JPH0287176A - Control method for surface potential of photosensitive body - Google Patents
Control method for surface potential of photosensitive bodyInfo
- Publication number
- JPH0287176A JPH0287176A JP63239471A JP23947188A JPH0287176A JP H0287176 A JPH0287176 A JP H0287176A JP 63239471 A JP63239471 A JP 63239471A JP 23947188 A JP23947188 A JP 23947188A JP H0287176 A JPH0287176 A JP H0287176A
- Authority
- JP
- Japan
- Prior art keywords
- potential
- photoreceptor
- surface potential
- grid
- photoconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 14
- 108091008695 photoreceptors Proteins 0.000 claims description 81
- 238000012937 correction Methods 0.000 abstract description 47
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 101001124039 Banna virus (strain Indonesia/JKT-6423/1980) Non-structural protein 4 Proteins 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Landscapes
- Discharging, Photosensitive Material Shape In Electrophotography (AREA)
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
- Control Or Security For Electrophotography (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、複写機、プリンタ等の画像出力装置に関し、
特に潜像形成用の感光体の表面電位を制御する方法に関
する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to image output devices such as copying machines and printers,
In particular, the present invention relates to a method of controlling the surface potential of a photoreceptor for forming a latent image.
たとえば、複写機においては、感光体が帯電器により予
め帯電され、次いで、この感光体が原稿からの反射光に
より露光され、静電潜像が形成される。そして、この静
電潜像がトナー等により現像され、更に用紙に転写され
て、複写像が得られる。For example, in a copying machine, a photoreceptor is charged in advance by a charger, and then the photoreceptor is exposed to light reflected from a document to form an electrostatic latent image. This electrostatic latent image is then developed with toner or the like and further transferred onto paper to obtain a copy image.
この場合、前記感光体の表面電位は、複写像の濃度、ラ
チチユード等に大きな影響を与えるため予め決められた
一定電位に維持する必要がある。In this case, the surface potential of the photoreceptor must be maintained at a predetermined constant potential because it has a large effect on the density, latitude, etc. of the copied image.
このため、従来から感光体表面電位を安定化することが
行われている。For this reason, efforts have been made to stabilize the surface potential of the photoreceptor.
たとえば、帯電器としてスコロトロンを使用し、そのグ
リッドに印加するバイアスを変えることによって感光体
への流入電流を制御することが知られている。また、帯
電後の感光体表面電位を検出し、目標値との差に応じて
帯電器の動作パラメータを変えることも知られている。For example, it is known to use a scorotron as a charger and control the current flowing into the photoreceptor by changing the bias applied to its grid. It is also known to detect the surface potential of the photoreceptor after being charged and to change the operating parameters of the charger depending on the difference from the target value.
更に、より安定性の高い制御を行うために、この両者を
組み合わせることも行われている。Furthermore, in order to perform more stable control, a combination of the two is also being practiced.
第3図(a)は感光体流入電流I。と感光体表面電位V
Plとの関係を示し、同図ら)はグリッド電位V。FIG. 3(a) shows the photoreceptor inflow current I. and photoreceptor surface potential V
The relationship between Pl and the grid potential V is shown in the same figure.
と感光体流入電流l、との関係を示し、同図(C)はグ
リッド電位VG と感光体表面電位VP、との関係を示
している。FIG. 2C shows the relationship between the grid potential VG and the photoconductor surface potential VP.
これらのグラフから判るように、スコロトロンのグリッ
ド電位v0 を変えることにより、感光体表面電位を制
御することができる。したがって、複写機に使用される
各感光体の特性にばらつきがあるような場合でも、各感
光体に対する制御特性を変えて各感光体のばらつきを補
正できる。As can be seen from these graphs, the surface potential of the photoreceptor can be controlled by changing the grid potential v0 of the scorotron. Therefore, even if there are variations in the characteristics of each photoconductor used in a copying machine, the variations in each photoconductor can be corrected by changing the control characteristics for each photoconductor.
