JPH028743B2 - - Google Patents

Info

Publication number
JPH028743B2
JPH028743B2 JP60084222A JP8422285A JPH028743B2 JP H028743 B2 JPH028743 B2 JP H028743B2 JP 60084222 A JP60084222 A JP 60084222A JP 8422285 A JP8422285 A JP 8422285A JP H028743 B2 JPH028743 B2 JP H028743B2
Authority
JP
Japan
Prior art keywords
ultrafiltration
dialyzer
pressure
side circuit
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60084222A
Other languages
Japanese (ja)
Other versions
JPS61240965A (en
Inventor
Takeshi Tsuji
Fumitaka Asano
Masayuki Chuki
Masaaki Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Med Tech Inc
Original Assignee
Med Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Med Tech Inc filed Critical Med Tech Inc
Priority to JP60084222A priority Critical patent/JPS61240965A/en
Publication of JPS61240965A publication Critical patent/JPS61240965A/en
Publication of JPH028743B2 publication Critical patent/JPH028743B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、限外濾過に依り透析中の血液から計
画的な除水を行う除水量指定制御装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a water removal amount designation control device that performs systematic water removal from blood during dialysis by ultrafiltration.

(ロ) 従来の技術 血液透析中の除水量の管理は極めて重要であ
り、積算除水量の高精度化が要望され、従来より
透析器を介して血液側の圧力と透析液側の圧力を
調節して行う種々の方法が採られている。
(b) Conventional technology Managing the amount of water removed during hemodialysis is extremely important, and there is a demand for higher accuracy in the cumulative amount of water removed. Conventionally, the pressure on the blood side and the pressure on the dialysate side have been adjusted via the dialyzer. Various methods have been adopted to do this.

然るに、血液透析に於ける除水量は透析液の流
量に比較して極めて少量である為、高精度の除水
管理を行うためには、限外濾過率を正確に知るこ
とが必要であるが、該限外濾過率は透析器の膜面
積、膜圧及び膜の材質等の相違、透析器各々の特
性の相違、透析液の組成の相違、各人の血液組成
の相違及び該血液組成の経時的変動、温度条件に
依る透析器効率の影響及び血液の流量等多数の変
数要素を含む為、指定除水量を高精度に管理除水
することは困難であり、熟練した経験的補正に依
るものであつた。
However, since the amount of water removed in hemodialysis is extremely small compared to the flow rate of dialysate, it is necessary to accurately know the ultrafiltration rate in order to manage water removal with high precision. , the ultrafiltration rate is determined by differences in the membrane area, membrane pressure, membrane material, etc. of the dialyzer, differences in the characteristics of each dialyzer, differences in the composition of the dialysate, differences in the blood composition of each person, and differences in the blood composition. It is difficult to control water removal with high accuracy to the specified water removal amount because it includes many variables such as changes over time, influence of dialyzer efficiency due to temperature conditions, and blood flow rate, and it is difficult to control water removal with high precision and depends on skilled empirical correction. It was hot.

(ハ) 発明が解決しようとする問題点 上述のように血液透析における透析器の限外濾
過率は多大な変数要素を含む為、除水量を自動的
に制御する方法について、これを高精度に管理す
ることが極めて困難であつた。
(c) Problems to be solved by the invention As mentioned above, the ultrafiltration rate of a dialyzer in hemodialysis involves a large number of variables. It was extremely difficult to manage.

殊に近年、透析器の除水効率が改良高率化さ
れ、低圧力下に於いても除水量が大きく、低限外
濾過圧点での計測誤差が除水量に多大な影響を及
ぼす問題を有するものであつた。
In particular, in recent years, the water removal efficiency of dialyzers has been improved and increased, and the amount of water removed is large even under low pressure, and measurement errors at low ultrafiltration pressure points have a large effect on the amount of water removed. It was something I had.

更に、上記計測誤差については、限外濾過率を
計測するために透析液側回路に設けている各種濾
過率計測器に問題を有する。
Furthermore, regarding the above measurement error, there is a problem with various filtration rate measuring devices provided in the dialysate side circuit for measuring the ultrafiltration rate.

即ち、血液透析回路の透析回路の殊に透析器下
流では血液中から透析した各種代謝物質を含んで
いる為、計量器の内壁に該代謝物質が付着して計
測容量が変動したり、細管部に於いて目詰りを生
ずる等の問題を生ずる為、正確な限外濾過量を計
測することが困難であつた。
In other words, the dialysis circuit of the hemodialysis circuit, especially downstream of the dialyzer, contains various metabolic substances dialyzed from the blood, so the metabolic substances may adhere to the inner wall of the meter, causing fluctuations in the measured volume, or It has been difficult to accurately measure the amount of ultrafiltration due to problems such as clogging.

