JPH028709A - Distance measuring apparatus - Google Patents

Distance measuring apparatus

Info

Publication number
JPH028709A
JPH028709A JP11178689A JP11178689A JPH028709A JP H028709 A JPH028709 A JP H028709A JP 11178689 A JP11178689 A JP 11178689A JP 11178689 A JP11178689 A JP 11178689A JP H028709 A JPH028709 A JP H028709A
Authority
JP
Japan
Prior art keywords
distance
light
photodetectors
light emitting
distance measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11178689A
Other languages
Japanese (ja)
Inventor
Motohiro Nakanishi
基浩 中西
Hiroshi Otsuka
博司 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP11178689A priority Critical patent/JPH028709A/en
Publication of JPH028709A publication Critical patent/JPH028709A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable measurement of a distance to a short range without the enlargement of a distance measuring device by measuring a distance with three photodetectors utilizing adjacent photodetectors in addition to ordinary photodetectors in a short-range distance measurement. CONSTITUTION:In measurement of distance, light emitting devices LED 5-LED 1 are lighted sequentially to detect distancies of an object to AF5-AF1. In this case, as for the light emitting device LED 1, a distance is measured with SPC 1 and SPC 2 as photodetectors and as for the LED 2, a distance is measured with two photodetectors SPC 2 and SPC 3. In a short range, the measurement of distance is performed with sets SPC 4 and SPC 5 of the photodetectors again for the LED 3 so that an output ratio of the photodetectors is in a proportional range even for a short range to the object. This eliminates the need for the enlargement of the apparatus by adding other photodetectors for short- range distance measurement.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は、カメラにおける被写体距離検出装置に関する
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a subject distance detection device in a camera.

口、従来の技術 カメラの測距装置として、従来からアクティブ方式の測
距装置が使われている。これはカメラに備えた光源から
、光の平行ビームを発射し、この光ビームの被写体上の
照射スポットの像を上記光源の側方に配置された二つの
受光素子上にまたがるように形成し、この二つの受光素
子の出力比によって被写体距離を検出する方式である。
2. Description of the Related Art Active distance measuring devices have traditionally been used as distance measuring devices for cameras. In this method, a parallel beam of light is emitted from a light source provided in the camera, and an image of the irradiation spot of the light beam on the subject is formed so as to span two light receiving elements placed on the sides of the light source. This method detects the distance to the subject based on the output ratio of these two light receiving elements.

