JPH028772B2 - - Google Patents

Info

Publication number
JPH028772B2
JPH028772B2 JP58053273A JP5327383A JPH028772B2 JP H028772 B2 JPH028772 B2 JP H028772B2 JP 58053273 A JP58053273 A JP 58053273A JP 5327383 A JP5327383 A JP 5327383A JP H028772 B2 JPH028772 B2 JP H028772B2
Authority
JP
Japan
Prior art keywords
slurry
emulsion
dispersion
sintered body
emulsifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58053273A
Other languages
Japanese (ja)
Other versions
JPS59179145A (en
Inventor
Migiwa Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP58053273A priority Critical patent/JPS59179145A/en
Publication of JPS59179145A publication Critical patent/JPS59179145A/en
Publication of JPH028772B2 publication Critical patent/JPH028772B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Colloid Chemistry (AREA)

Description

【発明の詳細な説明】 本発明は、エマルジヨン状態の安定性に優れた
エマルジヨン型スラリーの調整方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preparing an emulsion-type slurry with excellent emulsion state stability.

近年、金属、セラミツクス及びガラスのうちか
ら選ばれる二種以上の物質を含むスラリーから出
発して複合焼結体を作る技術において、該スラリ
ーをエマルジヨン型に調整することによつて、ス
ラリーに含まれる各物質の有する特性のうち必要
なもののみを複合焼結体に引き継がせる技術が注
目されている。熱伝導性の良い金属粒子が、高絶
縁性セラミツクスの層を介して結合している金
属・セラミツクス複合焼結体はその一例であり、
このような焼結体は各物質単独又は均一化合物で
は達成できなかつた特徴すなわち高熱伝導性及び
高絶縁性の併有性を具備したものである。しかし
ながら従来上記のようなエマルジヨン型スラリー
は主として次の理由によつてそのエマルジヨン状
態の安定性を欠いていた。すなわち、水系スラリ
ーと乳化剤を含む油系スラリーとを混合し撹拌す
ることによつて、水系スラリーが油系スラリー中
に乳化分散した構成を有するエマルジヨン型スラ
リーが生成されるが、撹拌時に機械的に加わる力
によつて乳化剤の分子膜が破れ、水系スラリー中
の無機質粉末粒子が油系スラリー中へ浸入する場
合が少なくなかつたからである。またスラリー中
成分の組み合わせが不適当であるために、本質的
にエマルジヨン状態が不安定となり、時間の経過
に伴い分散していた水系スラリー粒子が合体し始
め最終的には水相スラリーと油相スラリーとの二
層に分離してしまうこともあつた。以上の様にエ
マルジヨン状態の破壊されたスラリーから出発し
て得られた焼結体は、前記エマルジヨン型スラリ
ーから出発して得られた複合焼結体の具備する諸
特性の併有性を失つているだけでなく、機械的強
度均一性等焼結体としての基本的特性においても
劣つたものとなる。従つて従来のエマルジヨン型
スラリー調整方法によれば、スラリー中成分の比
重やお互いの濡れ性を考慮してその組み合わせを
選定し、注意して撹拌する必要があつた。
In recent years, in the technology of making a composite sintered body starting from a slurry containing two or more substances selected from metals, ceramics, and glass, by adjusting the slurry into an emulsion type, it is possible to A technology that allows composite sintered bodies to inherit only the necessary characteristics of each substance is attracting attention. One example is a metal/ceramic composite sintered body in which metal particles with good thermal conductivity are bonded through a layer of highly insulating ceramics.
Such a sintered body has characteristics that cannot be achieved by each substance alone or by a homogeneous compound, that is, the combination of high thermal conductivity and high insulation properties. However, the conventional emulsion type slurry as described above has lacked stability in its emulsion state mainly due to the following reasons. That is, by mixing and stirring a water-based slurry and an oil-based slurry containing an emulsifier, an emulsion-type slurry in which the water-based slurry is emulsified and dispersed in the oil-based slurry is produced. This is because the molecular film of the emulsifier is often torn by the applied force, and inorganic powder particles in the water-based slurry often penetrate into the oil-based slurry. Furthermore, due to an inappropriate combination of components in the slurry, the emulsion state essentially becomes unstable, and over time, the dispersed aqueous slurry particles begin to coalesce, eventually resulting in the aqueous slurry and oil phase. In some cases, it separated into two layers with the slurry. As described above, the sintered body obtained by starting from the destroyed slurry in the emulsion state loses the properties possessed by the composite sintered body obtained by starting from the emulsion type slurry. Not only this, but also the basic properties of a sintered body, such as mechanical strength uniformity, are inferior. Therefore, according to the conventional emulsion-type slurry preparation method, it was necessary to select a combination of components in the slurry in consideration of their specific gravity and mutual wettability, and to carefully stir the components.