以下、従来の感光体表面電位制御方法について説明する
。A conventional method for controlling the surface potential of a photoreceptor will be described below.
(i)帯電後の感光体表面電位を電位センサで読み取る
。(i) The surface potential of the photoreceptor after being charged is read by a potential sensor.
(11)読み取った値(検出値)と目標値との差を検出
して、以下の式に基づきグリッド電位補正量を算出する
(第4図参照)。(11) Detect the difference between the read value (detected value) and the target value, and calculate the grid potential correction amount based on the following formula (see FIG. 4).
ΔVP1
=ΔVx α
但し、ΔV:検出値と目標値との差
ΔVG=グリッド電位変化分
ΔVpi:感光体表面電位変化分
α:補正係数
なお、補正係数αは、各感光体間では多少のばらつきは
あるが、感光体表面電位VPIの目標値の近傍では略一
種類の傾斜で表すことができる。ΔVP1 = ΔVx α However, ΔV: Difference between detected value and target value ΔVG = Grid potential change ΔVpi: Photoconductor surface potential change α: Correction coefficient Note that the correction coefficient α may vary slightly between each photoconductor. However, the vicinity of the target value of the photoreceptor surface potential VPI can be represented by approximately one type of slope.
(iii)算出したグリッド電位補正量を、今までのグ
リッド電位Vc に加算或いは減算してグリッドに印加
する。(iii) The calculated grid potential correction amount is added or subtracted from the current grid potential Vc and applied to the grid.
このように、読み取った感光体表面電位VPIに応じて
グリッド電位V0 を制御することにより、各感光体の
帯電特性のばらつきにかかわらず感光体表面電位を所定
のものとすることができる。In this way, by controlling the grid potential V0 according to the read photoconductor surface potential VPI, the photoconductor surface potential can be set to a predetermined value regardless of variations in the charging characteristics of each photoconductor.
しかし、前記感光体の帯電特性は不変のものではなく、
経時変化がある。すなわち、感光体の初期特性は、第5
図(a)に破線で示すように略原点を通る一次直線で表
されるが、感光体を長期間にわたって使用すると、感光
体の特性は実線で示すものに変化する。すなわち、グリ
ッド電位v6 と感光体流入電流I0 の関係は、同図
11b)に示すように若干感光体流入電流I、の正側に
平行移動するだけであるが、感光体流入電流In と感
光体表面電位VPIの関係は、同図(a)に実線で示す
ように傾斜が緩やかになるとともに感光体表面電位v
p mの最大値が低下し、更に、感光体表面電位VPI
の立ち上がりが遅くなる。したがって、グリッド電位V
aと感光体表面電位V□の関係は同図(C)に示すよう
になる。However, the charging characteristics of the photoreceptor are not constant;
There is a change over time. In other words, the initial characteristics of the photoreceptor are
As shown by the broken line in Figure (a), it is represented by a linear straight line passing approximately through the origin, but when the photoreceptor is used for a long period of time, the characteristics of the photoreceptor change to those shown by the solid line. That is, the relationship between the grid potential v6 and the photoconductor inflow current I0 is only slightly shifted in parallel to the positive side of the photoconductor inflow current I, as shown in FIG. 11b), but the relationship between the photoconductor inflow current In and the photoconductor inflow current I The relationship between the surface potential VPI is as shown by the solid line in FIG.
The maximum value of p m decreases, and furthermore, the photoreceptor surface potential VPI
start-up becomes slower. Therefore, the grid potential V
The relationship between a and the photoreceptor surface potential V□ is shown in FIG.
上述のように、感光体の使用期間が長くなるにつれ、感
光体表面電位Vpλに対するグリッド電位VG の変化
を示す傾斜すなわち補正係数は、第6図に示すようにα
からα′に変化する。As mentioned above, as the usage period of the photoreceptor becomes longer, the slope, that is, the correction coefficient indicating the change in the grid potential VG with respect to the photoreceptor surface potential Vpλ, becomes α as shown in FIG.
to α′.