本発明は、上記問題に鑑みてなされたもので、
人的修正を行うことなく、血液透析中の指定除水
量を高精度に管理することができる除水量指定制
御装置を提供せんとするものであり、本発明装置
に依れば経時的限外濾過率の変化に追随して除水
量を積算し、指定除水量を正確に自動管理するこ
とを可能ならしめるものであり、殊に低限外濾過
圧下に於いても高精度な除水管理を行うことがで
きるものである。
The present invention was made in view of the above problems, and
It is an object of the present invention to provide a water removal amount specification control device that can control the specified water removal amount during hemodialysis with high precision without manual correction. This system integrates the amount of water removed in accordance with changes in the rate, making it possible to accurately and automatically manage the specified amount of water removed, and in particular performs highly accurate water removal management even under low ultrafiltration pressure. It is something that can be done.

(ニ) 問題点を解決するための手段 即ち、本発明の除水量指定制御装置は、透析膜
によつて隔絶した一方の室を血液側回路、他方の
室を透析液側回路に接続してなる透析器と、上記
透析液側回路の透析器の上流側と下流側回路に各
設けた第一および第二の閉止弁と、該両閉止弁の
上流側と下流側を連通する第三の閉止弁を持つた
バイパス路と、透析液側回路の透析器の上流と下
流側の液圧を検知する各液圧センサと、上記透析
液側回路の透析器の下流側に設けた限外濾過量計
測手段と、前記血液側回路の透析器の上流側回路
に設けた血液ポンプと、該血液側回路の透析器の
上流側の液圧を検知する液圧センサから構成さ
れ、前記各液圧センサからの入力信号によつて中
央制御装置により前記各閉止弁を開閉制御して除
水速度計測と除水を交互に繰り返し前記限外濾過
量計測手段を駆動制御する透析回路において、前
記限外濾過量計測手段がシリンダーの一側にダイ
ヤフラム等の可撓性隔室材を介して隔絶した血液
側回路と連通する容量計量室を構成し、該容量計
量室の可撓部と上記シリンダの他側から気密的且
つ出退自在に挿入したピストンを非蒸散流体を介
して気密的に連結してなり、上記ピストンの出退
量の変量により容量計量室の相対変量を検出する
構造になることを要旨とするものである。
(d) Means for solving the problem That is, the water removal amount specification control device of the present invention connects one chamber separated by a dialysis membrane to the blood side circuit and the other chamber to the dialysate side circuit. a dialyzer, first and second shutoff valves provided in the upstream and downstream circuits of the dialyzer in the dialysate side circuit, respectively, and a third shutoff valve that communicates the upstream and downstream sides of both shutoff valves. A bypass path with a shutoff valve, hydraulic pressure sensors that detect fluid pressure upstream and downstream of the dialyzer in the dialysate side circuit, and ultrafiltration installed downstream of the dialyzer in the dialysate side circuit. It consists of a volume measuring means, a blood pump provided in the upstream circuit of the dialyzer in the blood side circuit, and a hydraulic pressure sensor that detects the hydraulic pressure upstream of the dialyzer in the blood side circuit, In the dialysis circuit, the ultrafiltration amount measuring means is driven and controlled by a central control device that controls the opening and closing of each of the shutoff valves in response to an input signal from a sensor to alternately repeat water removal rate measurement and water removal. The filtration amount measuring means constitutes a volume measuring chamber on one side of the cylinder that communicates with the isolated blood side circuit via a flexible compartment material such as a diaphragm, and the flexible part of the volume measuring chamber and the other parts of the cylinder The pistons are inserted airtightly and retractably from the side and are airtightly connected via a non-transpiration fluid, and the relative variable of the volume measuring chamber is detected based on the variable of the amount of ejection and retraction of the piston. This is a summary.

