JPH0287045A - Detecting method of gas in liquid - Google Patents
Detecting method of gas in liquidInfo
- Publication number
- JPH0287045A JPH0287045A JP24006888A JP24006888A JPH0287045A JP H0287045 A JPH0287045 A JP H0287045A JP 24006888 A JP24006888 A JP 24006888A JP 24006888 A JP24006888 A JP 24006888A JP H0287045 A JPH0287045 A JP H0287045A
- Authority
- JP
- Japan
- Prior art keywords
- light
- bubble
- liquid
- reflected
- parallel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims description 19
- 230000003287 optical effect Effects 0.000 claims abstract description 35
- 238000012634 optical imaging Methods 0.000 claims description 18
- 238000005259 measurement Methods 0.000 abstract description 7
- 238000003384 imaging method Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 31
- 238000001514 detection method Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 239000003758 nuclear fuel Substances 0.000 description 2
- 238000011888 autopsy Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0205—Investigating particle size or size distribution by optical means
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Examining Or Testing Airtightness (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光透過性液体中に存在する気泡の大きさを遠隔
測定する方法に係わり、配管等流体中の気体の非接触検
出、水中に設置された配管等からの気体の漏洩の検出、
および熱交換器の気液接触部における気体の漏洩の検出
等に利用可能な液中気体の検出方法に関するものである
。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for remotely measuring the size of bubbles present in a light-transmitting liquid, and is used for non-contact detection of gas in fluids such as piping, and for underwater measurement. Detection of gas leakage from installed piping, etc.
The present invention also relates to a method for detecting gas in a liquid that can be used to detect gas leakage in a gas-liquid contact portion of a heat exchanger.
従来、液中に存在する気体の泡を検出する方法としては
、液中において2つの電極を対向配置し、両電極間の導
電率を測定することによる方法、気体を含む液体の密度
を測って間接的に検出する方法等があった。Conventional methods for detecting gas bubbles in a liquid include placing two electrodes facing each other in the liquid and measuring the conductivity between the two electrodes, and measuring the density of the liquid containing gas. There were methods of indirect detection.
しかしながら、導電率を測定して液中に存在する気泡を
検出する方法は、液中に電極を入れる直接測定法であり
、対象とする液体の性質や存在場所によっては液中に電
極を入れる作業が困難で、測定に時間を要すると共に、
気泡の大きさ等の情報を直接骨ることができず、また液
体の密度を測定する方法は気泡の大きさ等の情報が間接
的にしか得られないという問題があった。However, the method of measuring conductivity and detecting air bubbles present in a liquid is a direct measurement method in which an electrode is placed in the liquid. It is difficult and time-consuming to measure, and
There is a problem in that information such as the size of the bubbles cannot be directly obtained, and the method of measuring the density of the liquid can only indirectly obtain information such as the size of the bubbles.
本発明は上記問題点を解決するためのもので、光透過性
液体中に存在する気泡を遠隔測定により、連続的にその
大きさと数とを計測し、さらに気体の全体の体積を得る
ことのできる液中気体の検出方法を提供することを目的
とする。The present invention is intended to solve the above problems, and it is possible to continuously measure the size and number of bubbles existing in a light-transmitting liquid by remote measurement, and to obtain the total volume of the gas. The purpose of this invention is to provide a method for detecting gas in liquid that can be used.
そのために本発明の液中気体の検出方法は、光透過性液
体中の気泡に対して平行光を入射し、所定の散乱角で前
記気泡から散乱された反射光と透過屈折光を光学結像系
により一次元光センサ上に結像させ、前記反射光と透過
屈折光とにより像中に形成される2つの輝点間の距離と
前記光学結像系の倍率とから前記気泡の径を測定するこ
と、及び光透過性液体中の気泡に対して互いに交差する
2つの平行光を入射し、所定の散乱角で前記気泡から散
乱された2つの反射光を光学的結像系により一次元光セ
ンサ上に結像させて、該2つの反射光により像中に形成
される2つの輝点間の距離と前記光学結像系の倍率とか
ら前記気泡の径を検出することを特徴とする。To this end, the method for detecting gas in a liquid of the present invention involves injecting parallel light into a bubble in a light-transmitting liquid, and forming an optical image of reflected light and transmitted refracted light scattered from the bubble at a predetermined scattering angle. A system forms an image on a one-dimensional optical sensor, and the diameter of the bubble is measured from the distance between two bright spots formed in the image by the reflected light and transmitted refracted light and the magnification of the optical imaging system. In addition, two parallel lights that cross each other are incident on a bubble in a light-transmitting liquid, and two reflected lights scattered from the bubble at a predetermined scattering angle are converted into one-dimensional light using an optical imaging system. The present invention is characterized in that an image is formed on a sensor, and the diameter of the bubble is detected from the distance between two bright spots formed in the image by the two reflected lights and the magnification of the optical imaging system.
