JPH0287092A - Positron ct apparatus - Google Patents

Positron ct apparatus

Info

Publication number
JPH0287092A
JPH0287092A JP23877188A JP23877188A JPH0287092A JP H0287092 A JPH0287092 A JP H0287092A JP 23877188 A JP23877188 A JP 23877188A JP 23877188 A JP23877188 A JP 23877188A JP H0287092 A JPH0287092 A JP H0287092A
Authority
JP
Japan
Prior art keywords
circuit
detector
radiation source
output
address
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23877188A
Other languages
Japanese (ja)
Inventor
Shinichi Inoue
愼一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP23877188A priority Critical patent/JPH0287092A/en
Publication of JPH0287092A publication Critical patent/JPH0287092A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nuclear Medicine (AREA)

Abstract

PURPOSE:To improve an S/N and the deterioration of a high counting rate characteristic by inputting only the output of detector groups in the region of measurement determined in accordance with the rotating position of a corrective radiation source into a simultaneous counting circuit. CONSTITUTION:The output of detectors in a group is converted into a binary address signal A in an address encoder circuit 29. If the signal A is in the range of the detectors l*-i*(or j*-k*) with a comparative circuit 19(or 20), an AND gate 22 is opened (or used) to output timing T23 respectively. Thereby the circuit 29 is provided every group and timing output T1-TN in each address encoder is input into a coincidence circuit 30 to perform the counting of a simultaneous counting event. An detector address in a pair of group concerned in simultaneous counting in the circuit 31 and address (binary) and strobe signals in a pair of detector groups concerned in the simultaneous counting in the circuit 30 are output. Accordingly, a scatter simultaneous counting event and an accidental simultaneous counting event which occur out of the region can be removed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はポジトロンCT装置の同時計数回路に係り、特
に、検出器の感度補正データ及び被検体の吸収補正デー
タのS/N比の向上と同時計数回路の高計数率特性の向
上に好適な同時計数回路に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a coincidence circuit for a positron CT apparatus, and in particular, to improvement of the S/N ratio of sensitivity correction data of a detector and absorption correction data of a subject. The present invention relates to a coincidence circuit suitable for improving high counting rate characteristics of the coincidence circuit.

〔従来の技術〕[Conventional technology]

従来、ポジトロンCT装置(以下、rPCTJと略す。 Conventionally, a positron CT apparatus (hereinafter abbreviated as rPCTJ) is used.

)においては、検出器の感度補正データ及び被検体の吸
収補正データの計測は検出器と被検体との間に棒状ある
いは板状のポジトロン放出核種、たとえば、6 & G
 e −88G aがら成る補正用放射線源を置き、こ
れを検出器の先端に沿って移動させ、この放射線源から
放出される消滅放射線の同時計数事象を計数することに
よって行われている。しかしながら、得られた各補正デ
ータには計測領域外からの散乱同時計数事象、偶発同時
計数事象などの偽情報が含まれており、補正データのS
/N比を劣化させる要因となっていた。さらに、これら
の偽情報や領域外の情報を計数するため、同時計数回路
の高計数率特性をも劣化させる要因にもなっていた。従
来、これらの補正データのS/N比の向上については、
アイ・イー・イー・イー、トランズアクション オン 
ニュークリア サイエンス、35.Nα1 (1988
)第735頁から第739 (IEEIE、 Tran
s、Nucl、Sci、、Vofl 。
), the sensitivity correction data of the detector and the absorption correction data of the specimen are measured by using a rod-shaped or plate-shaped positron-emitting nuclide, such as 6&G, between the detector and the specimen.
This is done by placing a correction radiation source consisting of e-88G a, moving it along the tip of the detector, and counting coincidence events of annihilation radiation emitted from this radiation source. However, each of the obtained correction data contains false information such as scattered coincidence events and accidental coincidence events from outside the measurement area, and the S
This was a factor that deteriorated the /N ratio. Furthermore, since these false information and information outside the area are counted, it is also a factor that deteriorates the high counting rate characteristics of the coincidence circuit. Conventionally, to improve the S/N ratio of these correction data,
IEEE, Transaction On
Nuclear Science, 35. Nα1 (1988
) pages 735 to 739 (IEEE, Tran
s, Nucl, Sci,, Vofl.