このアクティブ方式で測距を行う場合、発光素子からの
光によって結像する被写体上の上記スポットの像が距離
によって受光面上を移動し、二つの受光素子の出力比は
被写体距離によって変化するので、その像の出力比によ
って被写体までの距離を測定しているが、撮影する被写
体までの距離範囲は広いので、像の移動距離も大きくな
る。そのために発光素子及び受光素子を固定したままで
0〜ωの被写体を測距しようとすれば、近距離側で受光
素子上に結像しない場合が起きる。例えば、第4図Aに
従来の測距システムの一例を示す。発光素子LEDから
投光された光ビームの被写体からの反射光による像■は
、被写体圧ms1〜S5に応じて、受光素子5PC1,
5PCQ上を移動するので、像の移動によって5PC2
と5PC1の出力比が変化する。この5PC2/5PC
Iの出力比々距離との関係は第5図に示すような関係曲
線で表される。この比は被写体の反射率によらないで一
定なので、この比を測定することによって、被写体まで
の距離を測定することができる。しかし、第4図へから
分かるように被写体距離が84.35等の近距離になっ
た場合、被写体がらの反射光による像■が右方にずれて
5PCI面上に殆んど結像しないで、5PC2上だけに
結像するようになり、5PC2/5PCIの比が距離に
よって変化せず、第5図に示すように飽和してきて距離
分解能が低下し、遂には距離測定ができなくなると云う
問題が発生する。この問題は第4図Bに示すようにもう
一つの受光素子5PC3を増設して、5PC1,8PC
2だけでは距離が決められない場合、5PC2と5PC
3によって距離を決めるようにすることで解決できるが
、極く近距離測定のためにだけこのようにすることは測
距装置が大型化して望ましくない。他方アクティブ測距
方式で被写界の複数の領域について測距を行い、適当な
基準、例えば一番近距離である領域に焦点を合せるよう
にしたカメラが提案されている。
When distance measurement is performed using this active method, the image of the spot on the subject formed by the light from the light-emitting element moves on the light-receiving surface depending on the distance, and the output ratio of the two light-receiving elements changes depending on the distance to the subject. The distance to the subject is measured based on the output ratio of the image, but since the distance range to the subject to be photographed is wide, the moving distance of the image is also large. Therefore, if an attempt is made to measure the distance of a subject from 0 to ω with the light-emitting element and light-receiving element fixed, the image may not be formed on the light-receiving element at a short distance. For example, FIG. 4A shows an example of a conventional distance measuring system. The image (2) formed by the reflected light from the subject of the light beam projected from the light emitting element LED is generated by the light receiving element 5PC1,
Since it moves on 5PCQ, 5PC2 due to the movement of the image.
and the output ratio of 5PC1 changes. This 5PC2/5PC
The relationship between the output of I and the distance is expressed by a relationship curve as shown in FIG. Since this ratio is constant regardless of the reflectance of the object, the distance to the object can be measured by measuring this ratio. However, as can be seen from Figure 4, when the subject distance becomes as short as 84.35 mag, the image ■ due to the reflected light from the subject shifts to the right and is hardly imaged on the 5PCI plane. , the image is focused only on 5PC2, the ratio of 5PC2/5PCI does not change with distance, and as shown in Figure 5, it becomes saturated and the distance resolution decreases, eventually making distance measurement impossible. occurs. This problem can be solved by adding another light receiving element 5PC3 as shown in Figure 4B.
If the distance cannot be determined with only 2, 5PC2 and 5PC
This can be solved by determining the distance using 3, but it is not desirable to do this only for extremely short distance measurements because it increases the size of the distance measuring device. On the other hand, a camera has been proposed that uses an active distance measuring method to measure distances in a plurality of areas of the object and focuses on an appropriate reference, for example, the closest area.

ハ0発明が解決しようとする問題点 本発明は、アクティブ方式で被写界の複数の領域につい
て測距を行う測距装置で、装置を大型化することなく被
写体までの距離を近距離から遠距離までの広領域で高精
度に測定しようとするものである。
Problems to be Solved by the Invention The present invention is a distance measuring device that measures distances in multiple areas of a subject using an active method, and can measure the distance to a subject from close to far without increasing the size of the device. The objective is to measure with high accuracy over a wide area up to a distance.

二0問題点解決のための手段 アクティブ方式の測距装置において、被写界の複数の測
距領域に投光スポットを投射する複数の発光手段の配列
と、上記発光手段配列の漬方に上記投光スポットの像を
形成する手段と、同手段の像面に受光素子を隣の測距領
域と一つの受光素子を共有させて、各測距領域に夫々2
個ずつ対応させて配置し、一つの測距領域について、少
くとも相隣る三つの受光素子上における一つの上記投光
スポットの像の位置によって被写界のその測距領域の距
離を検出する演算手段によって被写体距離を検出するよ
うにした。
20 Means for Solving Problems In an active type distance measuring device, an arrangement of a plurality of light emitting means for projecting light spots onto a plurality of distance measurement areas of a subject, and a method of arranging the light emitting means as described above are provided. A means for forming an image of a projected light spot, and a light receiving element on the image plane of the same means, which shares one light receiving element with an adjacent distance measuring area, and two light receiving elements are provided in each distance measuring area.
For each distance measurement area, the distance of the distance measurement area of the object is detected based on the position of the image of one of the light emitting spots on at least three adjacent light receiving elements. The object distance is detected by a calculation means.