実際に感光体の帯電特性の経時変化を測定した例を第7
図に示す。同図(a)は感光体流入電流1゜と感光体表
面電位VPlとの関係を示し、同図ら)はグリッド電位
Va と感光体流入電流I0 との関係を示し、同図(
C)はグリッド電位v0 と感光体表面電位VPRとの
関係を示している。また、各図において特性Aは感光体
の初期特性を示し、特性Bは約10万回複写後の特性を
示し、特性Cは約30万回複写後の特性を示している。An example of actually measuring changes in the charging characteristics of a photoreceptor over time is shown in Section 7.
As shown in the figure. Figure (a) shows the relationship between the photoconductor inflow current 1° and the photoconductor surface potential VPl, Figure 2 (a) shows the relationship between the grid potential Va and the photoconductor inflow current I0, and figure (a) shows the relationship between the grid potential Va and the photoconductor inflow current I0.
C) shows the relationship between the grid potential v0 and the photoreceptor surface potential VPR. Further, in each figure, characteristic A indicates the initial characteristic of the photoreceptor, characteristic B indicates the characteristic after approximately 100,000 copies, and characteristic C indicates the characteristic after approximately 300,000 copies.
先に述べたように、従来の感光体表面電位制御方法にふ
いては、グリッド電位補正量をΔVxαで算出するが、
経時変化によって補正係数がαからα′ に変化した場
合でも、一定のαで算出されるため、実際に必要なグリ
ッド電位補正量よりも小さな補正量で補正を行うことに
なり、感光体表面電位を目標値に一致させることができ
なかったり、或いは、目標値への収束が遅くなるという
問題があった。As mentioned above, in the conventional photoreceptor surface potential control method, the grid potential correction amount is calculated by ΔVxα;
Even if the correction coefficient changes from α to α′ due to changes over time, it is calculated with a constant α, so the correction is performed with a smaller correction amount than the actually required grid potential correction amount, and the photoreceptor surface potential There is a problem that it is not possible to match the target value with the target value, or that the convergence to the target value is delayed.
本発明は、前δ己問題点を解決するために案出されたも
のであって、感光体の帯電特性が経時変化した場合でも
常に最適な感光体表面電位制御を行うことを目的とする
。The present invention has been devised to solve the above-mentioned δ self problem, and an object of the present invention is to always perform optimal control of the surface potential of a photoreceptor even when the charging characteristics of the photoreceptor change over time.
本発明の感光体表面電位制御方法は、前記目的を達成す
るため、スコロトロンにより感光体を帯電し、帯電後の
感光体表面電位を電位センサにより検出し、検出された
感光体表面電位と目標値を比較し、比較出力に基づき前
記スコロトロンのグリッド電位を変化させることにより
前記感光体表面電位を一定化する感光体表面電位制御方
法において、予め、前記グリッド電位と前記感光体表面
電位との関係から前記感光体の経時変化の程度を求め、
該経時変化の程度に応じて前記グリッド電位を変化させ
ることを特徴とする。In order to achieve the above object, the photoreceptor surface potential control method of the present invention charges the photoreceptor with a scorotron, detects the photoreceptor surface potential after charging with a potential sensor, and combines the detected photoreceptor surface potential with a target value. In the photoconductor surface potential control method, the photoconductor surface potential is made constant by comparing the grid potential of the scorotron and changing the grid potential of the scorotron based on the comparative output, Determining the degree of change over time of the photoreceptor,
The method is characterized in that the grid potential is changed depending on the degree of the change over time.
前記経時変化の程度は、目標値の感光体表面電位が得ら
れるときのグリッド電位の値、或いは、所定のグリッド
電位が印加されたときの感光体表面電位の値から求める
ことができる。The degree of the change over time can be determined from the value of the grid potential when the target value of the photoreceptor surface potential is obtained, or from the value of the photoreceptor surface potential when a predetermined grid potential is applied.