本発明は光透過性液体中に存在する気泡に対して一方向
から平行光を入射し、気泡で散乱された反射光および透
過屈折光を、または異なる2方向から平行光を入射し、
気泡で散乱された反射光を所定の散乱角で光学結像系に
より一次元光センサ上に結像させ、像中に形成される2
つの輝点間の距離と光学結像系の倍率とから気泡の径を
検出することができるものである。In the present invention, parallel light is incident on bubbles existing in a light-transmitting liquid from one direction, and reflected light and transmitted refracted light scattered by the bubbles are incident on the bubbles, or parallel light is incident on the bubbles from two different directions.
The reflected light scattered by the air bubbles is imaged on a one-dimensional optical sensor by an optical imaging system at a predetermined scattering angle, and two images are formed in the image.
The diameter of the bubble can be detected from the distance between the two bright spots and the magnification of the optical imaging system.
以下、実施例を図面を参照して説明する。 Examples will be described below with reference to the drawings.
第1図〜第7図は本発明による液中気体の検出方法の一
実施例における測定原理を示す図で、第1図は基本構成
図、第2図は気泡による光の散乱、屈折を説明するため
の図、第3図は気泡と2つの輝点の関係を説明するため
の図、第4図はセンサで得られる気泡と2つの輝点の関
係を説明するための図、第5図は1次元光センサにより
得られる信号を説明するための図、第6図は散乱角θと
気泡上の2つの輝点位置を説明するための図、第7図は
散乱角θと1/(sinθ、 −sinθ2)の関係を
示す図であり、1は平行光源、2は窓、3は気泡、4は
1次元光センサ、5は光学結像系、6は反射光、7は透
過屈折光である。Figures 1 to 7 are diagrams showing the measurement principle in an embodiment of the method for detecting gas in liquid according to the present invention. Figure 1 is a basic configuration diagram, and Figure 2 explains scattering and refraction of light by bubbles. Figure 3 is a diagram to explain the relationship between a bubble and two bright spots, Figure 4 is a diagram to explain the relationship between a bubble obtained by a sensor and two bright spots, and Figure 5 is a diagram to explain the relationship between a bubble and two bright spots. is a diagram for explaining the signal obtained by a one-dimensional optical sensor, FIG. 6 is a diagram for explaining the scattering angle θ and the positions of two bright spots on the bubble, and FIG. 7 is a diagram for explaining the scattering angle θ and 1/( sin θ, −sin θ2), where 1 is a parallel light source, 2 is a window, 3 is a bubble, 4 is a one-dimensional optical sensor, 5 is an optical imaging system, 6 is reflected light, and 7 is transmitted refracted light. It is.
第1図において、平行光源1から出たスリット状の平行
光が光透過性液体中に存在する気泡3に対して窓2を通
して1つの平面内で入射すると、入射した平行光は気泡
3の表面で反射される反射光と気泡内を透過し屈折した
後、再び気泡表面から射出される透過屈折光となって散
乱する。In FIG. 1, when a slit-shaped parallel light emitted from a parallel light source 1 is incident on a bubble 3 existing in a light-transmitting liquid in one plane through a window 2, the incident parallel light is transmitted to the surface of the bubble 3. After the reflected light is transmitted through the bubble and refracted, it becomes transmitted and refracted light that is emitted from the bubble surface again and is scattered.
