 4, t2~t3, t3
The signal becomes saturated in the first 1/1000 second of each period from ~t4 (FIG. 5C), and the remaining time is meaningless as an exposure time. Since saturation does not occur in the minimum 1/1000 second (tn to t5), it is meaningful as an exposure time. Therefore, the actual exposure time for this pixel is 5X1/1000
= 1/200 second. Similarly, a pixel with luminance La is 1o
-1,.
t、〜j2+ t2〜13,13〜t4の各期間の初め
の1 / 500秒で信号が飽和しく第5図B)、残り
の時間は露光時間としては意味がない。!Ii後の1/
1000秒(t4〜js)では飽和が起こらないため、
露光時間として意味がある。従って、この画素について
は実質的な露光時間は4×11500+1/1000=
1/111秒となる。また同様に、輝度L Aの画素は
tO””jl + il 〜t2.t2〜13,1.
〜t4の各期間の初めの1/250秒で信号が飽和しく
第5図△)、残りの時間は露光時間としては意味がない
。最少の1/1000秒(jn〜ts)では飽和が起こ
らないため、露光時間として意味がある。従って、この
画素については実質的な露光時間は4x1/250+1
/1000=1159秒となる。輝rJIt−Aより暗
い画素は、全ての露光時間が有効なので、同様に115
9秒となる。すなわち、暗い画素の露光時間を長めにし
、明るい画素の露光時間を短めにすることによりダイナ
ミックレンジを広げていることになる。The signal is saturated in the first 1/500 seconds of each period of t, ~j2+, t2-13, and 13-t4 (Fig. 5B), and the remaining time is meaningless as an exposure time. ! 1/ after Ii
Since saturation does not occur in 1000 seconds (t4~js),
It has meaning in terms of exposure time. Therefore, the actual exposure time for this pixel is 4×11500+1/1000=
It becomes 1/111 second. Similarly, the pixel with luminance LA is tO""jl + il ~ t2. t2-13,1.
The signal becomes saturated in the first 1/250 seconds of each period from t4 to t4 (FIG. 5 △), and the remaining time is meaningless as an exposure time. Since saturation does not occur at the minimum 1/1000 second (jn~ts), it is meaningful as an exposure time. Therefore, the actual exposure time for this pixel is 4x1/250+1
/1000=1159 seconds. For pixels darker than luminance rJIt-A, all exposure times are valid, so similarly 115
It will be 9 seconds. In other words, the dynamic range is expanded by making the exposure time of dark pixels a little longer and the exposure time of bright pixels a little shorter.
第7図は、C1−02=4XC3=4XC4=16XC
5の場合を示した特性図である。この図でも輝度はΔ、
B、・・・、Eまでそれぞれ2倍ずっになっている。こ
のような露光を行ったときの輝度と出力電圧との関係を
示したのが第8図である。Figure 7 shows C1-02=4XC3=4XC4=16XC
5 is a characteristic diagram showing the case of No. 5; FIG. In this figure, the brightness is Δ,
B, ..., E are each doubled. FIG. 8 shows the relationship between luminance and output voltage when such exposure is performed.
この第8図■は通常の露光を行ったときの特性である。Figure 8 (2) shows the characteristics when normal exposure is performed.
この特性では、暗部では良好な出力が得られるが、ll
1lll[が少し大きくなると飽和してしまう。With this characteristic, good output can be obtained in dark areas, but
When 1lll[ becomes a little large, it becomes saturated.
従って、ダイナミックレンジが極めて狭い。また■は絞
りまたはシャッター速度を調節して通常の露光を行った
ときの特性である。このようにすると、ダイナミックレ
ンジはある程度広がるが、暗部では出力が小さくS/N
が悪くなるn従って、この場合も満足な結果が得られな
い。■に示す方法は第7図で説明した方法である。この
特性は、暗部では十分な出力が得られ、かつ^In度部
Tb飽和することがない。そして、中間部の傾きは高輝
度部と低輝度部の中間であり、見易い画像が得られる。Therefore, the dynamic range is extremely narrow. Also, ■ is the characteristic when normal exposure is performed by adjusting the aperture or shutter speed. This will expand the dynamic range to some extent, but the output will be small in dark areas and the S/N will be low.