(ホ) 作用 即ち、上記構成では透析器の低限外濾過圧にお
ける実濾過量を測定し、該実濾過量を基点として
該基点を通る仮想限外濾過特性直線を算出し、該
仮想限外濾過特性直線によつて所望濾過速度に対
応する透析器に加える限外濾過圧を決定して初期
透析を開始すると共に、透析中透析器の上流側と
下流側透析液回路を閉止して閉鎖回路をつくり、
該透析液回路の平均透析液圧を、該透析器の下流
に設けた限外濾過量計測用ポンプを制御駆動して
計測直前の平均透析液圧に維持せしめつつ、該限
外濾過量計測用ポンプに依り限外濾過量を計量
し、該限外濾過量から前記基点を通る修正した限
外濾過特性直線を再び算出して該修正した限外濾
過特性直線から所望濾過速度に対応する限外濾過
圧を決定して得られる該経時的限外濾過圧と計測
された限外濾過量より算出される限外濾過率及び
経過時間の積算に依り、計測区間の除水量を得る
と共に、該計測区間の時間経過後再び前記限外濾
過特性直線を、前記手段と同手段により再修正し
て順次の計測区間の除水量を得て、該各計測区間
の除水量の和に依り、所定の除水総量を得るもの
であり、前記計測中、適時低限外濾過圧における
透析器の実濾過量を測定して基点を修正すると共
に、以後の透析に於ける限外濾過圧を決定する限
外濾過特性直線の基点とすることに依り、計量誤
差を少なくすることができるものである。
(E) Effect That is, in the above configuration, the actual filtration rate at the low ultrafiltration pressure of the dialyzer is measured, and a virtual ultrafiltration characteristic straight line passing through the base point is calculated using the actual filtration rate as the base point, The ultrafiltration pressure to be applied to the dialyzer corresponding to the desired filtration rate is determined based on the filtration characteristic straight line, initial dialysis is started, and the upstream and downstream dialysate circuits of the dialyzer are closed during dialysis to create a closed circuit. create,
While maintaining the average dialysate pressure in the dialysate circuit at the average dialysate pressure immediately before measurement by controlling and driving an ultrafiltration rate measuring pump provided downstream of the dialyzer, The amount of ultrafiltration is measured by the pump, the corrected ultrafiltration characteristic straight line passing through the base point is calculated again from the ultrafiltration amount, and the ultrafiltration characteristic line corresponding to the desired filtration rate is calculated from the corrected ultrafiltration characteristic straight line. By integrating the ultrafiltration rate and elapsed time calculated from the ultrafiltration pressure over time obtained by determining the filtration pressure and the measured ultrafiltration amount, the amount of water removed in the measurement section is obtained, and the amount of water removed in the measurement section is obtained. After the time period for each section has elapsed, the ultrafiltration characteristic straight line is corrected again using the same means as described above to obtain the amount of water removed in successive measurement sections. During the measurement, the actual filtration rate of the dialyzer at low ultrafiltration pressure is measured at appropriate times to correct the base point, and the ultrafiltration rate is determined to determine the ultrafiltration pressure in subsequent dialysis. By using this as the base point of the filtration characteristic straight line, measurement errors can be reduced.

また、前記限外濾過特性直線の修正の算出にお
いて計測限外濾過圧が基点となる圧に近い場合、
該限外濾過圧を例えば±30mmHg程度越える濾過
圧における実濾過量を上記直線の修正点とするこ
とに依り、計測点の近接に伴う限外濾過特性直線
の傾き誤差を小さくするものである。
In addition, when the measured ultrafiltration pressure is close to the reference point pressure in calculating the correction of the ultrafiltration characteristic straight line,
By setting the actual filtration amount at a filtration pressure that exceeds the ultrafiltration pressure by, for example, about ±30 mmHg as the correction point of the straight line, the error in the slope of the ultrafiltration characteristic straight line due to the proximity of the measurement point is reduced.

本発明装置の構成では、一般に透析器におい
て、限外濾過圧と濾過量の間には、略直線的な関
係があるが、限外濾過圧が零の場合でも透析器か
ら少量の濾過量が計測されるものであり、低限外
濾過圧における濾過量計測値から算出された仮想
限外濾過特性直線に依り、パラメータを考慮する
と共に、該透析器の入口圧と出口圧とから成る平
均透析液圧を算出するものである為、透析器内の
透析液圧分布に係りなく各々の透析器の平均透析
液圧を得ることができる。
In the configuration of the device of the present invention, there is generally a substantially linear relationship between ultrafiltration pressure and filtration rate in a dialyzer, but even when the ultrafiltration pressure is zero, a small amount of filtration rate is still output from the dialyzer. Based on the virtual ultrafiltration characteristic straight line calculated from the measured value of filtration amount at low ultrafiltration pressure, the average dialysis consisting of the inlet pressure and outlet pressure of the dialyzer is Since the method calculates the fluid pressure, the average dialysate pressure of each dialyzer can be obtained regardless of the dialysate pressure distribution within the dialyzer.

更に、本発明では計測に入る直前の(通常透析
状態の)透析器の平均透析液圧値を記憶し、バイ
パス流路に切り換えた後、該圧力値を維持するよ
うに限外濾過量計測用ポンプを動作せしめ、所定
時間に於ける濾過量を計測し、修正限外濾過圧を
算出することに依り、計測時の限外濾過圧が継続
された透析中の限外濾過圧と近似しており、通常
の透析時の透析器膜圧条件等と全く同様の状態に
於ける限外濾過率を得ることができるものであ
り、該限外濾過率の計測と限外濾過圧及び透析時
間の積算に依り、総除水量を高精度に算出するこ
とが可能である。
Furthermore, in the present invention, the average dialysate pressure value of the dialyzer (in the normal dialysis state) immediately before starting measurement is stored, and after switching to the bypass flow path, the ultrafiltration amount measurement is performed so as to maintain this pressure value. By operating the pump, measuring the filtration amount over a predetermined period of time, and calculating the corrected ultrafiltration pressure, the ultrafiltration pressure at the time of measurement is approximated to the ultrafiltration pressure during continued dialysis. It is possible to obtain an ultrafiltration rate under exactly the same conditions as dialyzer membrane pressure conditions during normal dialysis, and it is possible to measure the ultrafiltration rate and change the ultrafiltration pressure and dialysis time. Through integration, it is possible to calculate the total amount of water removed with high accuracy.