空気と水との屈折率は水の方が大きいので、第2図に示
すように、透過屈折光は平行光の平面内において平行光
に平行な気泡の中心軸x−x ′の左右に拡散してしま
う。従って、中心軸x−x′の一方の側の透過屈折光は
中心軸x−x ’を越えて他方側へ進むことはない。従
って、中心軸XX′に対して角度θの方向から気泡を見
ると、第3図に示すように散乱角θの反射光6による輝
点Aと、散乱角θの透過屈折光7による輝点Bが気泡3
の中心の片側に見えるようになる。Since the refractive index of air and water is higher for water, as shown in Figure 2, the transmitted and refracted light is diffused to the left and right of the central axis x-x' of the bubble, which is parallel to the parallel light, within the plane of parallel light. Resulting in. Therefore, the transmitted and refracted light on one side of the central axis x-x' does not travel beyond the central axis x-x' to the other side. Therefore, when looking at the bubble from the direction of the angle θ with respect to the central axis XX', as shown in FIG. B is bubble 3
becomes visible on one side of the center.
この輝点AおよびBを平行光の平面内で角度θ方向に設
置した光学結像系5により1次元光センサ上にそれぞれ
輝点aおよびbとして結像させ(第4図)、輝点aおよ
びbを1次元光センサ4からの信号として取り出す(第
5図)。These bright spots A and B are imaged as bright spots a and b, respectively, on a one-dimensional optical sensor by an optical imaging system 5 installed at an angle θ direction within the plane of parallel light (Fig. 4), and bright spot a and b are extracted as signals from the one-dimensional optical sensor 4 (FIG. 5).
第2図において、反射光6となる平行光の気泡への入射
角とその反射角は等しいので、これをθ、とすれば、
θ、=(π−θ)/2 ・・・・・・・・・・・・
・・・・・・・・・(1)また、液体中の気体は気泡と
なって真球で返信できるので、透過屈折光7となる平行
光の液体から気泡3への入射における入射角と屈折角の
それぞれは、気泡から液体中への出射における入射角と
屈折角にそれぞれ等しく、これを02およびφとすれば
、
θ2=(2φ−θ)/2 ・・・・・・・・・・・・・
・・・・・・・・(2)が成立する。In Fig. 2, the angle of incidence of the parallel light, which becomes the reflected light 6, on the bubble is equal to its reflection angle, so if this is θ, then θ, = (π-θ)/2...・・・・・・
・・・・・・・・・(1) Also, since the gas in the liquid becomes bubbles and can be returned as a perfect sphere, the angle of incidence of the parallel light from the liquid to the bubble 3, which becomes the transmitted refracted light 7, is Each of the refraction angles is equal to the incident angle and refraction angle at the exit from the bubble into the liquid, respectively, and if these are 02 and φ, then θ2=(2φ−θ)/2 ・・・・・・・・・・・・・・・・・・
...(2) holds true.
液体の気体に対する相対屈折率をnとすると、sinφ
/sinθ、=l’l ・・・・・・・・・・・・
・・・・・・・・・(3)(1)式を満足する入射角θ
1の平行光は散乱角θの反射光6となり、(2)式およ
び(3)式を満足する入射角θ2の平行光は散乱角θの
透過屈折光7となって、反射光6および透過屈折光7を
輝点AおよびBとして角度θ方向から見えることになる
。これらの輝点が第4図に示すように角度θの方向に設
置した光学結像系5により一次元光センサ4上に結像さ
れる。If the relative refractive index of liquid to gas is n, then sinφ
/sinθ,=l'l ・・・・・・・・・・・・
・・・・・・・・・(3) Incident angle θ that satisfies equation (1)
The parallel light 1 becomes reflected light 6 with a scattering angle θ, and the parallel light with an incident angle θ2 that satisfies equations (2) and (3) becomes transmitted refracted light 7 with a scattering angle θ, resulting in reflected light 6 and transmitted light. The refracted light 7 is seen as bright spots A and B from the angle θ direction. These bright spots are imaged onto the one-dimensional optical sensor 4 by the optical imaging system 5 installed in the direction of the angle θ as shown in FIG.