発明者はポリビニルアルコール水溶性が微量の
硼酸と接触することによつて瞬時にゲル化する現
象を利用し、微量の硼酸を含有した油系スラリー
とポリビニルアルコールを含有した水系スラリー
とを混合し撹拌することによつて安定なエマルジ
ヨン型スラリーが得られることを見い出したので
ある。
The inventor utilized the phenomenon that water-soluble polyvinyl alcohol instantly gels when it comes into contact with a trace amount of boric acid, and mixed and stirred an oil-based slurry containing a trace amount of boric acid and an aqueous slurry containing polyvinyl alcohol. They discovered that a stable emulsion-type slurry could be obtained by doing so.

本発明は上記の知見にもとづいて得られたもの
で、その要旨とするところは (a) 無機質粉末、ポリビニルアルコール(以下
「PVA」と略称)及び水を混合して分散液Wを
作る工程。
The present invention was obtained based on the above findings, and its gist is (a) a step of mixing an inorganic powder, polyvinyl alcohol (hereinafter abbreviated as "PVA"), and water to prepare a dispersion W.

(b) 無機質粉末、乳化剤及び硼酸を非水溶性液体
アルコールに添加し混合して分散液Oを作る工
程。
(b) Step of adding inorganic powder, emulsifier and boric acid to non-aqueous liquid alcohol and mixing to create dispersion O.

(c) 前記WをOに注ぎ、撹拌する工程。(c) A step of pouring the W into O and stirring.

からなるエマルジヨン型スラリーの調整方法に存
する。
The invention consists in a method for preparing an emulsion-type slurry consisting of:

本発明方法によつて得られたスラリーのエマル
ジヨン状態が安定である理由を以下に詳述する。
The reason why the emulsion state of the slurry obtained by the method of the present invention is stable will be explained in detail below.

すなわち、上記(c)工程の段階でWはO中を粒子
状に分散すると同時にO中の乳化剤と硼酸とに囲
まれるので、仮に機械的な力によつてW粒子中の
無機質粒子が乳化剤分子膜を破つてO中へ浸出し
ようとしてもその瞬時にPVA分子と硼酸との反
応が生じPVAのゲル化膜が生成し、このゲル化
膜が無機質粒子のO中への浸出を防止している間
に乳化剤分子膜が再生修復されるが故に、W粒子
の安定分散が長時間維持されるのである。
That is, in the step (c) above, W is dispersed in O in the form of particles and at the same time is surrounded by the emulsifier in O and boric acid. Even if an attempt is made to break the membrane and leach out into O, a reaction between PVA molecules and boric acid occurs, forming a gelled PVA film, and this gelled film prevents inorganic particles from leaching into O. Since the emulsifier molecular film is regenerated and repaired during this time, stable dispersion of W particles is maintained for a long time.

本発明方法によつて調整されたエマルジヨン型
スラリーは、上記の理由によりそのエマルジヨン
状態が極めて安定であるので、このスラリーから
出発して得られる複合焼結体は均一性が良く、各
成分の優れた特性を併有したものとなるのであ
る。
The emulsion-type slurry prepared by the method of the present invention has an extremely stable emulsion state for the above reasons, so the composite sintered body obtained starting from this slurry has good uniformity and has excellent components. In other words, it has both characteristics.

