JPH0287043A - Measuring apparatus for deformability of red blood cell - Google Patents

Measuring apparatus for deformability of red blood cell

Info

Publication number
JPH0287043A
JPH0287043A JP23953488A JP23953488A JPH0287043A JP H0287043 A JPH0287043 A JP H0287043A JP 23953488 A JP23953488 A JP 23953488A JP 23953488 A JP23953488 A JP 23953488A JP H0287043 A JPH0287043 A JP H0287043A
Authority
JP
Japan
Prior art keywords
red blood
signal
peak
blood cell
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23953488A
Other languages
Japanese (ja)
Inventor
Tomoko Kamiyoshi
神吉 智子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Priority to JP23953488A priority Critical patent/JPH0287043A/en
Publication of JPH0287043A publication Critical patent/JPH0287043A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To enable measurement of the deformability of a red blood cell and the number of red blood cells without using a filter, by generating a root depth signal of a red blood cell detection signal and by obtaining a statistic of the intensity distribution of the root depth signal by a deformability calculating means. CONSTITUTION:In a particle detecting means 1, a pair of electrodes 9 and 10 are divided by an insulator 7 having a minute hole 6 through which a diluted solution 5 of blood passes. A voltage is impressed between the electrodes 9 and 10 and a red blood cell detection signal appearing every time when a red blood cell passes through the minute hole 6 is outputted. A root depth signal showing a difference between a peak value of the first peak of a root waveform signal having a root, out of red blood cell detection signals, and a peak value of the root, is generated by a root depth signal generating means 2, and a statistic of the intensity distribution of the root depth signal is calculated by a deformation power calculating means 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、赤血球が様々な状態に変形する能力、すな
わち赤血球の変形能を測定する赤血球変形能測定装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a red blood cell deformability measuring device that measures the ability of red blood cells to transform into various states, that is, the deformability of red blood cells.

〔従来の技術〕[Conventional technology]

赤血球は通常、約8μ前後の直径を有しているが、直径
数μ足らずの毛細管内を自由に通過することができるの
は、赤血球が変形能を有しているためである。また赤血
球変形能測定装置は、微小循環障害などの診断に役立て
ることができる。
Red blood cells normally have a diameter of about 8 microns, but red blood cells can freely pass through capillaries with a diameter of less than several microns because they have deformability. Furthermore, the red blood cell deformability measuring device can be useful for diagnosing microcirculatory disorders and the like.

従来、赤血球の変形能を測定する装置として、フィルタ
濾過装置や高すり応力変形装置などが知られ、またそれ
らの中にも種々の装置があった。
BACKGROUND ART Filter filtration devices, high-slip stress deformation devices, and the like have been known as devices for measuring the deformability of red blood cells, and there are various devices among them.

しかし、これらは測定に手間を要し、また赤血球1個に
注目した場合は赤血球全体の平均的な値が得られず、反
対に赤血球全体に注目した場合は赤血球1個1個につい
ての情報が全く得られない等の問題点があった。
However, these measurements require time and effort, and if we focus on a single red blood cell, we cannot obtain the average value for the whole red blood cell, whereas if we focus on the whole red blood cell, we cannot obtain information about each red blood cell. There were problems such as not being able to obtain any results.

これに対しで、本出願人は特開昭58−83231号公
報に開示された発明により、血液希釈液を細孔に通過さ
せ赤血球と血液希釈液との電気的差異に基づいて赤血球
を検出する手段、すなわち血液希釈液が通過する細孔を
有する絶縁体により一対の電極間を仕切るとともに前記
電極間に電圧を印加し前記細孔を赤血球が通過するごと
に前記電極間に現れる赤血球検出信号を出力する粒子検
出手段、いわゆる自動血球計数装置を用いて、血液希釈
液を直径3μ前後の孔隙を多数有するフィルタに通過さ
せた後、前記細孔を通過させることにより、赤血球の変
形能を正確に測定できる赤血球変形能測定装置を提供し
た。
In response to this, the present applicant has proposed an invention disclosed in Japanese Patent Application Laid-open No. 58-83231, in which a blood diluent is passed through a pore and red blood cells are detected based on the electrical difference between the red blood cells and the blood diluted fluid. A means, that is, a pair of electrodes is partitioned by an insulator having pores through which a blood diluent passes, and a voltage is applied between the electrodes to detect a red blood cell detection signal appearing between the electrodes each time a red blood cell passes through the pores. Using the output particle detection means, a so-called automatic blood cell counter, the blood diluted liquid is passed through a filter having many pores with a diameter of about 3 μm, and then passed through the pores to accurately measure the deformability of red blood cells. We have provided a device for measuring red blood cell deformability.