気泡3の実際の半径をR1、また角度θ方向から見たと
きの気泡の中心から反射光6および透過屈折光7までの
それぞれの距離をR1およびR2とし、1次元光センサ
4上の像における気泡像の半径をr、気泡像の中心から
輝点Aおよび輝点Bの像aおよびbまでの距離をそれぞ
れr、およびr2とすれば、第2図から
R,=Rsinθt + R2=Rsinθ2、’、R
,−R2=R(sinθ1− sinθ2)R= (R
+ Rz)/(sinθ、 −sinθg)また、光
学結像系の結像倍率をmとすればmR+ =r、l m
Rz =rz
、°、R=1/m・(r+ −rz)/(sinθ1−
sinθ2)・・・・・・・−・(4)
r、−rzは1次元光センサ4から信号として第5図に
示すように得られるので、真球とみなしたときの気泡の
半径Rを(4)式から求めることができ、また、個々の
気泡の半径R4が得られれば気泡のトータルの体積■は
V=4/3・πΣRt3 ・・・・・・・・・・・・・
・・・・・・・・(5)として求めることができる。Let R1 be the actual radius of the bubble 3, and let R1 and R2 be the respective distances from the center of the bubble to the reflected light 6 and the transmitted refracted light 7 when viewed from the angle θ direction, and the image on the one-dimensional optical sensor 4 is If the radius of the bubble image is r, and the distances from the center of the bubble image to images a and b of bright spot A and bright spot B are r and r2, respectively, then from FIG. 2, R,=Rsinθt + R2=Rsinθ2, ',R
, -R2=R(sinθ1-sinθ2)R=(R
+ Rz)/(sin θ, −sin θg) Also, if the imaging magnification of the optical imaging system is m, mR+ = r, l m
Rz = rz , °, R = 1/m・(r+ −rz)/(sinθ1−
sin θ2)・・・・・・・・・(4) Since r and −rz are obtained as signals from the one-dimensional optical sensor 4 as shown in FIG. 5, the radius R of the bubble when considered as a true sphere is It can be obtained from equation (4), and if the radius R4 of each bubble is obtained, the total volume of the bubbles is V=4/3・πΣRt3 ・・・・・・・・・・・・・・・
It can be obtained as (5).
′第6図は散乱角θを変えたときに反射光および透過屈
折光による輝点の見える位置を示した図で、また第7図
は1 / (sinθ、 −sinθ2)を散乱角θを
変えて計算した結果を示した図である。第6図および第
7図で示しているように散乱角θが小さい方が輝点間隔
は大きくなるので、計測に適している。'Figure 6 is a diagram showing the visible positions of bright spots due to reflected light and transmitted refracted light when the scattering angle θ is changed, and Figure 7 is a diagram showing the visible positions of bright spots due to reflected light and transmitted refracted light when the scattering angle θ is changed. It is a figure showing the result of calculation. As shown in FIGS. 6 and 7, the smaller the scattering angle θ, the larger the interval between bright spots, which is suitable for measurement.
また透過屈折光となる平行光の気泡への入射角θ2が液
体が水のとき、臨界角約48.6°以上になると全反射
されてしまい、これ以上の入射角θ2では輝点は反射光
によるものだけになる。従って、臨界角は液体によって
異なるが、水の場合は平行光の入射角θ2は約48,6
°以下であるという制限条件が入ることになる。Furthermore, when the incident angle θ2 of the parallel light that becomes the transmitted and refracted light on the bubble exceeds the critical angle of about 48.6° when the liquid is water, it will be totally reflected, and if the incident angle θ2 is greater than this, the bright spot will become the reflected light. It depends only on the Therefore, the critical angle differs depending on the liquid, but in the case of water, the incident angle θ2 of parallel light is approximately 48.6
There is a limiting condition that it is less than or equal to °.
なお、上記実施例において、気泡3からの散乱光を直接
受けることができる位置に1次元光センサ4を設置した
が、散乱光を鏡により一旦反射し、この反射された散乱
光を1次元光センサで受けるようにすることもでき、こ
のようにすれば1次元センサ4の設置位置の制約を低減
することができる。また、スリット状の平行光を平行光
源から出しているが、スリット状でない平行光を用いる
こともできる。この場合には、1次元光センサの前にビ
ームスリットを配置し、スリット状の散乱光が1次元光
センサに入るようにすればよい。1次元光センサに入る
散乱光をスリット状としない場合に比べて1次元光セン
サによる検出ノイズが減少でき、シャープな出力波形を
得ることができる。In the above embodiment, the one-dimensional optical sensor 4 was installed at a position where it could directly receive the scattered light from the bubbles 3, but the scattered light is once reflected by a mirror, and the reflected scattered light is converted into one-dimensional light. It can also be received by a sensor, and in this way, restrictions on the installation position of the one-dimensional sensor 4 can be reduced. Further, although slit-shaped parallel light is emitted from the parallel light source, parallel light other than slit-shaped parallel light can also be used. In this case, a beam slit may be placed in front of the one-dimensional optical sensor so that the slit-shaped scattered light enters the one-dimensional optical sensor. Compared to the case where the scattered light entering the one-dimensional optical sensor does not have a slit shape, detection noise by the one-dimensional optical sensor can be reduced and a sharp output waveform can be obtained.