従つてこのような複合焼結体のうち、モリブテ
ン、タングステン、鉄、白金、珪素等の金属又は
窒化硼素、ベリリア、窒化アルミニウム、炭化硼
素、マグネシア等の高熱伝導性セラミツクスを含
む分散液Wとアルミナ、ムライト、フオルステラ
イト、ジルコン、ワラストナイト、ガラスセラミ
ツクス等の高絶縁性セラミツクスを含む分散液O
とからなるエマルジヨン型スラリーから出発した
ものはIC基板やヒートシンク等の電子部品に好
適である。また、フオルステライト、ムライト、
ジルコン、ジルコニア、ガラスセラミツクス等の
断熱性、耐摩耗性に優れたセラミツクスを含む分
散液Wと上記金属を含む分散液Oとからなるエマ
ルジヨン型スラリーから出発したものはガスケツ
トやシールリング等の機械部品に好適である。
Therefore, among such composite sintered bodies, dispersion W containing metals such as molybdenum, tungsten, iron, platinum, and silicon, or highly thermally conductive ceramics such as boron nitride, beryllia, aluminum nitride, boron carbide, and magnesia, and alumina Dispersion O containing highly insulating ceramics such as , mullite, forsterite, zircon, wollastonite, glass ceramics, etc.
An emulsion-type slurry consisting of is suitable for use in electronic components such as IC boards and heat sinks. Also, forsterite, mullite,
Machine parts such as gaskets and seal rings are made from an emulsion-type slurry consisting of a dispersion W containing ceramics with excellent heat insulation and wear resistance such as zircon, zirconia, and glass ceramics, and a dispersion O containing the above metals. suitable for

以下実施例を示す。 Examples are shown below.

実施例 1 (a) 蒸留水 82c.c. PVA(デンカB−17) 3g 平均粒径0.3μmの酸化第二鉄 53g 平均粒径0.5μmの二酸化マンガン 3g を内容積300mlのポリエチレン製ボールミルで15
時間混合し、これを分散液W1とした。
Example 1 (a) Distilled water 82 c.c. PVA (Denka B-17) 3 g Ferric oxide with an average particle size of 0.3 μm 53 g Manganese dioxide with an average particle size of 0.5 μm 3 g were milled in a polyethylene ball mill with an internal volume of 300 ml for 15 minutes.
After mixing for a period of time, this was designated as dispersion W1 .

(b) 試薬一級硼酸 0.5g n―ブチルアルコール 180c.c. 平均粒径0.5μmのフオルステライト(シランカ
ツプリング処理品) 17g 乳化剤(日本油脂(株)製ノニオンOP−80R)
2.4g エチルセルロース 2g 可塑剤(ジオクチルフタレート) 6g を内容積500mlのポリエチレン製ボールミルで15
時間混合し、これを分散液O1とした。ここで乳
化剤として用いられている日本油脂(株)製ノニオン
OP−80Rとは (Rはオレイン酸のアルキル基−(CH27CH=
CH(CH27CH3)なる構造式で示されるソルビタ
ンモノ・オレユートである。分散液O1を500mlの
ビーカーに移し、これをプロペラ撹拌機で撹拌し
ながら分散液W1を注ぎ込むことによつてエマル
ジヨン型スラリーS1を得た。スラリーS1のエマル
ジヨン状態は1日放置後も安定に維持されてい
た。このS1をポリエステル製キヤリアーフイルム
上に流し、ドクターブレード法によつてシート成
形した後、15時間自然乾燥させることによつて厚
さ0.8mmのグリーンシートを製造した、シートの
断面を電子顕微鏡を用いて観察すると、図に示す
如く酸化第二鉄及び二酸化マンガンからなる集合
球1がフオルステライト磁器2によつて囲まれた
構造を呈していた。このグリーンシートと水素ガ
ス雰囲気中露点15℃、温度1350℃、保持時間1時
間の条件で焼成することによつて、焼結フオルス
テライト磁器を基幹とし、その中に酸化第二鉄の
還元によつて生じた焼結鉄球が均一に分散した構
造を有する金属・セラミツクス複合焼結体を製造
した。
(b) Reagent Primary boric acid 0.5g n-butyl alcohol 180c.c. Forsterite with an average particle size of 0.5μm (silane coupling treatment product) 17g Emulsifier (Nonion OP-80R manufactured by NOF Corporation)
2.4g ethylcellulose 2g plasticizer (dioctyl phthalate) 6g in a polyethylene ball mill with an internal volume of 500ml for 15 minutes
After mixing for a period of time, this was made into dispersion O1 . Nonion manufactured by NOF Co., Ltd. used as an emulsifier here
What is OP-80R? (R is an alkyl group of oleic acid -(CH 2 ) 7 CH=
Sorbitan mono-oleute is represented by the structural formula CH(CH 2 ) 7 CH 3 ). Dispersion liquid O 1 was transferred to a 500 ml beaker, and dispersion liquid W 1 was poured into the beaker while stirring with a propeller stirrer, thereby obtaining emulsion type slurry S 1 . The emulsion state of slurry S 1 remained stable even after being left for one day. This S 1 was poured onto a polyester carrier film, formed into a sheet using the doctor blade method, and then air-dried for 15 hours to produce a green sheet with a thickness of 0.8 mm.The cross section of the sheet was examined using an electron microscope. When observed using a microcomputer, it was found that the aggregated spheres 1 made of ferric oxide and manganese dioxide were surrounded by forsterite porcelain 2, as shown in the figure. By firing this green sheet in a hydrogen gas atmosphere at a dew point of 15°C, a temperature of 1,350°C, and a holding time of 1 hour, the sintered forsterite porcelain is used as the backbone, and the ferric oxide is reduced. A metal/ceramic composite sintered body with a structure in which the sintered iron spheres were uniformly dispersed was manufactured.