スコロトロンにより帯電された感光体におけるグリッド
電位に対する感光体表面電位の変化特性は、時間の経過
とともに変化する。そこで、本発明においては、予めグ
リッド電位と感光体表面電位の関係から感光体の経時変
化の程度を求めておき、感光体表面電位のみではなく、
この経時変化の程度に応じてもスコロトロンのグリッド
電位を変化するようにする。これにより、感光体のばら
つきのみならず経時変化も補正される。The change characteristics of the photoreceptor surface potential with respect to the grid potential on the photoreceptor charged by the scorotron change over time. Therefore, in the present invention, the degree of change over time of the photoconductor is determined in advance from the relationship between the grid potential and the photoconductor surface potential, and the degree of change over time of the photoconductor is determined in advance.
The grid potential of the scorotron is also changed depending on the degree of this change over time. This corrects not only variations in the photoreceptor but also changes over time.
以下、図面を参照しながら実施例に基づいて本発明の特
徴を具体的に説明する。DETAILED DESCRIPTION OF THE INVENTION Hereinafter, features of the present invention will be specifically described based on examples with reference to the drawings.
第1図は本発明の感光体電位制御方法を適用する複写機
の構成例を模式的に示す説明図である。FIG. 1 is an explanatory diagram schematically showing a configuration example of a copying machine to which the photoreceptor potential control method of the present invention is applied.
図において、1はドラム状の感光体を示し、この感光体
1は、スコロトロンからなる帯電器2により帯電された
後、電位センサ3により感光体表面電位が検出される。In the figure, reference numeral 1 indicates a drum-shaped photoreceptor, and after the photoreceptor 1 is charged by a charger 2 made of a scorotron, a potential sensor 3 detects the surface potential of the photoreceptor.
次いで、原稿からの反射光、或いは、映像信号により変
調された発光ダイオード、レーザ等の露光手段(図示せ
ず)からの光りにより、感光体lが露光され静電潜像が
形成される。Next, the photoreceptor 1 is exposed to light reflected from the original or light from an exposure means (not shown) such as a light emitting diode or laser modulated by the video signal, and an electrostatic latent image is formed.
この静電潜像は、現像装置4により現像されてトナー像
が形成され、このトナー像は、感光体1の回転に同期し
て搬送されてきた用紙5上に転写器6により転写される
。また、転写後に感光体1上に残留したトナーは、清掃
装置7により除去され、その後、感光体1は再度帯電器
2により帯電される。This electrostatic latent image is developed by a developing device 4 to form a toner image, and this toner image is transferred by a transfer device 6 onto a sheet of paper 5 that has been conveyed in synchronization with the rotation of the photoreceptor 1. Furthermore, the toner remaining on the photoconductor 1 after the transfer is removed by the cleaning device 7, and then the photoconductor 1 is charged again by the charger 2.
前記帯電器2は、放電電極2a及びグリッド2bを備え
ており、高圧発生回路8からそれぞれ所定の電圧が印加
される。この帯電器2はスコロトロンであるので、グリ
ッド2bに印加するグリッド電位V、を変えることによ
り、帯電器2から感光体1に流れ込む感光体流入電流I
ゎを制御することができる。高圧発生回路8には、グリ
ッド電位補正量算出手段9が接続されており、電位セン
サ3により検出された感光体表面電位Vpmの出力と目
標値V□7との差に応じて帯電器2のグリッド2bに印
加される電圧が制御されるようになっている。The charger 2 includes a discharge electrode 2a and a grid 2b, to which predetermined voltages are applied from a high voltage generation circuit 8, respectively. Since this charger 2 is a scorotron, by changing the grid potential V applied to the grid 2b, the photoreceptor inflow current I flows from the charger 2 to the photoreceptor 1.
You can control ゎ. A grid potential correction amount calculation means 9 is connected to the high voltage generation circuit 8, and the charger 2 is adjusted according to the difference between the output of the photoreceptor surface potential Vpm detected by the potential sensor 3 and the target value V□7. The voltage applied to grid 2b is controlled.