次に第8図〜第12図により本発明の他の実施例を説明
する。この実施例は気泡からの散乱光による輝点が気泡
の中心より片方においてしか観測できないということを
逆に利用して光学系によって2つの平行光に対する2つ
の反射光による輝点間距離から気泡の大きさを求めるも
のである。Next, another embodiment of the present invention will be described with reference to FIGS. 8 to 12. This example takes advantage of the fact that a bright spot due to scattered light from a bubble can only be observed on one side from the center of the bubble, and uses an optical system to detect the bubble from the distance between the bright spots due to two reflected lights for two parallel lights. It seeks size.
第8図〜第12図は本発明による液中気体の検出方法の
他の実施例を説明するための図で、第8図は基本構成図
、第9図は気泡による光の散乱、屈折を説明するための
図、第10図は気泡と2つの輝点の関係を説明するため
の図、第11図は光学結像系によって得られる気泡と2
つの輝点を説明するための図、第12図は1次元光セン
サにより得られる信号を示す図であり、図中、第1図〜
第5図と同一番号および符号は同一内容を示し、21は
半透鏡、22.23は反射鏡、24.25は平行光、2
6,27.28は窓である。Figures 8 to 12 are diagrams for explaining other embodiments of the method for detecting gas in liquid according to the present invention. Figure 8 is a basic configuration diagram, and Figure 9 shows scattering and refraction of light due to bubbles. Figure 10 is a diagram for explaining the relationship between a bubble and two bright spots, and Figure 11 is a diagram showing the relationship between a bubble and two bright spots obtained by an optical imaging system.
FIG. 12 is a diagram for explaining two bright spots, and is a diagram showing a signal obtained by a one-dimensional optical sensor.
The same numbers and symbols as in Fig. 5 indicate the same contents, 21 is a semi-transparent mirror, 22.23 is a reflective mirror, 24.25 is a parallel light, 2
6, 27, and 28 are windows.
第8図および第9図において、平行光源1から出たスリ
ット状の平行光は光路上に設置された半透鏡21で直進
する平行光24と伝播方向を変えられた平行光25に分
割され、それぞれの平行光24および25の光路上に設
置された反射鏡21および23で伝播方向を変えられた
後、光透過性液体を入れた容器の窓26.27にそれぞ
れ入射する。入射した平行光24および25は気泡3の
表面で反射される。反射鏡23で反射した平行光に対し
て角度θの方向から気泡を見ると、窓28を透過した散
乱角θの平行光25の反射光による輝点Aと平行光24
の反射光にらる輝点A′が気泡3上に見える(第10図
)。角度θ方向に設置した光学結像系5により輝点Aお
よびA′を一次元光センサ4上に輝点aおよびbとして
結像させ(第11図)、輝点aおよびa′を1次元光学
センサ4から信号として取り出しく第12図)、気泡の
大きさを求めることができる。In FIGS. 8 and 9, a slit-shaped parallel light emitted from a parallel light source 1 is split by a semi-transparent mirror 21 installed on the optical path into parallel light 24 that travels straight and parallel light 25 whose propagation direction has been changed. After the propagation directions of the parallel beams 24 and 25 are changed by reflection mirrors 21 and 23 installed on the optical paths, the beams enter windows 26 and 27 of a container containing a light-transmitting liquid, respectively. The incident parallel beams 24 and 25 are reflected by the surface of the bubble 3. If you look at the bubble from the direction of the angle θ with respect to the parallel light reflected by the reflecting mirror 23, you will see a bright spot A and the parallel light 24 due to the reflected light of the parallel light 25 with the scattering angle θ transmitted through the window 28.
A bright spot A' due to the reflected light is visible on the bubble 3 (Fig. 10). Bright spots A and A' are imaged as bright spots a and b on the one-dimensional optical sensor 4 by the optical imaging system 5 installed in the angle θ direction (Fig. 11), and the bright spots a and a' are one-dimensionally By extracting the signal from the optical sensor 4 (FIG. 12), the size of the bubble can be determined.