尚、本実施例では、シート成形を容易にするた
めに、結合剤及び可塑性を分散液O1に添加した
が、これらは本発明方法に必須の成分ではなく、
次の実施例2に示す鋳込み成形の場合は無論のこ
と、噴霧乾燥や凍結乾燥を利用する場合にもこれ
らを添加することなく本発明の効果を奏するこが
可能である。
In this example, a binder and plasticity were added to the dispersion O 1 in order to facilitate sheet forming, but these are not essential components for the method of the present invention.
Not only in the case of casting shown in Example 2 below, but also in the case of using spray drying or freeze drying, it is possible to achieve the effects of the present invention without adding these materials.

実施例 2 (a) 蒸留水 82c.c. PVA(デンカB−17) 3g 平均粒径0.3μmの酸化第二鉄 22g 平均粒径0.5μmの三酸化モリブテン 40g 平均粒径0.2μmの酸化アルミニウム 1g を内容積300mlのポリエチレン製ボールミルで15
時間混合し、これを分散液Wとした。
Example 2 (a) Distilled water 82 c.c. PVA (Denka B-17) 3 g Ferric oxide with an average particle size of 0.3 μm 22 g Molybdenum trioxide with an average particle size of 0.5 μm 40 g Aluminum oxide with an average particle size of 0.2 μm 1 g 15 in a polyethylene ball mill with an internal volume of 300ml.
The mixture was mixed for a period of time to obtain a dispersion W.

(b) 試薬一級硼酸 0.5g n―ブチルアルコール 180c.c. 平均粒径0.2μmの酸化アルミニウム(シランカ
ツプリング処理品) 17g 試薬特級水酸化アルミニウム(シランカツプリ
ング処理品) 5g 試薬一級珪酸化マグネシウムカルシウム 1g 乳化剤(日本油脂(株)製ノニオンOP−80R)
2.4g を内容積500mlのポリエチレン製ボールミルで15
時間混合し、これを分散液O2とした。
(b) Reagent 1st grade boric acid 0.5g n-butyl alcohol 180c.c. Aluminum oxide with average particle size 0.2μm (silane coupling treated product) 17g Reagent special grade aluminum hydroxide (silane coupling treated product) 5g Reagent 1st grade magnesium silicate Calcium 1g Emulsifier (Nonion OP-80R manufactured by NOF Corporation)
2.4g in a polyethylene ball mill with an internal volume of 500ml
After mixing for a period of time, this was made into a dispersion O2 .