35、No、1.Feb、1988.PP735−73
9)やその他において論じられている。
35, No. 1. Feb, 1988. PP735-73
9) and elsewhere.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

」1記従来技術は同時計数回路にて補正データを81測
した後、計測領域外の不要なデータを除去する方式とな
っているため、同時計数回路の入力計数率について配慮
がされておらず、高計数率時の数えおとしなど高計数率
特性の劣化の問題があった。本発明の目的は感度補正デ
ータ及び吸収補正データに含まれる偽のデータを同時計
数回路に入力する前に除去し、S/N比を向上するとと
もに、高計数率特性の劣化を改善することにある。
1. The conventional technology uses a coincidence circuit to measure 81 correction data and then removes unnecessary data outside the measurement area, so no consideration is given to the input counting rate of the coincidence circuit. , there was a problem of deterioration of high counting rate characteristics such as loss of count at high counting rates. The purpose of the present invention is to remove false data contained in sensitivity correction data and absorption correction data before inputting them to a coincidence circuit, improve the S/N ratio, and improve the deterioration of high count rate characteristics. be.

〔課題を解決するための手段〕[Means to solve the problem]

第2図はPCTの吸収補正データの計測を行う場合の同
時計数事象の例を示している。第2図において、1は被
検体、2は棒状の補正用放射線源、3は円周状に密接し
て配列される放射線検出器群の先端部の位置(以下、「
検出器リング」と呼ぶ)、4は補正用放射線源の回転軌
道、実線で示す矢印は消滅放射線、5,8.9は真の同
時計数事象、破線6は散乱同時計数事象、破線7は偶発
同時計数事象をそれぞれ示している。通常、吸収補正デ
ータは検出器と被検体1との間に置いた補正用放射線源
2を被検体1のまわりの回転軌道4上に等速移動させ、
補正用放射線源2から放出される消滅放射線の被検体1
に対する透過率データを全周について求められる。
FIG. 2 shows an example of a coincidence event when measuring PCT absorption correction data. In FIG. 2, 1 is the subject, 2 is a rod-shaped correction radiation source, and 3 is the position of the tip of a group of radiation detectors arranged closely circumferentially (hereinafter referred to as "
4 is the rotational trajectory of the correction radiation source, the solid arrow indicates annihilation radiation, 5, 8.9 is a true coincidence event, the dashed line 6 is a scattered coincidence event, and the dashed line 7 is an accidental one. Each shows a coincidence event. Normally, absorption correction data is obtained by moving a correction radiation source 2 placed between the detector and the subject 1 on a rotating orbit 4 around the subject 1 at a constant speed.
Subject 1 of annihilation radiation emitted from correction radiation source 2
Transmittance data can be obtained for the entire circumference.

第2図から分かるように、補正用放射線源2から消滅放
射線は等方的に放出され、透過率データに寄与しない同
時計数成分を多量に開側することになる。検出器の感度
補正データの計測は被検体1を取り除いて行われるが基
本的に、吸収補正データの計測と同じであり、吸収補正
データの計測についてのみ述べることにする。
As can be seen from FIG. 2, the annihilation radiation is isotropically emitted from the correction radiation source 2, leaving a large amount of coincidence components that do not contribute to the transmittance data. Although the measurement of the sensitivity correction data of the detector is performed by removing the subject 1, it is basically the same as the measurement of the absorption correction data, so only the measurement of the absorption correction data will be described.