今、第9図に示すように2つの平行光の交差角をα、輝
点A′を生じさせる平行光の気泡3への入射角または反
射角をθ3、また1次元光センサ4上の中心から輝点A
′の像a′までの距離をr、とすれば、
θ、=(π−α+θ)/2 ・・・・・・・・・・・
・・・・・・・(6)R−17m・Cr 、 + r3
)/ (sinθ1 + sinθ3)・・・・・・・
・・・・・(7)
また、θ1は(1)と同様で、
θ1−(π−θ)/2
(1)、 (6)および(7)式から気泡の大きさを算
出することができる。Now, as shown in FIG. 9, the intersection angle of the two parallel lights is α, the angle of incidence or reflection of the parallel light to the bubble 3 that produces the bright spot A' is θ3, and the center on the one-dimensional optical sensor 4 is bright spot A
If the distance to image a' of ' is r, then θ, = (π-α+θ)/2 ・・・・・・・・・・・・
・・・・・・・・・(6) R-17m・Cr, + r3
)/(sinθ1 + sinθ3)・・・・・・・
...(7) Also, θ1 is the same as (1), and the bubble size can be calculated from equations (1), (6), and (7). can.
なお、この実施例においてもスリット状でない平行光を
用い、1次元光センサの前にビームスリットを配置し、
スリット状の散乱光が1次元光センサに入るようにして
もよい。Note that in this example as well, parallel light without a slit shape is used, and a beam slit is placed in front of the one-dimensional optical sensor.
Slit-shaped scattered light may enter the one-dimensional optical sensor.
以上のように本発明によれば、光を透過することのでき
る液体中に存在する気泡に対して1つの平行光を入射し
て、平行光による反射光および透過屈折光を2つの輝点
としてとらえ、あるいは交差する2つの方向からの平行
光を液体の臨界角以上で入射して、2つの平行光による
2つの反射光を2つの輝点としてとらえ、輝点間距離と
結像系の倍率とから気泡の大きさき気体の体積を直接接
触することなく、連続的に精度よく求めることができる
。As described above, according to the present invention, one parallel light is incident on a bubble existing in a liquid that can transmit light, and the reflected light and transmitted refracted light due to the parallel light are converted into two bright spots. The distance between the bright spots and the magnification of the imaging system are determined by capturing or intersecting parallel light from two directions that are incident on the liquid at an angle greater than the critical angle of the liquid, and capturing the two reflected lights from the two parallel lights as two bright spots. From this, the volume of the bubble-sized gas can be determined continuously and accurately without direct contact.
第1図〜第7図は本発明による液中気体の検出方法の一
実施例における測定原理を示す図で、第1図は基本構成
図、第2図は気泡による光の散乱、屈折を説明するため
の図、第3図は気泡と2つの輝点の関係を説明するため
の図、第4図はセンサで得られる気泡と2つの輝点の関
係を説明するための図、第5図は1次元光センサにより
得られる信号を説明するための図、第6図は散乱角θと
気泡上の2つの輝点位置を説明するための図、第7図は
散乱角θと1/(stnθ1−sinθ2)の関係を示
す図、第8図〜第12図は本発明による液中気体の検出
方法の他の実施例を説明するための図で、第8図は基本
構成図、第9図は気泡による光の散乱、屈折を説明する
ための図、第10図は気泡と2つの輝点の関係を説明す
るための図、第11図は光学結像系によって得られる気
泡と2つの輝点を説明するための図、第12図は1次元
光センサにより得られる信号を示す図である。
1・・・平行光源、2・・・窓、3・・・気泡、4・・
・1次元光センサ、5・・・光学結像系、6・・・反射
光、7・・・透過屈折光、21・・・半透鏡、22.2
3・・・反射鏡、24.25・・・平行光、26,21
.28・・・窓。
出 願 人 動力炉・核燃料開発事業団代理人弁理
士 蛭 川 昌 信(外5名)架
呆C−訳欠
4=:! c J剖Figures 1 to 7 are diagrams showing the measurement principle in an embodiment of the method for detecting gas in liquid according to the present invention. Figure 1 is a basic configuration diagram, and Figure 2 explains scattering and refraction of light by bubbles. Figure 3 is a diagram to explain the relationship between a bubble and two bright spots, Figure 4 is a diagram to explain the relationship between a bubble obtained by a sensor and two bright spots, and Figure 5 is a diagram to explain the relationship between a bubble and two bright spots. is a diagram for explaining the signal obtained by a one-dimensional optical sensor, FIG. 6 is a diagram for explaining the scattering angle θ and the positions of two bright spots on the bubble, and FIG. 7 is a diagram for explaining the scattering angle θ and 1/( stnθ1-sinθ2), and FIGS. 8 to 12 are diagrams for explaining other embodiments of the method for detecting gas in liquid according to the present invention. FIG. 8 is a basic configuration diagram, and FIG. The figure is a diagram to explain the scattering and refraction of light by bubbles, Figure 10 is a diagram to explain the relationship between a bubble and two bright spots, and Figure 11 is a diagram to explain the relationship between a bubble and two bright spots obtained by an optical imaging system. FIG. 12, which is a diagram for explaining a bright spot, is a diagram showing a signal obtained by a one-dimensional optical sensor. 1... parallel light source, 2... window, 3... bubble, 4...