更に、グリッド電位補正量算出手段9には、補正係数設
定手段10から高圧発生回路8に対する補正量を調整す
るための補正係数αが供給される。この補正係数αは、
前記グリッド電位vG に応じて変更される。Further, the grid potential correction amount calculation means 9 is supplied with a correction coefficient α for adjusting the correction amount for the high voltage generation circuit 8 from the correction coefficient setting means 10. This correction coefficient α is
It is changed according to the grid potential vG.
次に、本発明による感光体電位制御方法について説明す
る。Next, a photoreceptor potential control method according to the present invention will be explained.
(i)帯電器2により感光体1の表面を帯電する。(i) The surface of the photoreceptor 1 is charged by the charger 2.
(ii) 補正係数設定手段lOによりグリッド電位3
aに応じて補正係数αを設定する。(ii) The grid potential 3 is set by the correction coefficient setting means lO.
A correction coefficient α is set according to a.
(iii)帯電後の感光体表面電位を電位センサ3で読
み取り、グリッド電位補正量算出手段9に送る。(iii) The surface potential of the photoreceptor after being charged is read by the potential sensor 3 and sent to the grid potential correction amount calculation means 9.
(iv) 読み取った値(検出値)と目標値との差を検
出して以下の式に基づきグリッド電位補正量を算出する
。(iv) Detect the difference between the read value (detected value) and the target value and calculate the grid potential correction amount based on the following formula.
グリッド電位補正量=ΔvXα
本実施例においては、補正係数αは一定値ではなく、補
正係数設定手段10によりグリッド電位V0の絶対値の
レベルにより決定される。Grid potential correction amount=ΔvXα In this embodiment, the correction coefficient α is not a constant value, but is determined by the correction coefficient setting means 10 based on the level of the absolute value of the grid potential V0.
第5図(C)に示されるように、感光体表面電位V□は
、実用範囲内ではグリッド電位Va に比例しているの
で、経時変化は、感光体表面電位VPIの目標値に近い
ところでのグリッド電位V。により識別が可能となる。As shown in FIG. 5(C), the photoconductor surface potential V Grid potential V. This makes identification possible.
更に詳細に説明すると、グリッド電位Vc と感光体表
面電位VPIの関係は、第2図に特性P、Q。To explain in more detail, the relationship between the grid potential Vc and the photoreceptor surface potential VPI is shown in characteristics P and Q in FIG.
Rで示すように矢印方向に経時変化する。したがって、
感光体表面電位V□の目標値VPIアにふけるグリッド
電位v0゜+ Vc++ VO2のレベルを判別す
ることにより経時変化の程度を検出することができ、こ
の経時変化の程度に基づいて補正係数α1゜α2.α3
を設定することができる。第1表にグリッド電位V0
と補正係数αの関係の一例を示す。As shown by R, it changes over time in the direction of the arrow. therefore,
The degree of change over time can be detected by determining the level of grid potential v0゜+Vc++ VO2 corresponding to the target value VPIa of photoreceptor surface potential V□, and the correction coefficient α1゜ is determined based on the degree of change over time. α2. α3
can be set. Table 1 shows the grid potential V0
An example of the relationship between the correction coefficient α and the correction coefficient α is shown below.
第1表
(v) 算出したグリッド電位補正量を、今までのグリ
ッド電位Va に加算或いは減算して新たなグリッド電
位vG を求め、高圧発生回路8によりこのグリッド電
位V。をグリッド2bに印加する。Table 1 (v) The calculated grid potential correction amount is added or subtracted from the previous grid potential Va to obtain a new grid potential vG. is applied to grid 2b.
これにより、感光体1の帯電特性のばらつき及び経時変
化にかかわらず常に最適の感光体電位制御を行うことが
できる。As a result, optimal photoconductor potential control can be performed at all times regardless of variations in the charging characteristics of the photoconductor 1 and changes over time.