実施例1と同様に分散液W2を分散液O2に注ぎ
込むことによつてエマルジヨン製スラリーS2を得
た。このS2を石膏型に流み込み、20分間放置後、
型から取り出し、水素雰囲気中温度1520℃、露点
5℃、保持時間1時間の条件で焼成することによ
つて、50Φ×2mmの焼結体を得た。得られた焼結
体は、アルミナ磁器を基幹とし、その中に鉄及び
モリブテンからなる粒径10〜20μmの焼結粒子が
均一に分散した構造を有する金属・セラミツクス
複合焼結体であつた。
In the same manner as in Example 1, emulsion slurry S 2 was obtained by pouring dispersion W 2 into dispersion O 2 . Pour this S 2 into a plaster mold and leave it for 20 minutes, then
It was taken out from the mold and fired in a hydrogen atmosphere at a temperature of 1520°C, a dew point of 5°C, and a holding time of 1 hour to obtain a sintered body of 50Φ×2 mm. The obtained sintered body was a metal/ceramic composite sintered body having a structure in which sintered particles of iron and molybdenum with a particle size of 10 to 20 μm were uniformly dispersed in alumina porcelain.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明のエマルジヨン型スラリーの調整方
法の一実施例に従つて得られたグリーンシートの
一部断面図である。 1……集合球、2……フオルステライト磁器。
The figure is a partial cross-sectional view of a green sheet obtained according to an embodiment of the emulsion-type slurry preparation method of the present invention. 1...Gathered sphere, 2...Forsterite porcelain.

Claims (1)

【特許請求の範囲】 1 (a) 無機質粉末、ポリビニルアルコール及び
水を混合して分散液Wを作る工程。 (b) 無機質粉末、乳化剤及び硼酸を非水溶性液体
アルコールに添加し混合して分散液Oを作る工
程。 (c) 前記WをOに注ぎ、撹拌する工程。 からなるエマルジヨン型スラリーの調整方法。
[Claims] 1 (a) A step of mixing an inorganic powder, polyvinyl alcohol, and water to prepare a dispersion W. (b) Step of adding inorganic powder, emulsifier and boric acid to non-aqueous liquid alcohol and mixing to create dispersion O. (c) A step of pouring the W into O and stirring. A method for preparing an emulsion-type slurry consisting of:
JP58053273A 1983-03-29 1983-03-29 Preparation of emulsified slurry Granted JPS59179145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58053273A JPS59179145A (en) 1983-03-29 1983-03-29 Preparation of emulsified slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58053273A JPS59179145A (en) 1983-03-29 1983-03-29 Preparation of emulsified slurry

Publications (2)

Publication Number Publication Date
JPS59179145A JPS59179145A (en) 1984-10-11
JPH028772B2 true JPH028772B2 (en) 1990-02-27

Family

ID=12938125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58053273A Granted JPS59179145A (en) 1983-03-29 1983-03-29 Preparation of emulsified slurry

Country Status (1)

Country Link
JP (1) JPS59179145A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102693615B1 (en) * 2015-12-22 2024-08-08 롬 앤드 하아스 컴패니 Droplets distributed in a water medium
CN106003639B (en) * 2016-06-13 2018-10-09 北京汽车股份有限公司 The method and sealing ring and vehicle of manufacture sealing ring

Also Published As

Publication number Publication date
JPS59179145A (en) 1984-10-11

Similar Documents

Publication Publication Date Title
CA1270863A (en) Refractory material produced from red mud
JP2009512620A (en) Method for manufacturing ceramic insulating member
JP2010508231A (en) Compound for manufacturing heat-resistant materials
JPS5855107B2 (en) refractory materials
JPH028772B2 (en)
Prabhu et al. Fabrication and characterization of micro-porous ceramic membrane based on kaolin and alumina
JPH07121806B2 (en) Porous zirconia sphere or method for producing the same
US5769917A (en) Process for producing low shrink ceramic bodies
JPH05170525A (en) Heat-resistant fiber composition
EP0275609B1 (en) Manufacture of shaped articles from refractory powder
JPH0261408B2 (en)
JP2000044843A (en) Coating material and its production
JP3123074B2 (en) Inorganic binder and mold material for active metal precision casting
JPH02221164A (en) Castable refractory containing silicon carbide
JPS6241190B2 (en)
JP2002173379A (en) Ceramic adhesive
JPS58204863A (en) Manufacture of hightemperature heat conductive ceramics
JPS6144765A (en) Flow-in refractories for ladle
JPS6319470B2 (en)
JPS58100658A (en) Ceramic-metal composite material and its manufacture
JPH0152347B2 (en)
JPH0671548B2 (en) Method for manufacturing ceramic balls
JPS6222941B2 (en)
JP3598383B2 (en) Dispersion method of ceramic short fiber in aqueous slurry etc.
JP2815075B2 (en) Ceramic bonded body and manufacturing method thereof