ホ1作用 従来例の項で説明したように、一つの測距領域について
は通常2個の受光素子により、その2個の受光素子上で
、被写界の投光スポットの像がどの位置に形成されてい
るかを判断することでその測距領域までの距離が求まる
。しがし距離が近くなると、投光スポットの像が上記2
個の受光素子の一方のみに形成され、更にその外方に逸
脱するようになるので、近距離測距に対しては更にもう
一個の受光素子の追加が必要となる。
E1 Effect As explained in the conventional example section, for one distance measurement area, two light-receiving elements are usually used, and on the two light-receiving elements, the position of the projected light spot image in the subject is determined. By determining whether a distance measurement area is formed, the distance to the distance measurement area can be determined. As the distance gets closer, the image of the projected light spot will change to the above 2.
Since the light receiving element is formed only on one of the two light receiving elements and deviates outward from the light receiving element, it is necessary to add one more light receiving element for short range distance measurement.

本発明では複数の測距領域の各々につき測距するため各
領域につき二個の受光素子が対応するようにしている。
In the present invention, in order to perform distance measurement for each of a plurality of distance measurement areas, two light receiving elements are provided for each area.

この二個のうち、−個は隣の測距領域のものと共通にな
るので、受光素子の数は、少くとも測距領域の数プラス
1個となる。これは必要最低限の個数であるが、このよ
うに受光素子が配列されているので、一つの測距領域に
ついて対応させた二つの受光素子だけでは距離が検出で
きない近距離でも、その2個の隣の受光素子を利用して
距離決定ができ、近距離測定用に特別に受光素子を追加
する必要がない。
Of these two, - pieces are common to the adjacent distance measurement areas, so the number of light receiving elements is at least the number of distance measurement areas plus one. This is the minimum number necessary, but since the photodetectors are arranged in this way, even at short distances where the distance cannot be detected with just two photodetectors matched to one distance measurement area, the two photodetectors can be used. Distance can be determined using an adjacent light receiving element, and there is no need to add a special light receiving element for short distance measurement.

へ、実施例 第1図に本実施例における測距システムの概略の構成を
示す。同図は第3図に示す画面上の5つの測距領域(A
F 1〜AF5)における被写体の測距を行おうとする
ものである。
Embodiment FIG. 1 shows a schematic configuration of a distance measuring system in this embodiment. The figure shows the five ranging areas (A) on the screen shown in Figure 3.
This is intended to perform distance measurement of a subject at F1 to AF5).

第1図で、LEDI〜LED5は発光素子で、カメラの
光軸に対し直角に一列に配列されておりelはこれら発
光素子の列上に焦点面が位置するように配置されて、発
光素子LEDI〜LED5の像を被写体に投射するレン
ズである。AFI〜AF5がこれら発光素子の被写体上
の像で、この像の範囲が被写界における測距領域になる
。上記被写体上の発光素子の像つまり照射スポットがレ
ンズe2によって受光素子5PCI〜5PC6の配列上
に形成される。例えば、図で斜線を入れた部分イは発光
素子LED1の被写体上の像のレンズe2による像で、
図では5PCIと5PC2とにまたがって形成されてい
る。これら隣合う二個−組の受光素子による測距は従来
のアクティブ方式と同じであり、これによって撮影画面
上の5個所について測距が行われる。この実施例では5
個所の測距結果から一番近い距離を選択して、それにカ
メラの焦点を合わせるようにしているが、複数の測距結
果をどのように利用するかは任意である。
In FIG. 1, LEDI to LED5 are light emitting elements, which are arranged in a line perpendicular to the optical axis of the camera, and el is arranged so that the focal plane is located on the row of these light emitting elements. ~A lens that projects the image of the LED 5 onto the subject. AFI to AF5 are the images of these light emitting elements on the subject, and the range of these images becomes the distance measurement area in the subject field. An image of the light emitting element on the subject, that is, an irradiation spot is formed by the lens e2 on the array of light receiving elements 5PCI to 5PC6. For example, the shaded part A in the figure is the image of the image of the light emitting element LED1 on the subject by the lens e2,
In the figure, it is formed across 5PCI and 5PC2. Distance measurement using these two sets of adjacent light receiving elements is the same as in the conventional active method, and thereby distance measurement is performed at five locations on the photographic screen. In this example, 5
The closest distance is selected from the distance measurement results for each location and the camera is focused on it, but it is up to you how you use the multiple distance measurement results.