Therefore, in this case as well, a satisfactory result cannot be obtained. The method shown in (2) is the method explained in FIG. With this characteristic, a sufficient output can be obtained in the dark area, and there is no saturation in the In degree part Tb. The slope of the middle part is between the high brightness part and the low brightness part, and an easy-to-see image can be obtained.
第9図は、C1−4XC2−4XC3−4XC4= 1
6xC5の場合を示した特性図である。この図でも輝度
はA、B、・・・、Eまでそれぞれ2倍ずつになってい
る。このような露光を行ったときの輝度と出力電圧との
関係を示したのが第10図である。輝度と出力の特性は
、第8図の場合と同様に2箇所で折れ曲がっているが、
折れ曲がるポイント及び傾きが若干異なっている。Figure 9 shows C1-4XC2-4XC3-4XC4=1
It is a characteristic diagram showing the case of 6xC5. In this figure, the brightness is doubled for A, B, . . . , E, respectively. FIG. 10 shows the relationship between luminance and output voltage when such exposure is performed. The brightness and output characteristics are bent at two places as in the case of Figure 8, but
The bending point and slope are slightly different.
このように、C1〜C5の組み合わせを変えることで、
輝度−出力電圧特性を自由に設計することができる。ま
た、以上の例では露光時間の種類は3f4類であったが
、4種類や5種類にすることも可能である。更に、露光
、′R電荷移動回数は5回だけでなく、受光部と転送部
の容量の比に応じて増減することが可能である。In this way, by changing the combination of C1 to C5,
Brightness-output voltage characteristics can be freely designed. Further, in the above example, the types of exposure time are 3f4 types, but it is also possible to use 4 types or 5 types. Furthermore, the number of times of exposure and 'R charge movement is not limited to five times, but can be increased or decreased depending on the ratio of the capacitances of the light receiving section and the transfer section.
尚、通常のCODではフィールドのitしが出来ないが
、奇数フィールドと偶数フィールドでそれぞれ別個に垂
直転送部を有するcCDではフレーム廠影も可能である
。It should be noted that, although field transfer is not possible in a normal COD, frame transfer is also possible in a cCD that has separate vertical transfer units for odd and even fields.
以上の説明は静止画を撮影する場合であるが、上記の奇
数フィールドと偶数フィールドでそれぞれ別個に垂直転
送部を有するCCD若しくはFIT−CODの場合は、
動画にも適用することが可能である。The above explanation is for shooting still images, but in the case of a CCD or FIT-COD that has separate vertical transfer sections for the odd and even fields,
It can also be applied to videos.
第11図はFfl−−CODの構造を示す構成図である
。この図にJ3いて、第1図と同一物には同一番号を付
し、その説明は省略する。第1図に示したCODと異な
る点は、各画素に対応して電荷を記憶するメモリ部5を
有していることである。FIG. 11 is a block diagram showing the structure of Ffl--COD. Components J3 in this figure that are the same as those in FIG. 1 are given the same numbers and their explanations will be omitted. The difference from the COD shown in FIG. 1 is that it has a memory section 5 that stores charges corresponding to each pixel.
このF I T−CODをフィールド蓄積モードで駆動
するためのパルスを第12図に示す。すなわち、受光部
と!退転送部の間で複数回電荷移動を行って、露光終了
後に垂直転送部上の電荷を高速にメモリ部に転送し、メ
モリ部からビデオレートで読み出ず。メモリ部で読出し
を行っている期間に、受光部では次のフィールドの露光
を行っている。ここで、ビデオ信号として出力するため
に、C1+C2−トC3+C4+C5≦1/60秒とい
う条件が加わるが、それ以外は静止画の場合と同じであ
る。この場合通常は、CI +C2+C3+C4+C3
=1/60秒であるが、途中で信号電荷の掃き出しがで
きるようなCOD (例えば、A−バー70−ドレイン
(OFD>に電荷を捨てることが可能なCOD>の場合
は、C1十02 + C3十C4+ 05 < 1 /
60秒とすることもできる。FIG. 12 shows pulses for driving this FIT-COD in field accumulation mode. In other words, the light receiving part! Charges are transferred between the backward transfer sections multiple times, and after exposure is completed, the charges on the vertical transfer section are transferred to the memory section at high speed without being read out from the memory section at the video rate. While the memory section is reading data, the light receiving section is exposing the next field. Here, in order to output it as a video signal, the condition that C1+C2-toC3+C4+C5≦1/60 seconds is added, but other than that, it is the same as in the case of a still image. In this case, usually CI +C2+C3+C4+C3
= 1/60 seconds, but in the case of a COD that allows the signal charge to be swept out midway (for example, in the case of a COD that can discard the charge to the A-bar 70-drain (OFD), C1 + 02 + C30C4+ 05 < 1 /
It can also be set to 60 seconds.