第3図はPCTの補正用放射線源2が回転軌道4の任意
の位置Pにある場合の消滅放射線のM1測領域を示して
いる。すなわち、第3図において、消滅放射線10.1
0’ により成される角度、αは、補正用放射線源2が
点Pにある場合の理想的な計測領域に対応する。1+ 
j+に+ Qは円環状に密接して配列された検出器群の
うち、理想的な計測領域の境界に該当する検出器をそれ
ぞれ示している。したがって、いま、点Pに補正用放射
線源2があるとき、消滅放射線の計測を行う検出器をQ
←1+J←にの範囲のみに限定すれば、不要な同時計数
事象を計測しなくても済む。このことから、上記目的は
、補正用放射線源2の回転位置に応じて定まる理想的な
計測領域内の検出器群の出力のみを同時計数回路に入力
することにより、達成される。
FIG. 3 shows the M1 measurement area of annihilation radiation when the PCT correction radiation source 2 is located at an arbitrary position P on the rotating orbit 4. That is, in Fig. 3, annihilation radiation 10.1
The angle α formed by 0′ corresponds to the ideal measurement area when the correction radiation source 2 is located at the point P. 1+
j++Q indicates a detector corresponding to the boundary of an ideal measurement area among a group of detectors closely arranged in a circular ring. Therefore, when there is a correction radiation source 2 at point P, the detector for measuring annihilation radiation is set to Q
By limiting the range to ←1+J←, there is no need to measure unnecessary coincidence events. Therefore, the above object can be achieved by inputting only the outputs of the detector group within the ideal measurement area determined according to the rotational position of the correction radiation source 2 to the coincidence circuit.

〔作用〕[Effect]

第4図は第3図で述べた理想的な計測領域の算出方法の
概念を示している。第4図において、roは被検体1を
円と仮定したときの半径あるいは、視野の半径、rlは
回転軌道4の半径、Rは検出器リング3の半径である。
FIG. 4 shows the concept of the ideal measurement area calculation method described in FIG. In FIG. 4, ro is the radius when the subject 1 is assumed to be a circle or the radius of the field of view, rl is the radius of the rotating orbit 4, and R is the radius of the detector ring 3.

補正用放射線源2の位置(ここでは回転角度、Osで表
す)をθ80°とすると、検出器lの角度、Olは(1
)式%式% rz 、O’≦θ、≦360°である。検出器jの角度
θjは(1)式を用いて、次式で表される。
If the position of the correction radiation source 2 (here represented by the rotation angle, Os) is θ80°, the angle of the detector l, Ol, is (1
) formula % formula % rz , O'≦θ, ≦360°. The angle θj of the detector j is expressed by the following equation using equation (1).

θ0 θa ” 1800+ Ot        ・・・(
2)(0° ≦04≦3600 ) 同様にして、検出器にの角度、θ、は次式で表される。
θ0 θa ” 1800+ Ot...(
2) (0°≦04≦3600) Similarly, the angle to the detector, θ, is expressed by the following equation.

O θh=1806 +−−01       ・・・(3
)(0″ ≦θ、≦360° ) 検出器Qの角度0皿は次式で表される。
O θh=1806 +--01...(3
) (0″≦θ,≦360°) The angle 0 plate of the detector Q is expressed by the following equation.

θ、=360°−〇、        ・・・(4)(
0’≦θ児≦360’) 実際には、検出器は有限個であり、検出器リング3上を
等間隔で配列される。したがって、いま、検出器リング
3の中心を通る鉛直線に対して、検吊器を対称な位置に
配列し、鉛直線上に検出器を置かないとすると、n番目
の検出器のなす角度Onは次式で表される。
θ, = 360°−〇, ... (4) (
0'≦θ<360') In reality, there are a finite number of detectors, and they are arranged on the detector ring 3 at equal intervals. Therefore, if we arrange the detectors in symmetrical positions with respect to the vertical line passing through the center of the detector ring 3 and no detector is placed on the vertical line, the angle On made by the nth detector is It is expressed by the following formula.

0、、=(2n+1)八〇      ・= (4)、
、’1(0’≦On≦360°) ここで、八〇は検出器間の角度の−の角度、n=0.1
,2.・である。(4)式と(1)式から、△ 1番目の検出器は次式で表される。
0,,=(2n+1)80 ・= (4),
,'1 (0'≦On≦360°) Here, 80 is the negative angle of the angle between the detectors, n=0.1
,2.・It is. From equations (4) and (1), the △ first detector is expressed by the following equation.

ここで、〔〕はガガラの記号、右辺において、1を加え
たのは計測領域を確保するためである。
Here, [ ] is the symbol for Gagara, and the reason for adding 1 to the right side is to secure the measurement area.

同様に、j、に、Q番目については(1)式と(2)〜
(3)式から次のように表される。
Similarly, for j, Qth, equation (1) and (2) ~
From equation (3), it is expressed as follows.