(ヘ) 実施例 第1図乃至第3図は本発明の一実施例である陽
圧式血液透析回路を示すものである。
(F) Embodiment FIGS. 1 to 3 show a positive pressure hemodialysis circuit which is an embodiment of the present invention.

符号1は透析膜1aを介して血液側回路と透析
液側回路3を分離形成した透析器であり、血液側
回路2には動脈側流路4の上流側に血液ポンプ
5、下流側に気泡分離トラツプ6が配設され、該
気泡分離トラツプ6に対して動脈側血液液圧セン
サP3を設けると共に、濾過圧調整用絞り弁8を
静脈側流路7に設けてなる。
Reference numeral 1 designates a dialyzer in which a blood side circuit and a dialysate side circuit 3 are separated via a dialysis membrane 1a, and the blood side circuit 2 includes a blood pump 5 on the upstream side of an artery side flow path 4 and an air bubble on the downstream side. A separation trap 6 is provided, and an arterial blood pressure sensor P3 is provided for the bubble separation trap 6, and a filtration pressure regulating throttle valve 8 is provided in the venous flow path 7.

また、上記透析液側回路3には入路9と出路1
0の各端部にそれぞれ閉止弁V1,V2を設けると
共に、該閉止弁V1,V2の外側を今1個の閉止弁
V3を有するバイパス流路11に依つて連通し、
バイパス流路11の閉止弁V3を他の閉止弁V1
V2と逆に作動せしめ流路切換を行うようにする
と共に、該透析器1の出路10側と入路9側にそ
れぞれ液圧センサP1,P2を設け、更に液圧セン
サP1の下流に限外濾過量計測用シリンダ12を
介装して成る。
In addition, the dialysate side circuit 3 includes an inlet 9 and an outlet 1.
A stop valve V 1 , V 2 is provided at each end of the stop valve V 1 , V 2 , and one stop valve is provided on the outside of the stop valve V 1 , V 2 .
communicated via a bypass flow path 11 having V 3 ;
The shutoff valve V 3 of the bypass passage 11 is replaced with another shutoff valve V 1 ,
In addition, hydraulic pressure sensors P 1 and P 2 are provided on the output path 10 side and the input path 9 side of the dialyzer 1 , respectively. A cylinder 12 for measuring the amount of ultrafiltration is installed downstream.

該限外濾過量計測用シリンダ12は第2図に示
す如く、シリンダ本体13を可撓性ダイヤフラム
14を介して上部室13aと下部室13bに隔絶
し、該上部室13aに前記透析液出路10の上流
側と下流側を連通する2個のポート15a,15
bを開口して容量検出室を構成すると共に、下部
室13bには下端からピストン16を気密的且つ
摺動自在に内挿し、該下部室13bを非蒸散性液
体17に依り充填して成る。
As shown in FIG. 2, the ultrafiltration measurement cylinder 12 has a cylinder main body 13 separated into an upper chamber 13a and a lower chamber 13b via a flexible diaphragm 14, and the dialysate outlet 10 is connected to the upper chamber 13a. Two ports 15a, 15 that communicate the upstream and downstream sides of
b is opened to constitute a capacity detection chamber, and a piston 16 is inserted airtightly and slidably into the lower chamber 13b from the lower end, and the lower chamber 13b is filled with a non-transpiration liquid 17.

また、上記ピストン16は例えば中央制御装置
20の回転数制御機構20aに依つて制御される
パルスモータ18を介して螺合機構等の駆動方向
変換伝達機構19を変位してなる定量性アクチユ
エータ機構に依り、シリンダ本体13に対して挿
抜駆動調節せしめられる。
Further, the piston 16 is a quantitative actuator mechanism formed by displacing a drive direction conversion transmission mechanism 19 such as a screw mechanism via a pulse motor 18 controlled by a rotation speed control mechanism 20a of a central controller 20, for example. Therefore, the insertion/extraction drive with respect to the cylinder body 13 can be adjusted.