測距する際には発光素子を順次点灯し、点灯する発光素
子に対応する受光素子は、発光素子LED1に対しては
5PCI、5PC2により測距を行い、発光素子LED
2に対しては5PC2,5PC3により測距を行う。同
様にして、LED3、LED4.LED5に対しても夫
々2つの受光素子で測距を行う。上記の場合の受光素子
組の選択は被写体までの距離が遠距離である場合の選択
であるが、この実施例の場合、LED3に対しては再度
近距離用受光素子の組5PC4,5PC5で測距を行い
、被写体までの距離が近距離である場合でも受光素子の
出力比が比例域にあるようにしている。
When measuring distance, the light emitting elements are turned on in sequence, and the light receiving element corresponding to the light emitting element that lights up performs distance measurement using 5PCI and 5PC2 for the light emitting element LED1, and the light emitting element LED
2, distance measurement is performed using 5PC2 and 5PC3. Similarly, LED3, LED4. Distance measurement is also performed for each of the LEDs 5 using two light receiving elements. The selection of the light receiving element set in the above case is a selection when the distance to the subject is long, but in this example, the short distance light receiving element set 5PC4 and 5PC5 is used again to measure the LED3. The distance is calculated so that the output ratio of the light receiving element is in the proportional range even when the distance to the subject is short.

第2図は本発明の上記測距システムの回路構成の概要を
示す。LEDI−LED5は光源の発光ダイオード等の
発光素子である。5PCI〜5PC6は受光素子である
。Tr2〜Tr6は発光素子LEDL〜LED5を点灯
する駆動用トランジスタ、MPXlは発光素子LEDI
〜LED5を順次点灯させるためのマルチプレクサであ
る。MPX2.MPX3もマルチプレクサで、MPX2
には入力端子a、b、c、d、eに受光素子5PC1〜
5PC5の出力を対数変換した信号が入力される。MP
X3には受光素子5PCIを除き、5PC2の出力の対
数変換した出力が一番上の入力端子a゛に入力され、以
下5PC2〜5PC6の出力を対数変換した信号がb゛
〜e°の入力端子に入力されるようになっている。AN
C1〜ANC6は対数変換増幅器である。図外の制御回
路からのクロックパルスにより、マルチプレクサMPX
1〜MPX3は同期的に入力端子が順次選択されるもの
で、発光素子LED5が点灯されるタイミングにおいて
、マルチプレクサMPX2.M−PX3の出力端子a、
a’が選択され、5PCI及び5PC2の出力の対数変
換した信号が差動増幅器DIFに入力され、両信号の差
が出力される。この差の信号は対数の差であるから、受
光素子の5PCIと5PC2の出力の比であり、この信
号がコンパレータc1〜c8に入力される。各コンパレ
ータc1〜c8には定電流を流しである分圧抵抗R上の
各点から得られる基準電圧が印加されており、差動増幅
器DIFの出力が8段階にランク別けされる。
FIG. 2 shows an outline of the circuit configuration of the distance measuring system according to the present invention. LEDI-LED5 is a light emitting element such as a light emitting diode as a light source. 5PCI to 5PC6 are light receiving elements. Tr2 to Tr6 are driving transistors that light the light emitting elements LEDL to LED5, and MPXl is the light emitting element LEDI.
This is a multiplexer for sequentially lighting up the LEDs 5. MPX2. MPX3 is also a multiplexer, MPX2
Input terminals a, b, c, d, e have light receiving elements 5PC1~
A signal obtained by logarithmically transforming the output of 5PC5 is input. MP
In X3, excluding the light receiving element 5PCI, the logarithmically converted output of 5PC2 is input to the top input terminal a゛, and the logarithmically converted signals of the outputs of 5PC2 to 5PC6 are input to the b゛ to e° input terminals. It is now entered into AN
C1 to ANC6 are logarithmic conversion amplifiers. A clock pulse from a control circuit (not shown) causes the multiplexer MPX to
The input terminals of MPX1 to MPX3 are sequentially selected synchronously, and at the timing when the light emitting element LED5 is lit, the input terminals of the multiplexers MPX2. M-PX3 output terminal a,
a' is selected, the logarithmically converted signals of the outputs of 5PCI and 5PC2 are input to the differential amplifier DIF, and the difference between the two signals is output. Since this difference signal is a logarithmic difference, it is the ratio of the outputs of the light receiving elements 5PCI and 5PC2, and this signal is input to the comparators c1 to c8. A reference voltage obtained from each point on a voltage dividing resistor R by passing a constant current is applied to each of the comparators c1 to c8, and the output of the differential amplifier DIF is ranked into eight levels.