したがって、補正用放射線源2がθs=o°にあるとき
、計測領域をi番目の検出器とQ番目の検出器の範囲と
3番目の検出器とに番目の検出器の範囲のみに限定すれ
ばよい。実際には、補正用放射線源2は回転移動するの
で、回転角度θ3を考慮する必要がある。いま、この回
転角度を03とすると、計測領域はi*番目がらQ率番
目の範囲とj申番目とに*番目の範囲となる。ここで、
計測領域の限定は、1例として、ROM (読出し専用
メモリ)を用いて実現できる。
Therefore, when the correction radiation source 2 is at θs=o°, the measurement area should be limited to only the range of the i-th detector, the Q-th detector, and the range of the third detector. Bye. Actually, since the correction radiation source 2 rotates, it is necessary to consider the rotation angle θ3. Now, if this rotation angle is 03, the measurement area will be the range from the i*th to the Q ratio and the *th range from the jth. here,
For example, the measurement area can be limited using a ROM (read-only memory).

ここでは、棒状の放射線源についてのみ考慮したが、板
状放射線源の場合、線源の幅を考慮して計測領域を広げ
るとよい。また、複数個の補正用放射線源を用いるPC
Tにおいても、複数個の計測領域を重ね合わせ、それら
のすべてを含む領域を定めることによって実現できる。
Here, only a rod-shaped radiation source was considered, but in the case of a plate-shaped radiation source, it is preferable to widen the measurement area by considering the width of the radiation source. In addition, a PC using multiple correction radiation sources
T can also be realized by overlapping a plurality of measurement areas and determining an area that includes all of them.

〔実施例〕〔Example〕

以下、本発明の一実施例を第5.6,7.1図により説
明する。第5図は補正用放射線源2の回転角度の出力手
段を示している。クロック発生器24のクロック出力2
5がステッピングモータ26に入力され、放射線源2は
回転軌道4上を移動する。一方、クロック出力25はカ
ウンタ27に入力され、カウンタ27は回転角信号、O
3を出力する。第6図はO3を検出器]、”yJ”+k
m 、α本に変換するROM11〜14を示している。
An embodiment of the present invention will be described below with reference to FIGS. 5.6 and 7.1. FIG. 5 shows means for outputting the rotation angle of the correction radiation source 2. As shown in FIG. Clock output 2 of clock generator 24
5 is input to the stepping motor 26, and the radiation source 2 moves on the rotating orbit 4. On the other hand, the clock output 25 is input to the counter 27, and the counter 27 receives the rotation angle signal, O
Outputs 3. Figure 6 shows O3 detector], “yJ” + k
The ROMs 11 to 14 are shown to be converted into m and α books.

このデータ変換の内容は(9)式から(12)式により
定められる。第7図はアドレスエンコーダ回路と呼ばれ
る回路の構成を示している。通常、PCTでは同時計数
回路の簡略化のため、検出器群をいくつかのグループに
分割し、グループ間における同時計数を計測する方法が
とられている。
The contents of this data conversion are determined by equations (9) to (12). FIG. 7 shows the configuration of a circuit called an address encoder circuit. Normally, in PCT, in order to simplify the coincidence counting circuit, a method is adopted in which the detector group is divided into several groups and the coincidence counting between the groups is measured.