なお、第1図に示す説明図にふいては、理解を容易にす
るため、グリッド電位補正塁算出手役9及び補正係数設
定手段10を独立した構成として図示したが、補正係数
αの設定及びグリッド電位補正量の算出は、マイクロコ
ンビ二一夕によりソフトウェア的に行うこともできる。In the explanatory diagram shown in FIG. 1, the grid potential correction base calculation hand 9 and the correction coefficient setting means 10 are shown as independent structures in order to facilitate understanding, but the setting of the correction coefficient α and The grid potential correction amount can also be calculated using software using a microcomputer.
また、グリッド電位vr、を直接検出するのではなく、
このグリッド電位Va に対応したデータを回路中から
読み出して補正係数αを求めるようにしてもよい。Moreover, instead of directly detecting the grid potential vr,
The correction coefficient α may be determined by reading data corresponding to this grid potential Va from within the circuit.
また、この補正係数αは、先に述べたように感光体1の
経時変化の程度を示すものであるから、別の見方をすれ
ば、補正係数αは感光体1の寿命を示していることにな
る。したがって、補正係数αを保守作業の目安として利
用することもできる。Furthermore, as mentioned earlier, this correction coefficient α indicates the degree of change over time of the photoreceptor 1, so from another perspective, the correction coefficient α indicates the lifespan of the photoreceptor 1. become. Therefore, the correction coefficient α can also be used as a guideline for maintenance work.
なお、第1図に示す実施例においては、グリッド電位v
G に応じて補正係数αを変えるようにしたが、これに
限らず、たとえば、所定のグリッド電位VGIItFに
おける感光体表面電位VPIのレベルにより補正係数α
を変えるようにしてもよい。Note that in the embodiment shown in FIG. 1, the grid potential v
Although the correction coefficient α is changed according to G, the correction coefficient α is not limited to this;
may be changed.
すなわち、第2図に示すように、所定のグリッド電位V
G II t Fにおける感光体表面電位VPlは、
経時変化の程度に応じてVpi+、V□2+VP13
と変化するので、この感光体表面電位の変化に基づいて
補正係数α1.α2.α3を設定することができる。That is, as shown in FIG.
The photoreceptor surface potential VPl at G II t F is
Vpi+, V□2+VP13 depending on the degree of change over time
Based on this change in the photoreceptor surface potential, the correction coefficient α1. α2. α3 can be set.
この補正係数αを求めるためには、たとえば、複写機の
電源を投入した後、最初の複写を行う前に、帯電器2の
グリッド2bに所定のグリッド電位v6□、を印加する
モードを設け、このときの感光体表面電位V□を検出し
、この値に応じて補正係数αを段階的に或いは直線的に
設定すればよい。In order to obtain this correction coefficient α, for example, a mode is provided in which a predetermined grid potential v6□ is applied to the grid 2b of the charger 2 after the copying machine is powered on and before the first copy is made. The photoreceptor surface potential V□ at this time may be detected, and the correction coefficient α may be set stepwise or linearly in accordance with this value.
第2表に所定のグリッド電位V c l ! Fにおけ
る感光体表面電位vP究と補正係数αの関係の一例を示
す。Table 2 shows the predetermined grid potential V c l ! An example of the relationship between the photoreceptor surface potential vP and the correction coefficient α at F is shown.
第2表
なお、第2表においては、感光体表面電位VP11及び
補正係数αは不連続な値で表示しであるが、Vp*+、
VP12. Vp*s 以外(D M 光体表面’R
位L: 対する補正係数αは、内挿法による近似計算に
より求めることができる。Table 2 Note that in Table 2, the photoreceptor surface potential VP11 and the correction coefficient α are shown as discontinuous values, but Vp*+,
VP12. Other than Vp*s (D M Light body surface 'R
The correction coefficient α for the position L can be obtained by approximate calculation using an interpolation method.