・One-dimensional optical sensor, 5... Optical imaging system, 6... Reflected light, 7... Transmitted and refracted light, 21... Semi-transparent mirror, 22.2
3...Reflector, 24.25...Parallel light, 26,21
.. 28...window. Applicant: Patent attorney representing the Power Reactor and Nuclear Fuel Development Corporation Masanobu Hirukawa (5 others) Kagaku C-Translation 4=:! c J autopsy
Claims (7)
所定の散乱角で前記気泡から散乱された反射光と透過屈
折光を光学結像系により一次元光センサ上に結像させ、
前記反射光と透過屈折光とにより像中に形成される2つ
の輝点間の距離と前記光学結像系の倍率とから前記気泡
の径を測定することを特徴とする液中気体の検出方法。(1) Parallel light is incident on the bubbles in the optically transparent liquid,
The reflected light and the transmitted refracted light scattered from the bubble at a predetermined scattering angle are imaged on a one-dimensional optical sensor by an optical imaging system,
A method for detecting gas in a liquid, characterized in that the diameter of the bubble is measured from the distance between two bright spots formed in an image by the reflected light and the transmitted refracted light and the magnification of the optical imaging system. .
通して一次元光センサ上に結像させる請求項1記載の液
中気体の検出方法。(2) The method for detecting a gas in a liquid according to claim 1, wherein the reflected light and the transmitted refracted light are imaged on a one-dimensional optical sensor through a beam slit.
に前記光学結像系により一次元光センサ上に結像させる
請求項1記載の液中気体の検出方法。(3) The method for detecting a gas in a liquid according to claim 1, wherein the reflected light and the transmitted refracted light are reflected by a mirror and then imaged on a one-dimensional optical sensor by the optical imaging system.
つの平行光を入射し、所定の散乱角で前記気泡から散乱
された2つの反射光を光学的結像系により一次元光セン
サ上に結像させて、該2つの反射光により像中に形成さ
れる2つの輝点間の距離と前記光学結像系の倍率とから
前記気泡の径を検出することを特徴とする液中気体の検
出方法。(4) 2 intersecting each other for air bubbles in a light-transmitting liquid
Two parallel lights are incident, and two reflected lights scattered from the bubble at a predetermined scattering angle are imaged on a one-dimensional optical sensor by an optical imaging system, and an image is formed by the two reflected lights. A method for detecting gas in a liquid, characterized in that the diameter of the bubble is detected from the distance between two bright spots and the magnification of the optical imaging system.
光を半透鏡により分割し、分割した光をそれぞれ反射鏡
により反射させて気泡に入射させるようにした請求項4
記載の液中気体の検出方法。(5) The two mutually intersecting parallel lights are configured such that one parallel light is split by a semi-transparent mirror, and each of the split lights is reflected by a reflecting mirror to be incident on the bubble.
The method for detecting a gas in a liquid as described.
ンサ上に結像させる請求項4記載の液中気体の検出方法
。(6) The method for detecting a gas in a liquid according to claim 4, wherein the reflected light is imaged on a one-dimensional optical sensor through a beam slit.
記載の液中気体の検出方法。(7) Claim 1 or 4, wherein the parallel light has a slit shape.