符号21は出路10端に設けた静脈圧連動素子
であり、第3図に示す如く上下ハウジング22,
23に依り形成した内腔をフレキシブルダイヤフ
ラム24で区画し、加圧室25と流通室26を形
成すると共に、加圧室25に前記血液側回路2の
透析器1下流に設けた濾過圧調整用絞り弁8下流
と気泡分離トラツプ6′を介して連通する加圧ポ
ート27を開口してなる。
Reference numeral 21 denotes a venous pressure interlocking element provided at the end of the outlet 10, and as shown in FIG. 3, the upper and lower housings 22,
The lumen formed by 23 is divided by a flexible diaphragm 24 to form a pressurizing chamber 25 and a circulation chamber 26, and a filtration pressure adjustment chamber is provided in the pressurizing chamber 25 downstream of the dialyzer 1 in the blood side circuit 2. A pressurizing port 27 is opened which communicates with the downstream side of the throttle valve 8 via the bubble separation trap 6'.

また、符号28は流通室26において上記フレ
キシブルダイヤフラム24と対向した弁座29を
内端に形成して開口した排出ポートであり、該流
通室26の側方には入力ポート30を開口し、該
入力ポート30と排出ポート28を前記バイパス
流路11と液圧センサP1間に連通して成る。
Further, reference numeral 28 is a discharge port which is opened in the circulation chamber 26 by forming a valve seat 29 at the inner end facing the flexible diaphragm 24, and an input port 30 is opened on the side of the circulation chamber 26. The input port 30 and the discharge port 28 are communicated between the bypass passage 11 and the hydraulic pressure sensor P1 .

前記構成に於いて透析液側回路3はバイパス流
路11の閉止弁V3を閉じ、且つ他の閉式弁V1
V2を開いた状態で通常透析を行い、逆に閉止弁
V1,V2を閉止し、V3を閉止した状態で限外濾過
量を検出するものである。
In the above configuration, the dialysate side circuit 3 closes the shutoff valve V 3 of the bypass flow path 11 and closes the other closed valves V 1 ,
Perform normal dialysis with V 2 open, and conversely with the shut-off valve
The amount of ultrafiltration is detected with V 1 and V 2 closed and V 3 closed.

即ち、限定濾過量の計測に際して閉止弁V1
V2を閉止すると共に、V3を開くと透析液はバイ
パス流路11を経て流動し、透析器1の透析液側
3は両端を閉塞した糸を構成する。
That is, when measuring the limited filtration amount, the shutoff valve V 1 ,
When V 2 is closed and V 3 is opened, the dialysate flows through the bypass channel 11, and the dialysate side 3 of the dialyzer 1 constitutes a thread with both ends closed.

然るに、上記閉塞した糸には透析器1の透析膜
1aを介して血液側回路2からの濾過液が浸入し
増量しており、本発明の方法では該増量流体を限
外濾過量計測用シリンダ12に依り所定時間の増
量分をシリンダ13に可撓性ダイヤフラム14を
介して設けた非蒸散性液体17及びピストン16
の運動をバルスモータ18の回転数として検出
し、しかも、該計測時の液圧センサP1,P2が計
測直前の通常透析時の値と一致する如く、中央制
御装置20を介してパルスモータ18を駆動制御
する。
However, the filtrate from the blood side circuit 2 enters the blocked thread through the dialysis membrane 1a of the dialyzer 1 and increases in volume, and in the method of the present invention, the increased fluid is transferred to the ultrafiltration rate measurement cylinder. 12, a non-transpiration liquid 17 and a piston 16 are provided in the cylinder 13 via a flexible diaphragm 14 for a predetermined period of time.
The pulse motor 18 is controlled via the central controller 20 so that the movement of the pulse motor 18 is detected as the rotational speed of the pulse motor 18, and the fluid pressure sensors P 1 and P 2 at the time of measurement match the values during normal dialysis immediately before the measurement. to drive and control.

この計測方向に依り、通常透析状態の透析器1
の平均透析液圧値を変えることなく、単位時間に
限外濾過量を計測し、この限外濾過量から計測時
の限外濾過率を得ることができる。
Depending on this measurement direction, the dialyzer 1 in the normal dialysis state
The amount of ultrafiltration can be measured per unit time without changing the average dialysate pressure value, and the ultrafiltration rate at the time of measurement can be obtained from this amount of ultrafiltration.

また、上記静脈圧連動素子21は被血液透析者
の静脈圧に拘らず、透析器1の背圧を静脈圧と連
動して同等圧に保持し、除水圧を零にすることが
でき、低限外濾過圧を実現することが可能となる
為、低濾過速度が要望される場合において透析系
を制御するものである。
In addition, the venous pressure interlocking element 21 can maintain the back pressure of the dialyzer 1 at the same pressure in conjunction with the venous pressure, and can reduce the water removal pressure to zero, regardless of the venous pressure of the hemodialysis patient. Since it is possible to achieve an ultrafiltration pressure, it controls the dialysis system when a low filtration rate is desired.

次に、前記構成の血液透析回路に依る除水量指
定制御の方法を詳述する。
Next, a method for specifying and controlling the amount of water removed using the hemodialysis circuit configured as described above will be described in detail.