また、このFl’r−CODをフレーム蓄積七〜ドで駆
動するためのパルスを第13図に示す。ここでは、まず
逆転送により電荷の掃き出しを行う。Further, FIG. 13 shows pulses for driving this Fl'r-COD with the frame accumulation mode. Here, charges are first swept out by reverse transfer.
そして、受光部と垂直転送部の間で複数回電荷移動を行
って、露光終了後に垂直転送部上の電荷を高速にメモリ
部に転送し、メモリ部からビデオレートで読み出す。メ
モリ部で読出しを行っている期間に、受光部では次のフ
ィールドの露光を行っている。各フィールドごとに01
+ C2十C3十C41−C5≦1/60秒の露光を
行うことも同じである。また、OFDに電荷を捨てるこ
とができるFIT−CODでは、逆転送のパルス列の代
わりにo i: c aへのパルスが加わる。Then, charges are transferred between the light receiving section and the vertical transfer section multiple times, and after exposure is completed, the charges on the vertical transfer section are transferred at high speed to the memory section and read out from the memory section at a video rate. While the memory section is reading data, the light receiving section is exposing the next field. 01 for each field
The same applies to performing exposure for +C20C30C41-C5≦1/60 seconds. Furthermore, in the FIT-COD in which charge can be discarded to the OFD, a pulse to o i: ca is applied instead of the reverse transfer pulse train.
フレーム蓄積モードの伯の例として、第15図に示すよ
うならのら考えられる。この場合は、逆転送の掃き出し
が、なく、また片側のフィールドの信号に対し露光、蓄
積、電荷移動を行っている期間は他のフィールドの信号
は動かけないので、その間露光、蓄積を続けることにな
る。従って、この場合は、C1≧1/60秒、C1+C
2+C3+C4+C3=1/3o秒という条件がつく。As an example of the frame accumulation mode, the case shown in FIG. 15 can be considered. In this case, there is no reverse transfer sweep, and during the period when exposure, accumulation, and charge transfer are being performed for the signal of one field, the signals of the other field do not move, so exposure and accumulation can continue during that time. become. Therefore, in this case, C1≧1/60 seconds, C1+C
The condition is 2+C3+C4+C3=1/3o seconds.
フレーム蓄積モードの史に他の例として、第16図に示
すようなものも考えられる。これは、OFDに電荷を捨
てることができるCCDを使用した例である。OFDへ
電荷を捨てることができるので、第15図の場合のよう
な条件はつかない。Another possible example of the history of frame accumulation modes is as shown in FIG. This is an example using a CCD that can dump charge into an OFD. Since the charge can be discarded to the OFD, the conditions as in the case of FIG. 15 are not applied.
OFDに電荷を捨てる際に片側のフィールドのみ捨てる
ような制御が可能であれば、第17図のようなパルスで
駆動し、条件としてはC1+C2十C3+ C4+ C
5≦1/30秒だけである。但し、OFDに電荷を捨て
る際に両側のフィールドの信号が捨てられてしまうもの
では、その影響を考慮する必要がある。すなわち、第1
6図に示した場合は良いが、第18図のような場合はC
3の露光・蓄積時間はC3’である。If it is possible to control such that only one field is discarded when discharging charge to the OFD, drive with a pulse as shown in Fig. 17, and the conditions are C1 + C2 + C3 + C4 + C
5≦1/30 seconds only. However, if the signals of the fields on both sides are discarded when the charge is discarded to the OFD, it is necessary to consider the influence thereof. That is, the first
The case shown in Figure 6 is fine, but the case shown in Figure 18 is C.
The exposure/accumulation time of No. 3 is C3'.
奇数フィールドと偶数フィールドでそれぞれ別個に垂直
転送部を有するCODでは、各フィールドそれぞれ全く
任意のタイミングで受光部−垂直転送部間の移動ができ
るので、CI +C2+C3+04+05=1/30秒
の条件のもとでは自由にC1〜C5を設定できる。CI
十02 + 03 +04+C5<1/30秒ニーr
−キル71)1 否カLL、OFDに電荷を捨てること
ができるかによる。In COD, which has separate vertical transfer sections for odd and even fields, each field can move between the light receiving section and the vertical transfer section at completely arbitrary timing, so under the condition of CI + C2 + C3 + 04 + 05 = 1/30 seconds. Now you can freely set C1 to C5. C.I.