アドレスエンコーダ回路はグループ内の検出器出力を2
進のアドレス信号に変換するとともに、グループを代表
するタイミング信号を出力する。図において、15はグ
ループに属する検出器群の出力、16はエンコーダ、1
7はORされた検出器出力、18はエンコードされた検
出器アドレス信号A、19は比較回路(1)で、アドレ
ス信号Aが、Q*〜i*の範囲にあれば、ANDゲート
22を開いてタイミング信号T23を出力する。20は
同じく比較回路(2)で、アドレス信号Aがj$〜に*
の範囲にあれば、ANDゲート、22を用いてタイミン
グ信号T23を出力する。21はORゲートである。第
1図は本発明による同時計数回路の全体構成を示したも
のである。図において、アドレスエンコーダ回路29は
各グループごとに設けられており、各アドレスエンコー
ダのタイミング出力、T1〜TNはコインシデンス回路
30に入力され、同時計数事象の計数が行われる。アド
レス回路31は同時計数にかかわった1対のグループ内
の検出器アドレスを、また、コインシデンス回路30は
、同時計数にかかわった1対の検出器グループのアドレ
ス(2進)及びストローブ信号を出力する。
The address encoder circuit converts the outputs of the detectors in the group into 2
It converts into a decimal address signal and outputs a timing signal representative of the group. In the figure, 15 is the output of the detector group belonging to the group, 16 is the encoder, 1
7 is the ORed detector output, 18 is the encoded detector address signal A, and 19 is a comparison circuit (1). If the address signal A is in the range of Q* to i*, the AND gate 22 is opened. and outputs a timing signal T23. 20 is also a comparison circuit (2), and the address signal A is j$~*
If it is within the range, the AND gate 22 is used to output the timing signal T23. 21 is an OR gate. FIG. 1 shows the overall configuration of a coincidence circuit according to the present invention. In the figure, address encoder circuits 29 are provided for each group, and the timing outputs of each address encoder, T1 to TN, are input to a coincidence circuit 30, where coincidence events are counted. The address circuit 31 outputs the addresses of the detectors in the pair of groups involved in the coincidence count, and the coincidence circuit 30 outputs the addresses (binary) and strobe signals of the pair of detector groups involved in the coincidence count. .

本実施例によれば、第4図で定めたH1測領域外の検出
器出力をコインシデンス回路30に入力させるのを防ぐ
効果がある。
According to this embodiment, there is an effect of preventing the detector output outside the H1 measurement area defined in FIG. 4 from being input to the coincidence circuit 30.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、補正用放射線源2が被検体1を見込む
、計数領域内及びこの領域と補正用放射線源を中心とす
る点対称の領域内の消滅放射線による同時計数事象のみ
開数できるので、領域外で起きる散乱同時H1数事象、
偶発同時計数事象を除去でき、補正データのSlN比を
向上する効果がある。さらに、領域外で起こる真の同時
計数事象も除去できるので、同時計数回路の高計数率特
性の劣化をすくなくする効果がある。
According to the present invention, only coincidence events due to annihilation radiation within the counting area where the correction radiation source 2 looks into the subject 1 and in a point-symmetric area with this area and the correction radiation source as the center can be calculated. , a scattering simultaneous H1 number event occurring outside the region,
This has the effect of eliminating accidental coincidence events and improving the SIN ratio of correction data. Furthermore, since true coincidence events that occur outside the area can also be removed, this has the effect of minimizing deterioration of the high counting rate characteristics of the coincidence circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の同時計数回路図、第2図は
PCTの同時計数事象の種類表示図、第3図はPCTの
吸収補正データ計測時の理想的な計測領域指定図、第4
図は第3図で示す計測領域の角度表示図、第5図は補正
用線源2の回転角度検出のための回路図、第6図は計測
領域を指定するROMの構成図、第7図はアドレスエン
コーダの回路図である。 1・・・被検体あるいは視野、2・・・補正用放射線源
、3・・・検出器リング、4・・補正用放射線源の回転
軌道。 不 凹 秦 第 図 第 図 奉 図 第 図
Fig. 1 is a coincidence circuit diagram of an embodiment of the present invention, Fig. 2 is a diagram showing types of PCT coincidence events, Fig. 3 is a diagram specifying an ideal measurement area when measuring absorption correction data of PCT, Fourth
The figure is an angle display diagram of the measurement area shown in Figure 3, Figure 5 is a circuit diagram for detecting the rotation angle of the correction radiation source 2, Figure 6 is a configuration diagram of the ROM that specifies the measurement area, and Figure 7. is a circuit diagram of an address encoder. 1... Subject or field of view, 2... Radiation source for correction, 3... Detector ring, 4... Rotational trajectory of the radiation source for correction. Fukou Qin zu zu zu bong zu zu

Claims (1)