(a) 先ず、使用する透析器1の特性を調査する
為、第4図に示す如く、低限外濾過圧PL(例え
ば30mmHg)に於ける実濾過量(ml)を測定
し、限外濾過速度UFLを算出し、座標PL,UFL
を基点とする。
(a) First, in order to investigate the characteristics of the dialyzer 1 to be used, as shown in Fig. 4, the actual filtration rate (ml) at a low ultrafiltration pressure P L (for example, 30 mmHg) is measured, and the Calculate the filtration rate UF L and set the coordinates P L , UF L
Based on.

(b) 上記基点礎PL,UFLより仮想限外特性直線
Y′を推定(市販の各種透析器の表示特性及び
実積値から求められる)すると共に、透析器1
の出口圧P1及び入口圧P2から透析器特性のパ
ラメータを考慮して平均透析液圧を算出する。
(b) Virtual extreme characteristic straight line from the base point P L and UF L above
In addition to estimating Y' (obtained from the display characteristics and actual volume values of various commercially available dialyzers),
Calculate the average dialysate pressure from the outlet pressure P 1 and the inlet pressure P 2 by taking into account the parameters of the dialyzer characteristics.

(c) 次に、上記仮想限外特性直線Y′より所望限
外濾過速度UFRに対応する限外濾過圧PRを決定
し、 (d) 該限外濾過圧PRにより再び濾過量を測定し、
限外濾過速度UFPを算出する。
(c) Next, determine the ultrafiltration pressure P R corresponding to the desired ultrafiltration rate UF R from the virtual ultrafiltration line Y′, and (d) calculate the filtration rate again using the ultrafiltration pressure P R. measure,
Calculate the ultrafiltration rate UF P.

(e) 次に、PL,UFL,PR,UFRの二点を通る直線
を実限外濾過特性直線Yとして、所望限外濾過
速度に対応する濾過圧Pを決定し、該濾過圧に
て実透析を開始する。
(e) Next, determine the filtration pressure P corresponding to the desired ultrafiltration rate by using the straight line passing through the two points P L , UF L , P R , and UF R as the actual ultrafiltration characteristic line Y, and determine the filtration pressure P corresponding to the desired ultrafiltration rate. Actual dialysis begins at low pressure.

一定時間経過後、再び限外濾過率を計測し、該
実測濾過率の変動に依り前記実限外濾過特製直線
YをY″に変更し、限外濾過圧PをP″に修正した
後再度実透析に移る。
After a certain period of time has passed, the ultrafiltration rate is measured again, and depending on the fluctuation of the measured filtration rate, the actual ultrafiltration special straight line Y is changed to Y'', and the ultrafiltration pressure P is corrected to P'', and then again. Move on to actual dialysis.

また、透析器1の限外濾過率は第5図に示す如
く時間の経過に依り他の条件が同一であつても変
化することが知られている。
Furthermore, it is known that the ultrafiltration rate of the dialyzer 1 changes over time, as shown in FIG. 5, even if other conditions are the same.

然るにバイパス回路を構成し、経時的に限外濾
過率を計測する透析装置においては、連続的に限
外濾過率を計測することができないものであり、
本発明では計測時点の限外濾過率と経過時間を積
算して除水量の総量を求めており、該総量の演算
としては、例えば計測時点T1,T2間を二分する
と共に、前半部を前回T1計測時の限外濾過率
UF1に依り積算し、後半部を今回T2計測時の限
外濾過率UF2に依り積算して順次加算することに
依り、真値に近似した高精度の総除水量を計算す
ることができる。
However, in a dialysis device that has a bypass circuit and measures the ultrafiltration rate over time, it is not possible to measure the ultrafiltration rate continuously.
In the present invention, the total amount of water removed is obtained by integrating the ultrafiltration rate at the time of measurement and the elapsed time. To calculate the total amount, for example, divide the time between measurement time T 1 and T 2 into two, and divide the first half into two. Ultrafiltration rate at the previous T 1 measurement
By integrating based on UF 1 , and then integrating the latter half based on ultrafiltration rate UF 2 at the time of T 2 measurement and adding them sequentially, it is possible to calculate the total amount of water removed with high precision that approximates the true value. can.

また、前述の透析中に於いて経時的に基点PL
UFLを実測し直すことに依り、低限外濾過圧下で
の透析精度を上げることができると共に、該基点
PL,UFLの算出において除水指定限外濾過圧が基
点に近い場合は該計測限外濾過圧を例えば約30mm
Hg高圧又は低下位置にずらし、実限外濾過特性
直線Yが通る二点の座標PL,UFL,PR,UFRが近
接しないようにすることが好ましい。
In addition, during the aforementioned dialysis, the base point P L ,
By re-measuring UF L , it is possible to improve the dialysis accuracy under low ultrafiltration pressure and to
When calculating P L and UF L , if the specified ultrafiltration pressure for water removal is close to the base point, set the measured ultrafiltration pressure to approximately 30 mm, for example.
It is preferable to shift the Hg pressure to a high or low pressure position so that the coordinates of the two points P L , UF L , P R , and UF R through which the actual ultrafiltration characteristic straight line Y passes are not close to each other.