この動作が順次LED4.LED3〜LEDIと点灯さ
れて行われ、第1図における被写体のAF5〜AFLの
部分の距離が検知される。以上の動作を−通り終わると
、制御回路はマルチプレクサMPXIを駆動して再度L
ED3を点灯せさマルチプレクサMPX2.MPX3の
入力端子d。
This operation sequentially causes LED4. This is done by lighting up LED3 to LEDI, and the distance of the subject from AF5 to AFL in FIG. 1 is detected. After passing through the above operations, the control circuit drives the multiplexer MPXI to the low level again.
Multiplexer MPX2 that lights up ED3. Input terminal d of MPX3.

doを選択し、上述と同様にして受光素子5PC4,5
PC5の出力の比をランク別けして取出す。つまり、A
F1〜AF5の各領域について−通り測距を行った後、
中央のAF3について再度近距離測距を行っている。制
御回路はコンパレータc1〜c8の出力が全部ハイレベ
ルにあるときは、近距離で測距不能と判定し、その他の
場合、出力がハイレベルであるコンパレータが幾つある
かにより、距離を検知している。この実施例の特徴は測
距動作を2回繰返し、初回の動作では被写体上の第1図
でAFI〜AF5の各部分の距離を夫々測定し、2回目
の動作で、中央部分AF3を再度隣の受光素子を用いて
測定している。初回の動作で中央部の距離が求まってい
るときは、2回目の動作は不要であるが、1回目の動作
により中央部の距離が求まっているか否かによって、2
回目の動作を行うかどうかを決めるより、−律に2回動
作を行わせる方がプログラムが簡単になる。
do, and in the same manner as above, set the light receiving elements 5PC4 and 5PC4.
The output ratio of PC5 is classified into ranks and extracted. In other words, A
After performing distance measurement for each area of F1 to AF5,
Close-range distance measurement is being performed again for AF3 in the center. When the outputs of the comparators c1 to c8 are all at high level, the control circuit determines that distance measurement is not possible at short distances, and in other cases, it detects the distance depending on how many comparators have outputs at high level. There is. The feature of this embodiment is that the distance measurement operation is repeated twice.In the first operation, the distances of each part of AFI to AF5 on the subject are measured in Fig. 1, and in the second operation, the central part AF3 is again Measurements are made using a photodetector. If the distance at the center has been determined by the first operation, the second operation is not necessary, but depending on whether the distance at the center has been determined by the first operation or not, the second operation may be necessary.
It is easier to program a program by randomly performing an action twice than by deciding whether to perform the action the second time.

また、この実施例では近距離の場合の測定を画面中央部
についてのみ行っているが、これは各領域について行っ
てもよいことは云うまでもない。例えば領域AF1につ
いては近距離の場合受光素子5PC2,5PC3の出力
の比を用いて距離を検出する。
Further, in this embodiment, the measurement in the case of short distance is performed only for the center of the screen, but it goes without saying that this may be performed for each area. For example, in the case of a short distance for the area AF1, the distance is detected using the ratio of the outputs of the light receiving elements 5PC2 and 5PC3.