102 + 03 +04 + C5 < 1/30 second knee r
- Kill 71) 1 No LL, depends on whether the charge can be discarded to the OFD.
尚、01〜C5の比率により特性が決定されるため、比
率を固定したままで、全体の露光時間をm節することに
より、m影可能輝度範囲をシフトすることができる。Note that since the characteristics are determined by the ratio of 01 to C5, by changing the overall exposure time by m while keeping the ratio fixed, it is possible to shift the brightness range where m shadows are possible.
また、画像の内容によって最適な輝度−出力電圧特性カ
ーブが異なることがあるが、この様なときで6、パルス
のタイミングを変えることで容易に対応することができ
る。Further, although the optimum brightness-output voltage characteristic curve may differ depending on the content of the image, this can be easily dealt with by changing the timing of the pulse.
(発明の効果)
以上詳細に説明したように、本発明では、受光部で発生
した電荷を、受光部と垂直転送部の容量に応じて複数回
に分けて読出し、垂直転送部上で加算して読み出すよう
にした。このため、高輝度域でも固体撮像素子の出力が
飽和けず、ダイナミックレンジが広がる。従って、固体
Hl素像のダイナミックレンジを十分に利用し、かつ広
い輝度範囲の光電変換出力を得ることの可能な撮像装置
を実現することができる。(Effects of the Invention) As explained in detail above, in the present invention, the charges generated in the light receiving section are read out in multiple times according to the capacities of the light receiving section and the vertical transfer section, and are added on the vertical transfer section. and read it out. Therefore, the output of the solid-state image sensor does not saturate even in a high-brightness region, and the dynamic range is widened. Therefore, it is possible to realize an imaging device that can fully utilize the dynamic range of the solid-state Hl element image and obtain photoelectric conversion output over a wide brightness range.
第1図は本発明の一実施例の構成を示す構成図、第2図
及び第3図は固体llIl素像のポテンシャルを示す説
明図、第4図は駆動パルスを示すタイムチャート、第5
図乃至第10図は本発明の固体撮像素子の特性図、第1
1図はFIT−CODの構成を示す構成図、第12図乃
至第18図は駆動パルスの他の例を示すタイムチャート
、第19図及び第20図は従来の固体搬像素子の特性図
である。11・・・固体搬像素子 2・・・受光部
3・・・垂直転送部 4・・・水平転送部特許出
願人 コ ニ カ 株 式 会 社
代 理 人 弁理士 井 島 藤
冶外1名
第 1 図
第4図
φH1φH2
第2図
第3図
Vsync
ψV21〜φV24
第12図
第13図
φ27〜〜24
勇鴫
14図
第15図FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, FIGS. 2 and 3 are explanatory diagrams showing the potential of a solid-state llIl elementary image, FIG. 4 is a time chart showing drive pulses, and FIG.
Figures 1 to 10 are characteristic diagrams of the solid-state imaging device of the present invention.