以上の如く、本発明の構成に依れば経時的に限
外濾過率の計測を繰り返して実透析を行う構造に
なる為、所定の除水量を確実に得ることができる
ものである。
As described above, according to the configuration of the present invention, the ultrafiltration rate is repeatedly measured over time to perform actual dialysis, so that a predetermined amount of water removal can be reliably obtained.

(ト) 発明の効果 以上述べた如く、本発明の除水量指定制御装置
に依れば、透析器の種類に係る膜面積、膜厚又は
膜の材質等の差、各個透析器の特性の相違、透析
液の濃度及び組成の相異、各人の血液組成の相異
及び該血液組成の経時的変動、温度条件に依る透
析効率の影響及び血液の流量等、多数の変数要素
に影響されることなく極めて高精度に管理するこ
とができるばかりでなく、除水検定動作時間を短
時間に行うことができ透析時間に及ぼす影響を少
なくするものであり、本発明実施後の実用的効果
は極めて大きい。
(G) Effects of the Invention As described above, the water removal amount specification control device of the present invention eliminates differences in membrane area, membrane thickness, membrane material, etc. depending on the type of dialyzer, and differences in characteristics of each dialyzer. , differences in concentration and composition of dialysate, differences in blood composition between individuals and changes in blood composition over time, influence of temperature conditions on dialysis efficiency, and blood flow rate. Not only can the water removal test be controlled with extremely high precision without any problems, but the water removal test can be performed in a short time, reducing the effect on dialysis time.The practical effects of implementing the present invention are extremely high. big.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る除水量指定制御装置の一実
施例を示すもので、第1図は透析回路図、第2図
は限外濾過量計測用シリンダの略正断面図、第3
図は静脈圧連動素子の正断面図、第4図及び第5
図は本発明装置による計測演算方法を説明するグ
ラフである。 1〜透析器、2〜血液側回路、3〜透析液側回
路、5〜血液ポンプ、6〜気泡分離トラツプ、
8,22〜濾過圧調整用絞り弁、11〜バイパス
路、12〜限外濾過量計測用シリンダ、18〜パ
ルスモータ、20〜中央制御装置、21〜静脈圧
連動素子、P1,P2,P3〜液圧センサ、V1,V2
V3〜閉止弁。
The drawings show an embodiment of the water removal amount designation control device according to the present invention, and FIG. 1 is a dialysis circuit diagram, FIG. 2 is a schematic front cross-sectional view of a cylinder for measuring ultrafiltration amount, and FIG.
The figures are front sectional views of the venous pressure interlocking element, Figures 4 and 5.
The figure is a graph illustrating a measurement calculation method using the device of the present invention. 1 - dialyzer, 2 - blood side circuit, 3 - dialysate side circuit, 5 - blood pump, 6 - bubble separation trap,
8, 22 - Throttle valve for adjusting filtration pressure, 11 - Bypass path, 12 - Cylinder for measuring ultrafiltration rate, 18 - Pulse motor, 20 - Central controller, 21 - Venous pressure interlocking element, P 1 , P 2 , P 3 ~ Liquid pressure sensor, V 1 , V 2 ,
V 3 ~ Shutoff valve.

Claims (1)