The method for detecting a gas in a liquid as described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24006888A JPH0287045A (en) | 1988-09-26 | 1988-09-26 | Detecting method of gas in liquid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24006888A JPH0287045A (en) | 1988-09-26 | 1988-09-26 | Detecting method of gas in liquid |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0287045A true JPH0287045A (en) | 1990-03-27 |
Family
ID=17054012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24006888A Pending JPH0287045A (en) | 1988-09-26 | 1988-09-26 | Detecting method of gas in liquid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0287045A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001050111A1 (en) * | 2000-01-07 | 2001-07-12 | Keio University | Method and apparatus for measuring diameter and distribution of micro bubble and micro liquid drop and optical system for measuring diameter and distribution of micro bubble and micro liquid drop |
US7684008B2 (en) * | 2003-06-11 | 2010-03-23 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP2010281814A (en) * | 2009-05-26 | 2010-12-16 | Krones Ag | Foam density determination method and foam density determination device |
WO2014041788A1 (en) * | 2012-09-11 | 2014-03-20 | テルモ株式会社 | Signal processing device, medical device and signal processing method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6319506A (en) * | 1986-07-14 | 1988-01-27 | Power Reactor & Nuclear Fuel Dev Corp | Detecting method for drop of dropping liquid |
-
1988
- 1988-09-26 JP JP24006888A patent/JPH0287045A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6319506A (en) * | 1986-07-14 | 1988-01-27 | Power Reactor & Nuclear Fuel Dev Corp | Detecting method for drop of dropping liquid |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001050111A1 (en) * | 2000-01-07 | 2001-07-12 | Keio University | Method and apparatus for measuring diameter and distribution of micro bubble and micro liquid drop and optical system for measuring diameter and distribution of micro bubble and micro liquid drop |
US7684008B2 (en) * | 2003-06-11 | 2010-03-23 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9110389B2 (en) | 2003-06-11 | 2015-08-18 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US9964858B2 (en) | 2003-06-11 | 2018-05-08 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP2010281814A (en) * | 2009-05-26 | 2010-12-16 | Krones Ag | Foam density determination method and foam density determination device |
WO2014041788A1 (en) * | 2012-09-11 | 2014-03-20 | テルモ株式会社 | Signal processing device, medical device and signal processing method |
JP5864766B2 (en) * | 2012-09-11 | 2016-02-17 | テルモ株式会社 | Signal processing device, medical device, and signal processing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4711126A (en) | Sensor for the measurement of the refractive index of a fluid and/or phase boundary between two fluids by means of visible or invisible light | |
US4274705A (en) | Fiberoptic-fed fluid level sensor using a hemiellipsoidal optical element | |
US8102542B2 (en) | Method and apparatus for layer thickness measurement | |
US4732472A (en) | Methods of, and systems for, determining the position of an object | |
US7463339B2 (en) | Device for measuring the distance to far-off objects and close objects | |
JPH08114421A (en) | Non-contact type measuring device for measuring thickness ofmaterial body comprising transparent material | |
CN102654442A (en) | Surface tension detection device and method | |
JPH0287045A (en) | Detecting method of gas in liquid | |
CN100582678C (en) | Off-axis rotational symmetry type laser trigone displacement transducer | |
US5291273A (en) | Non-contact diameter measuring method and apparatus | |
US4771181A (en) | Method for detecting dripping droplet with refracted and reflected light | |
JP2609554B2 (en) | Bubble measuring device | |
CN108709572B (en) | Integrated micro-displacement optical fiber sensing probe | |
US4865443A (en) | Optical inverse-square displacement sensor | |
US9222824B1 (en) | Sensor for detecting the contact location of a gas-liquid interface on a solid body | |
JPS5960344A (en) | Method and device for automatically inspecting surface by coherent laser luminous flux | |
JPS5972012A (en) | Method and device for detecting gap and angle | |
JP5487920B2 (en) | Optical three-dimensional shape measuring apparatus and optical three-dimensional shape measuring method | |
JP2875291B2 (en) | Gas detector | |
US4314762A (en) | Focused, single strand, optical fiber rotational alignment image-sensing and comparing system | |
JPH0615972B2 (en) | Distance measuring method and device | |
CN213657775U (en) | Symmetrical double-receiving direct-injection type laser triangular displacement sensor | |
JPH032544A (en) | Rain drop measuring instrument | |
JPS62140029A (en) | Apparatus for measuring surface level of liquid | |
CN111948795B (en) | Radar and angle adjusting device |