【特許請求の範囲】[Claims] 1、被検体のまわりに、円環状に配列された放射線検出
器群と被検体との間の空間内に設けられた放射線検出器
群の先端部に沿つた回転軌道上を移動するポジトロン放
出放射線源を有すポジトロンCT装置において、前記回
転軌道上の任意の位置にある前記ポジトロン放出放射線
源が被検体を見込む領域と、該領域に対し前記ポジトロ
ン放出放射線源を中心として点対称にある領域に入射し
た消滅放射線のみを同時計数回路に入力する手段を有す
ることを特徴とするポジトロンCT装置。
1. Positron emission radiation that moves on a rotating trajectory along the tip of the radiation detector group provided in the space between the radiation detector group arranged in an annular shape around the subject and the subject. In a positron CT apparatus having a positron emission radiation source, a region where the positron emission radiation source located at an arbitrary position on the rotating orbit looks into the subject, and an area which is point symmetrical with respect to the region with the positron emission radiation source as the center. A positron CT apparatus characterized by having means for inputting only incident annihilation radiation to a coincidence circuit.
JP23877188A 1988-09-26 1988-09-26 Positron ct apparatus Pending JPH0287092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23877188A JPH0287092A (en) 1988-09-26 1988-09-26 Positron ct apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23877188A JPH0287092A (en) 1988-09-26 1988-09-26 Positron ct apparatus

Publications (1)

Publication Number Publication Date
JPH0287092A true JPH0287092A (en) 1990-03-27

Family

ID=17035028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23877188A Pending JPH0287092A (en) 1988-09-26 1988-09-26 Positron ct apparatus

Country Status (1)

Country Link
JP (1) JPH0287092A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244848A (en) * 2006-02-17 2007-09-27 Toshiba Corp Data correction apparatus, data correction method, magnetic resonance imaging apparatus and x-ray ct apparatus
JP2013046833A (en) * 2006-02-17 2013-03-07 Toshiba Corp Data correction apparatus
WO2014033785A1 (en) * 2012-08-30 2014-03-06 株式会社島津製作所 Radio-tomography device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946571A (en) * 1982-09-09 1984-03-15 Agency Of Ind Science & Technol Positron ct apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946571A (en) * 1982-09-09 1984-03-15 Agency Of Ind Science & Technol Positron ct apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244848A (en) * 2006-02-17 2007-09-27 Toshiba Corp Data correction apparatus, data correction method, magnetic resonance imaging apparatus and x-ray ct apparatus
JP2013046833A (en) * 2006-02-17 2013-03-07 Toshiba Corp Data correction apparatus
WO2014033785A1 (en) * 2012-08-30 2014-03-06 株式会社島津製作所 Radio-tomography device
JPWO2014033785A1 (en) * 2012-08-30 2016-08-08 株式会社島津製作所 Radiation tomography equipment

Similar Documents

Publication Publication Date Title
JP3150404B2 (en) Method and apparatus for measuring refractive power in optical system
JPH0287092A (en) Positron ct apparatus
JPS61110006A (en) Position detector
EP0250249A2 (en) Multifield collimator system and method and radionuclide emission tomography camera using same
JPH01119118A (en) Clock generation circuit
JPH06342075A (en) Positron ct apparatus
Chase Correlating Wire Addresses with Regions-of-Interest in Cylindrical Multi-Wire Detectors
JPH09184885A (en) Positron ect device
JPS5935170A (en) Positron ct apparatus
JPS622274B2 (en)
JPS6183983A (en) Correction of positron ct
SU1024846A1 (en) Rotation speed digital meter
JPS5814071A (en) Simultaneous counter in a positron ct device
JPH0340354B2 (en)
SU650081A1 (en) Adaptive device for processing information
SU873243A1 (en) Interrupt processing device
JPS641747B2 (en)
JP2000059206A (en) Pulse count system for pulse input circuit
SU1200293A1 (en) Multichannel signature analyzer
SU497955A1 (en) Method of recording rations in a neutron monitor with compensation for coincidence effect
SU901860A1 (en) Digital meter of power on shaft
SU1702397A1 (en) Two voltages quotient meter
JPH0572553B2 (en)
SU970354A1 (en) Converter of binarycode to angular valve binary coded decimals
Othaz et al. Gamma-Electron Directional Correlation Experiment on the 356 keV→ 81 keV Cascade in Cs133