【特許請求の範囲】[Claims] 1 透析膜によつて隔絶した一方の室を血液側回
路、他方の室を透析液側回路に接続してなる透析
器と、上記透析液側回路の透析器の上流側と下流
側回路に各設けた第一および第二の閉止弁と、該
両閉止弁の上流側と下流側を連通する第三の閉止
弁を持つたバイパス路と、透析液側回路の透析器
の上流と下流側の液圧を検知する各液圧センサ
と、上記透析液側回路の透析器の下流側に設けた
限外濾過量計測手段と、前記血液側回路の透析器
の上流側回路に設けた血液ポンプと、該血液側回
路の透析器の上流側の液圧を検知する液圧センサ
から構成され、前記各液圧センサからの入力信号
によつて中央制御装置により前記各閉止弁を開閉
制御して除水速度計測と除水を交互に繰り返し前
記限外濾過量計測手段を駆動制御する透析回路に
おいて、前記限外濾過量計測手段がシリンダーの
一側にダイヤフラム等の可撓性隔室材を介して隔
絶した血液側回路と連通する容量計量室を構成
し、該容量計量室の可撓部と上記シリンダの他側
から気密的且つ出退自在に挿入したピストンを非
蒸散流体を介して気密的に連結してなり、上記ピ
ストンの出退量の変量により容量計量室の相対変
量を検出する構造になることを特徴とする除水量
指定制御装置。
1 A dialyzer in which one chamber separated by a dialysis membrane is connected to the blood side circuit and the other chamber is connected to the dialysate side circuit, and the dialysate side circuit is connected to the upstream and downstream circuits of the dialyzer. A bypass path having first and second shutoff valves provided, a third shutoff valve that communicates the upstream and downstream sides of the two shutoff valves, and a dialysate side circuit that connects the upstream and downstream sides of the dialyzer. each liquid pressure sensor that detects liquid pressure, an ultrafiltration rate measuring means provided downstream of the dialyzer in the dialysate side circuit, and a blood pump provided in the upstream circuit of the dialyzer in the blood side circuit; , a fluid pressure sensor that detects fluid pressure on the upstream side of the dialyzer in the blood side circuit, and a central controller controls opening and closing of each of the shutoff valves based on input signals from each of the fluid pressure sensors. In a dialysis circuit that alternately repeats water velocity measurement and water removal to drive and control the ultrafiltration amount measuring means, the ultrafiltration amount measuring means is connected to one side of the cylinder through a flexible compartment material such as a diaphragm. A volume measuring chamber is configured which communicates with the isolated blood side circuit, and the flexible part of the volume measuring chamber and the piston inserted in the cylinder from the other side in an airtight manner so as to be freely retractable and retractable are connected airtightly through a non-transpiration fluid. A water removal amount specifying control device characterized in that the device is connected to each other and has a structure in which a relative variable of a capacity measuring chamber is detected based on a variable of the amount of protrusion and retraction of the piston.
JP60084222A 1985-04-18 1985-04-18 Water removing amount indicating control in blood dialysis Granted JPS61240965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60084222A JPS61240965A (en) 1985-04-18 1985-04-18 Water removing amount indicating control in blood dialysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60084222A JPS61240965A (en) 1985-04-18 1985-04-18 Water removing amount indicating control in blood dialysis

Publications (2)

Publication Number Publication Date
JPS61240965A JPS61240965A (en) 1986-10-27
JPH028743B2 true JPH028743B2 (en) 1990-02-27

Family

ID=13824451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60084222A Granted JPS61240965A (en) 1985-04-18 1985-04-18 Water removing amount indicating control in blood dialysis

Country Status (1)

Country Link
JP (1) JPS61240965A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133258A (en) * 1982-01-29 1983-08-08 ビー・ブラウン―エスエスシー・アクチエンゲゼルシャフト Dialysis apparatus
JPS5937959A (en) * 1982-08-28 1984-03-01 財団法人鷹揚郷 Ultrafiltration amount measuring apparatus
JPS59171559A (en) * 1983-03-18 1984-09-28 テルモ株式会社 Water removing amount controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133258A (en) * 1982-01-29 1983-08-08 ビー・ブラウン―エスエスシー・アクチエンゲゼルシャフト Dialysis apparatus
JPS5937959A (en) * 1982-08-28 1984-03-01 財団法人鷹揚郷 Ultrafiltration amount measuring apparatus
JPS59171559A (en) * 1983-03-18 1984-09-28 テルモ株式会社 Water removing amount controller

Also Published As

Publication number Publication date
JPS61240965A (en) 1986-10-27

Similar Documents

Publication Publication Date Title
EP1200141B1 (en) Dialysis machine
US4971700A (en) Method of controlling amount of removed water by ultrafiltration and control device for controlling amount of removed water by ultrafiltration in hemodialysis
US4889635A (en) Method and apparatus for controlling the quantities of liquid circulating in the dialysis liquid circuit of an artificial kidney
JP2532261B2 (en) Equipment for hemodialysis treatment
JPH0364148B2 (en)
WO2019142925A1 (en) Pressure detector adjusting device
JPH028743B2 (en)
JPH0519074Y2 (en)
JP2769514B2 (en) Water removal control device for hemodialysis machine
JPH0568710A (en) Ultrafiltration control and supervision system of dialyzator
US5009775A (en) Method of controlling amount of removed water by ultrafiltration and control device for controlling amount of removed water by ultrafiltration in hemodialysis
JPH0627166Y2 (en) Dialysis machine
JPS60156470A (en) Artificial dialytic apparatus
JPH0636826Y2 (en) Hemodialysis machine
JP2544897B2 (en) Ultrafiltration pressure calculation method in dialysis machine
JPH0622611B2 (en) Dialysis machine
JPH0576870B2 (en)
JPS649024B2 (en)
JPH0516871B2 (en)
KR940002244B1 (en) Method of controlling amount of removed water by ultrafiltration and control devcie for controlling amount of removed water
JPS6330025B2 (en)
JPS586504B2 (en) Ultrafiltration measurement device
JPS649866B2 (en)
JPS63240871A (en) Artificial kidney dialytic apparatus
JPS649025B2 (en)