第2図において、MPXIは測距装置を制御しているマ
イコンからの信号OT1[測距領域AF1〜AF5に対
応させる信号1によって下記表1に示したような測距領
域AP及び発光させるLEDを選択するように、出方端
子1〜5のいずれが1つにrH,レベル信号を出力する
マルチプレクサである。MPX2.MPX3はマイコン
μCがらの信号OTIによって、表1に示した測距領域
AFと受光素子SPCとの関係になるように各SPCか
ら入力した信号の一つを選択し差動増幅器DIFに出力
するマルチプレクサである。c2は発光素子LEDにエ
ネルギーを供給する為のコンデンサーである。ANI−
AN5及びTr1〜Tr6は測距領域AFI〜AF5に
対応した発光素子LEDI〜LED5を上記MPX1が
らの信号rH,と測距開始信号AFSに応答して発光さ
せる為のアンド回路及びトランジスタである。AN01
〜ANC6は被写体から反射された発光素子の光の検出
信号対数圧縮した信号としてマルチプレクサMPX2.
MPX3に出力するアナログ回路である。差動増幅器D
IFは、マルチプレクサMPX2.M1’X3からの出
力の差をとる回路である(対数圧縮した信号の差を取る
ので、実質は受光素子の出力信号の比をとっている)。
In Fig. 2, MPXI uses a signal OT1 [signal 1 corresponding to the ranging areas AF1 to AF5] from the microcomputer controlling the ranging device to control the ranging area AP and the LEDs that emit light as shown in Table 1 below. A multiplexer outputs an rH and level signal to any one of output terminals 1 to 5 as selected. MPX2. MPX3 is a multiplexer that selects one of the signals input from each SPC and outputs it to the differential amplifier DIF so that the relationship between the ranging area AF and the light receiving element SPC shown in Table 1 is established using the signal OTI from the microcomputer μC. It is. c2 is a capacitor for supplying energy to the light emitting element LED. ANI-
AN5 and Tr1 to Tr6 are AND circuits and transistors for causing the light emitting elements LEDI to LED5 corresponding to the ranging areas AFI to AF5 to emit light in response to the signal rH from the MPX1 and the ranging start signal AFS. AN01
~ANC6 is a detection signal of the light from the light emitting element reflected from the subject, and is output as a logarithmically compressed signal to the multiplexer MPX2.
This is an analog circuit that outputs to MPX3. Differential amplifier D
IF is multiplexer MPX2. This is a circuit that takes the difference between the outputs from M1'X3 (it takes the difference between logarithmically compressed signals, so it essentially takes the ratio of the output signals of the light receiving elements).

01〜c8は差動増幅器の出力レベルを検知する為のコ
ンパレータで、これに接続されたラッチ回路は、AF開
始信号を提供する回路(delay)の信号によって、
コンパレータの出力をラッチし、選択回路CHI〜CH
8に出力する。上記コンパレータc1〜c8の基準電圧
は、周知技術の定電流素子11と分圧抵抗によって形成
されている。
01 to c8 are comparators for detecting the output level of the differential amplifier, and the latch circuit connected to this is controlled by the signal of the circuit (delay) that provides the AF start signal.
The output of the comparator is latched, and the selection circuit CHI~CH
Output to 8. The reference voltages of the comparators c1 to c8 are formed by a well-known constant current element 11 and a voltage dividing resistor.

本願では、測距系は第1図に示すように5つの発光素子
LEDI〜LED5と6つの受光素子5PCI〜5PC
6から構成されている。これらの発光素子LED、受光
素子SPCの組合せと、測距領域との関係を下表1に示
す。
In this application, the distance measuring system includes five light emitting elements LEDI to LED5 and six light receiving elements 5PCI to 5PC, as shown in FIG.
It consists of 6. Table 1 below shows the relationship between the combinations of these light emitting elements LED and light receiving elements SPC and distance measurement areas.

表(OTI)信号対応表 測距領域LED   SPCOTI信号AFI  LE
DI  5PCI (a)    0HSPC2(a’
) AF2  LED2SPC2(b)    lN5PC
3(b’) AF3  LED3 5PC3(c)    2H3P
C4(c’) AF4  LED4 5PC4(d)    3H3P
C5(d’) AF5  LED5 5PC5(e)    4H3P
C6(e’) AF3  LED3 5PC4(d)   5H3PC
5(e ’ ) 測距領域AF3の二回目の測距においては、発光素子は
LED3を用いるが、受光素子は測距領域AF3の初回
測距の場合とは異なり、基線長を長<5PC4,5PC
5を用いることで、より近距離を測っている。
Table (OTI) signal compatible table distance measurement area LED SPCOTI signal AFI LE
DI 5PCI (a) 0HSPC2(a'
) AF2 LED2SPC2(b) lN5PC
3(b') AF3 LED3 5PC3(c) 2H3P
C4(c') AF4 LED4 5PC4(d) 3H3P
C5(d') AF5 LED5 5PC5(e) 4H3P
C6(e') AF3 LED3 5PC4(d) 5H3PC
5(e') In the second distance measurement in the distance measurement area AF3, LED3 is used as the light emitting element, but unlike the first distance measurement in the distance measurement area AF3, the light receiving element has a baseline length of <5PC4, 5pcs
5 is used to measure closer distances.