以上に述べたように、本発明によれば、感光体の表面電
位を検出するだけでな(、感光体の帯電特性の経時変化
をも検出して感光体表面電位の制御を行っているので、
感光体のばらつきや経時変化にかかわらず常に最適な感
光体表面電位を維持することができる。また、経時変化
に起因する制御感度の低下も補正されるので、感光体表
面電位が正確に且つ短時間で目標値に収束する。As described above, according to the present invention, the surface potential of the photoreceptor is controlled not only by detecting the surface potential of the photoreceptor (but also by detecting changes over time in the charging characteristics of the photoreceptor). ,
The optimum surface potential of the photoreceptor can always be maintained regardless of variations in the photoreceptor or changes over time. Furthermore, since the decrease in control sensitivity due to changes over time is corrected, the photoreceptor surface potential converges to the target value accurately and in a short time.
第1図は本発明の感光体電位制御方法を適用する複写機
の構成例を模式的に示す説明図、第2図はグリッド電位
に対する感光体表面電位の経時変化を示すグラフ、第3
図(a)、 (b)、 (C)は経時変化を考慮しな
い場合の感光体における感光体表面電位。
感光体流入電流及びグリッド電位の関係を示すグラフ、
第4図は第3図(C)の要部を拡大したグラフ、第5図
(a)、 (b)、 (C)は経時変化を考慮した場
合の感光体における感光体表面電位、感光体流入電流及
びグリッド電位の関係を示すグラフ、第6図は経時変化
に基づく補正係数の変化を示すグラフ、第7図(a)、
(b)、 (C)は感光体における感光体表面電位
感光体流入電流及びグリッド電位の経時変化の実測例を
示すグラフである。
1:感光体 2:帯電器
2a:放電電極 2bニゲリッド3:電位センサ
4:現像装置
5:用紙 6:転写器
7:清掃装置 8:高圧発生回路9ニゲリツド電
位補正量算出手段
10:補正係数設定手段FIG. 1 is an explanatory diagram schematically showing a configuration example of a copying machine to which the photoreceptor potential control method of the present invention is applied, FIG. 2 is a graph showing changes over time in photoreceptor surface potential with respect to grid potential, and FIG.
Figures (a), (b), and (C) show the photoreceptor surface potential in the case where changes over time are not considered. A graph showing the relationship between photoreceptor inflow current and grid potential,
Figure 4 is an enlarged graph of the main part of Figure 3 (C), and Figures 5 (a), (b), and (C) are the surface potential of the photoreceptor when considering changes over time, and the photoreceptor surface potential of the photoreceptor. A graph showing the relationship between inflow current and grid potential, Fig. 6 is a graph showing changes in the correction coefficient based on changes over time, Fig. 7 (a),
(b) and (C) are graphs showing actual measurement examples of changes over time in photoreceptor surface potential, photoreceptor inflow current, and grid potential in the photoreceptor. 1: Photoreceptor 2: Charger 2a: Discharge electrode 2b Nigelid 3: Potential sensor 4: Developing device 5: Paper 6: Transfer device 7: Cleaning device 8: High pressure generation circuit 9 Nigellid potential correction amount calculation means 10: Correction coefficient setting means
Claims (1)
体表面電位を電位センサにより検出し、検出された感光
体表面電位と目標値を比較し、比較出力に基づき前記ス
コロトロンのグリッド電位を変化させることにより前記
感光体表面電位を一定化する感光体表面電位制御方法に
おいて、予め、前記グリッド電位と前記感光体表面電位
との関係から前記感光体の経時変化の程度を求め、該経
時変化の程度に応じて前記グリッド電位を変化させるこ
とを特徴とする感光体表面電位制御方法。 2、前記目標値の感光体表面電位が得られるときのグリ
ッド電位の値から前記感光体の経時変化の程度を求める
ことを特徴とする請求項1記載の感光体表面電位制御方
法。 3、所定のグリッド電位が印加されたときの感光体表面
電位の値から前記感光体の経時変化の程度を求めること
を特徴とする請求項1記載の感光体表面電位制御方法。[Claims] 1. Charge the photoconductor with a scorotron, detect the surface potential of the photoconductor after charging with a potential sensor, compare the detected photoconductor surface potential with a target value, and adjust the scorotron based on the comparison output. In the method for controlling the surface potential of the photoreceptor in which the surface potential of the photoreceptor is made constant by changing the grid potential of the photoreceptor, the degree of change over time of the photoreceptor is determined in advance from the relationship between the grid potential and the surface potential of the photoreceptor. . A photoconductor surface potential control method, comprising changing the grid potential according to the degree of the change over time. 2. The photoconductor surface potential control method according to claim 1, wherein the degree of change over time of the photoconductor is determined from the value of the grid potential when the photoconductor surface potential of the target value is obtained. 