Figure 1 is a configuration diagram showing the configuration of FIT-COD, Figures 12 to 18 are time charts showing other examples of drive pulses, and Figures 19 and 20 are characteristic diagrams of conventional solid-state image devices. be. 11...Solid image carrier 2...Light receiving section 3...Vertical transfer section 4...Horizontal transfer section Patent applicant Konica Co., Ltd. Representative Patent attorney Fuji Ijima 1 person Figure 1 Figure 4 φH1φH2 Figure 2 Figure 3 Vsync ψV21~φV24 Figure 12 Figure 13 φ27~~24 Yusho 14 Figure 15
Claims (1)
の電荷を垂直方向に転送する垂直転送部、垂直転送部か
らの電荷を水平方向に転送する水平転送部を備えた固体
撮像素子と、 この固体撮像素子に駆動パルスを供給する固体撮像素子
駆動手段とを有し、 前記固体撮像素子駆動手段は、1垂直走査期間内に複数
の異なる時間間隔の信号読出しのためのパルスを出力し
、 受光部で発生した電荷を複数回の異なる時間間隔に分け
て垂直転送部に移動させ、この電荷を垂直転送部上で加
算して読出すよう構成したことを特徴とする撮像装置。[Scope of Claims] A light receiving section that converts incident light from the outside into charges, a vertical transfer section that transfers the charges from the light receiving section in the vertical direction, and a horizontal transfer section that transfers the charges from the vertical transfer section in the horizontal direction. a solid-state image sensor, and a solid-state image sensor driving means for supplying a drive pulse to the solid-state image sensor, and the solid-state image sensor driving means reads signals at a plurality of different time intervals within one vertical scanning period. The device is characterized by a structure in which the charge generated in the light receiving section is transferred to the vertical transfer section several times at different time intervals, and the charges are added up on the vertical transfer section and read out. imaging device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63239996A JP2545120B2 (en) | 1988-09-26 | 1988-09-26 | Imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63239996A JP2545120B2 (en) | 1988-09-26 | 1988-09-26 | Imaging device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0287785A true JPH0287785A (en) | 1990-03-28 |
JP2545120B2 JP2545120B2 (en) | 1996-10-16 |
Family
ID=17052920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63239996A Expired - Lifetime JP2545120B2 (en) | 1988-09-26 | 1988-09-26 | Imaging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2545120B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5966174A (en) * | 1994-05-27 | 1999-10-12 | Matsushita Electric Industrial Co., Ltd. | Signal processing circuit and method for driving a solid state imaging device using plural reading operations per image scanning time |
WO2002030109A1 (en) | 2000-10-03 | 2002-04-11 | Sony Corporation | Imaging device an imaging method |
-
1988
- 1988-09-26 JP JP63239996A patent/JP2545120B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5966174A (en) * | 1994-05-27 | 1999-10-12 | Matsushita Electric Industrial Co., Ltd. | Signal processing circuit and method for driving a solid state imaging device using plural reading operations per image scanning time |
US6249314B1 (en) | 1994-05-27 | 2001-06-19 | Matsushita Electric Industrial Co., Ltd. | Solid-state imaging apparatus having a solid-state imaging device and a signal processing circuit and method for driving the solid-state imaging device |
WO2002030109A1 (en) | 2000-10-03 | 2002-04-11 | Sony Corporation | Imaging device an imaging method |
US7719573B2 (en) | 2000-10-03 | 2010-05-18 | Sony Corporation | Device and method for processing photographic image data |
US8390691B2 (en) | 2000-10-03 | 2013-03-05 | Sony Corporation | Device and method for processing photographic image data |
Also Published As
Publication number | Publication date |
---|---|
JP2545120B2 (en) | 1996-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3666900B2 (en) | Imaging apparatus and imaging method | |
US7095441B2 (en) | Image pick-up apparatus having plural pixels with different transmittances and being operable in different modes | |
US4831453A (en) | Solid-state imaging device having high-speed shutter function and method of realizing high-speed function in solid-state imaging device | |
EP0926885B1 (en) | Solid state image pickup apparatus | |
JPH0918791A (en) | Image pickup device | |
US7453496B2 (en) | Wide dynamic range digital image composition | |
US7312823B1 (en) | Solid-state image pick-up apparatus and video camera loaded with the apparatus | |
JPH0435282A (en) | Image pickup element driver | |
US6778215B1 (en) | Driving method of solid-state image pickup device and image pickup system | |
JPS63306779A (en) | Image pickup device | |
JPH03117281A (en) | Solid-state image pickup device | |
JP2007325026A (en) | Image pickup device, its driving method, its signal processing method, and electronic information equipment | |
JPS6398286A (en) | Image signal processor | |
JP3162206B2 (en) | Digital electronic still camera with variable system clock | |
JPH0287785A (en) | Image pickup device | |
US7616354B2 (en) | Image capture apparatus configured to divisionally read out accumulated charges with a plurality of fields using interlaced scanning | |
JP4192284B2 (en) | Digital still camera | |
JP4309618B2 (en) | Driving method of solid-state imaging device | |
JP2003189193A (en) | Image pickup device | |
JPH0779372A (en) | Electronic camera device | |
JP2001054019A (en) | Image pickup device | |
JP2647547B2 (en) | Imaging device and solid-state imaging device driving device | |
JP2521986B2 (en) | Imaging device | |
JP2809937B2 (en) | CCD imaging device | |
JP2000013686A (en) | Image pickup device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070725 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080725 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090725 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090725 Year of fee payment: 13 |