測距動作を説明する。マイコンのOTI端子がら送られ
る制御信号により、順次上記表1に対応した組合せによ
りAFLからAF5まで測距を行う。各測距領域で得ら
れた各受光素子SPCの検出信号は対数圧縮され、差動
増幅!DIFで対数圧縮された2つの検出値の差(即ち
、検出出力の比)を算出し、算出された値はマイコンに
送られ記憶される。記憶された測距値から最も近距離の
値を抽出し、その値をもって合焦動作を行う。測距領域
AF3の測距において、受光素子SP4゜5PC5では
不充分であり、さらに近距誰を測定したいときには、受
光素子5PC5,5PC6を用いればよい。
The distance measurement operation will be explained. Based on the control signal sent from the OTI terminal of the microcomputer, distance measurement is performed from AFL to AF5 using combinations corresponding to Table 1 above. The detection signals of each light receiving element SPC obtained in each ranging area are logarithmically compressed and differentially amplified! The difference between the two detection values logarithmically compressed using DIF (ie, the ratio of detection outputs) is calculated, and the calculated value is sent to the microcomputer and stored. The closest distance value is extracted from the stored distance measurement values, and a focusing operation is performed using that value. In distance measurement in the distance measurement area AF3, the light receiving elements SP4, 5PC5 are insufficient, and when it is desired to measure someone at a closer distance, the light receiving elements 5PC5 and 5PC6 may be used.

(発明の効果) 本発明によればカメラにおいてアクティブ方式で多点測
距を行う測距装置で、一つの測距領域について近距離測
距を行うのに、その測距領域の通常距離範囲に用いられ
る受光素子の他、隣接領域の距離検出用受光素子を利用
するので、近距離測距のため別に受光素子を追加する必
要なく、測距装置を大型化することなしに近距離まで測
定可能となる。
(Effects of the Invention) According to the present invention, in a distance measuring device that performs multi-point distance measurement using an active method in a camera, when short-range distance measurement is performed for one distance measurement area, the normal distance range of that distance measurement area is In addition to the photodetector used, a photodetector for distance detection in the adjacent area is used, so there is no need to add a separate photodetector for short-range distance measurement, and it is possible to measure short distances without increasing the size of the distance-measuring device. becomes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は発光素子LEDと受光素子SPCの配置説明図
、第2図は測距回路AFの回路構成図、第3図は測距領
域の説明図、第4図は従来例の測距説明図、第5図は従
来例による測距距離と信号比との関係図である。 AFL〜AF5・・・測距領域、el、e2・・・レン
ズ、LED−LED5・・・発光素子、5PC1〜5P
C6・・・受光素子、ANCI〜ANC6・・・対数変
換増幅器、MPXl、MPX2.MPX3・・・マルチ
プレクサ、DIF・・・差動増幅器、R・・・分圧抵抗
、cl−c8・・・コンパレータ。 代理人  弁理士 縣  浩 介 ど の ど の に の ど の 工 の 13図
Fig. 1 is an explanatory diagram of the arrangement of the light emitting element LED and the light receiving element SPC, Fig. 2 is a circuit diagram of the distance measuring circuit AF, Fig. 3 is an explanatory diagram of the ranging area, and Fig. 4 is an explanation of distance measuring in the conventional example. FIG. 5 is a diagram showing the relationship between distance measurement and signal ratio according to a conventional example. AFL to AF5... Distance measurement area, el, e2... Lens, LED-LED5... Light emitting element, 5PC1 to 5P
C6... Light receiving element, ANCI to ANC6... Logarithmic conversion amplifier, MPXl, MPX2. MPX3...Multiplexer, DIF...Differential amplifier, R...Voltage dividing resistor, cl-c8...Comparator. Agent: Hiroshi Agata, Patent Attorney, Illustration 13