3. The photoconductor surface potential control method according to claim 1, wherein the degree of change over time of the photoconductor is determined from the value of the photoconductor surface potential when a predetermined grid potential is applied.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63239471A JPH0287176A (en) | 1988-09-24 | 1988-09-24 | Control method for surface potential of photosensitive body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63239471A JPH0287176A (en) | 1988-09-24 | 1988-09-24 | Control method for surface potential of photosensitive body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0287176A true JPH0287176A (en) | 1990-03-28 |
Family
ID=17045264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63239471A Pending JPH0287176A (en) | 1988-09-24 | 1988-09-24 | Control method for surface potential of photosensitive body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0287176A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9857719B2 (en) | 2015-03-06 | 2018-01-02 | Brother Kogyo Kabushiki Kaisha | Image forming apparatus having photosensitive body and charging device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5872165A (en) * | 1981-10-26 | 1983-04-30 | Fujitsu Ltd | Recording device |
-
1988
- 1988-09-24 JP JP63239471A patent/JPH0287176A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5872165A (en) * | 1981-10-26 | 1983-04-30 | Fujitsu Ltd | Recording device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9857719B2 (en) | 2015-03-06 | 2018-01-02 | Brother Kogyo Kabushiki Kaisha | Image forming apparatus having photosensitive body and charging device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3408918B2 (en) | Image forming device | |
CA2076765C (en) | Esv readings of toner test patches for adjusting ird readings of developed test patches | |
US6501917B1 (en) | Method and apparatus for image forming capable of effectively performing image density adjustment | |
JP2738749B2 (en) | Image forming device | |
US5684685A (en) | High voltage power supply for image transfer and image forming apparatus using the same | |
JPH05119567A (en) | Image forming device | |
US20010021316A1 (en) | Image forming apparatus for enabling to selectively apply a setting voltage or other voltages to a transferring material | |
JPH0462075B2 (en) | ||
JPH1195501A (en) | Image forming device | |
US5285241A (en) | Maintaining precise electrostatic control using two ESVs | |
US5534977A (en) | Image forming apparatus having a function to charge a photoreceptor drum at an appropriate potential | |
WO1999034259A1 (en) | Electrostatographic method and apparatus with improved auto cycle-up | |
JPH0287176A (en) | Control method for surface potential of photosensitive body | |
US6505012B2 (en) | Image forming apparatus | |
US20020172522A1 (en) | Image forming apparatus capable of correcting control coefficient used to determine electrification bias | |
JPS6311665B2 (en) | ||
JP4215321B2 (en) | Image forming apparatus | |
JPH0611929A (en) | Method for stabilizing image | |
JPS6114671A (en) | Electrophotographic copying device | |
JP3261285B2 (en) | Image forming device | |
JP3124805B2 (en) | Calibration method of surface potential detector in image forming apparatus | |
JPH0610370Y2 (en) | Copier photoconductor potential control device | |
JPH0721671B2 (en) | Image forming device | |
JP2023137443A (en) | Image forming apparatus | |
JPH0786709B2 (en) | Copy density adjustment method |