Claims (1)

【特許請求の範囲】[Claims] 被写界の複数の測距領域に投光スポットを投射する複数
の発光手段の配列と、上記発光手段配列の側方に上記投
光スポットの像を形成する手段と、同手段の像面に受光
素子を隣の測距領域と一つの受光素子を共有させて、各
測距領域に夫々2個ずつ対応させて配置した受光素子配
列と、一つの測距領域について、少くとも相隣る三つの
受光素子における一つの上記投光スポットの像の位置に
よって被写界のその測距領域の距離を検出する演算手段
を備えた測距装置。
an array of a plurality of light emitting means for projecting light spots onto a plurality of ranging areas of a subject, means for forming an image of the light projection spot on the side of the light emitting means array, and an image plane of the light emitting means; A light-receiving element array in which one light-receiving element is shared with an adjacent distance-measuring area, and two light-receiving elements are arranged corresponding to each distance-measuring area, and at least three adjacent ones for one distance-measuring area. A distance measuring device comprising calculation means for detecting the distance of the distance measuring area of the object field based on the position of the image of one of the light projection spots on the two light receiving elements.
JP11178689A 1989-04-27 1989-04-27 Distance measuring apparatus Pending JPH028709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11178689A JPH028709A (en) 1989-04-27 1989-04-27 Distance measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11178689A JPH028709A (en) 1989-04-27 1989-04-27 Distance measuring apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63020338A Division JP2623631B2 (en) 1988-01-30 1988-01-30 Distance measuring device

Publications (1)

Publication Number Publication Date
JPH028709A true JPH028709A (en) 1990-01-12

Family

ID=14570125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11178689A Pending JPH028709A (en) 1989-04-27 1989-04-27 Distance measuring apparatus

Country Status (1)

Country Link
JP (1) JPH028709A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164555A (en) * 1991-12-10 1993-06-29 Inax Corp Distance detection method with photoelectric detection sensor
JP2018197742A (en) * 2017-04-10 2018-12-13 ジック アーゲー Photoelectric sensor and object detection method
JP2020519875A (en) * 2017-05-11 2020-07-02 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Laser scanner for a LIDAR system and method for operating a laser scanner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164555A (en) * 1991-12-10 1993-06-29 Inax Corp Distance detection method with photoelectric detection sensor
JP2018197742A (en) * 2017-04-10 2018-12-13 ジック アーゲー Photoelectric sensor and object detection method
US10948574B2 (en) 2017-04-10 2021-03-16 Sick Ag Optoelectronic sensor and method for detecting an object
JP2020519875A (en) * 2017-05-11 2020-07-02 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Laser scanner for a LIDAR system and method for operating a laser scanner

Similar Documents

Publication Publication Date Title
US6084658A (en) Distance measuring apparatus
JPS62223734A (en) Range finder
JPH09325262A (en) Range finder
JP3215232B2 (en) Photoelectric distance sensor
JPH028709A (en) Distance measuring apparatus
JP2002221655A (en) Range finder
JPH028710A (en) Distance measuring apparatus
JPH08136252A (en) Surface direction detecting device
JPH055837A (en) Multipoint range finder
JP2873380B2 (en) Distance measuring device
JP3117227B2 (en) Distance detection device
JP4074828B2 (en) Ranging sensor
JP3127193B2 (en) Multi-point distance measuring device
JPH0792377A (en) Range finder
US20050122421A1 (en) Photographing apparatus with lighting function
JP2003156328A (en) Ranging sensor
JPS61100607A (en) Apparatus for detecting distance
JPH01288712A (en) Range finder
JPS63167213A (en) Distance detecting device
JPH01288707A (en) Range finder
JP3704369B2 (en) Camera ranging device
JPH021513A (en) Range finder
JPH095618A (en) Auto-focusing device
JPH01288713A (en) Range finder
JPH01288715A (en) Range finder