この赤血球変形能測定装置は、赤血球を1個ずつ検出し
ており、検出パルスの高さが赤血球の大きさに比例する
ことから、検出パルスの大きさを見ることにより赤血球
の状態をモニタすることができ、かつ測定が容易であり
、さらに血液中の赤血球の平均の変形能を得ることがで
きる。
This red blood cell deformability measuring device detects red blood cells one by one, and the height of the detection pulse is proportional to the size of the red blood cell, so the state of the red blood cells can be monitored by looking at the size of the detection pulse. It is easy to measure, and the average deformability of red blood cells in blood can be obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、この赤血球変形能測定装置は、前記細孔の前に
フィルタを配置する必要があるため、粒子検出手段であ
る従来の自動血球計数装置をそのまま利用することがで
きず、構造の変更を要した。
However, since this red blood cell deformability measurement device requires a filter to be placed in front of the pores, it is not possible to use a conventional automatic hematology counter as a particle detection means as is, and requires a change in structure. did.

また、フィルタを通過した赤血球のみを計数でき、血液
希釈液中の赤血球数を計数することができないため、自
動血球計数装置としての本来の機能が失われ、別に赤血
球数を求める装置が必要となった。
In addition, because it can only count the red blood cells that have passed through the filter and cannot count the number of red blood cells in the blood dilution solution, the original function of an automatic blood cell counter is lost and a separate device for calculating the number of red blood cells is required. Ta.

したがって、この発明の目的は、フィルタを用いること
なく赤血球の変形能を測定でき、しかも赤血球数を同時
に求めることができる赤血球変形能測定装置を提供する
ことである。
Therefore, an object of the present invention is to provide a red blood cell deformability measuring device that can measure the deformability of red blood cells without using a filter and can simultaneously determine the number of red blood cells.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の赤血球変形能測定装置は、血液希釈液が通過
する細孔を有する絶縁体により一対の電極間を仕切ると
ともに前記電極間に電圧を印加し前記細孔を赤血球が通
過するごとに前記電極間に現れる赤血球検出信号を出力
する粒子検出手段と、前記赤血球検出信号のうち谷を有
する容性形の信号の最初のピークの波高値と前記谷の波
高値との差である谷の深さ信号を発生する谷深さ信号発
生手段と、前記谷の深さ信号の強度分布の平均値等の統
計量を算出する変形能算出手段とを備えたものである。
In the red blood cell deformability measuring device of the present invention, a pair of electrodes are partitioned by an insulator having pores through which a blood diluent passes, and a voltage is applied between the electrodes so that each time the red blood cell passes through the pores, the particle detection means for outputting a red blood cell detection signal that appears between the red blood cell detection signals; and a valley depth that is the difference between the peak value of the first peak of the capacitive type signal having a valley in the red blood cell detection signal and the peak value of the valley. The device includes a valley depth signal generating means for generating a signal, and a deformability calculating means for calculating statistics such as an average value of the intensity distribution of the valley depth signal.

この発明の他の赤血球変形能測定装置は、血液希釈液が
通過する細孔を有する絶縁体により一対の電極間を仕切
るとともに前記電極間に電圧を印加し前記細孔を赤血球
が通過するごとに前記電極間に現れる赤血球検出信号を
出力する粒子検出手段と、前記赤血球検出信号のうち谷
を有する容性形の信号の谷の波高値を検出する谷波高値
検出手段と、前記容性形の谷の波高値の分布の最頻値を
検出する谷波高値最顧値検出手段と、前記赤血球検出信
号のうち単一ピーク波形の信号の波高値を検出する単一
ピーク波高値検出手段と、前記単一ピーク波形の波高値
の分布の最頻値を検出する単一ピーク波高値最頻値検出
手段と、前記容性形の谷の波高値の分布の最頻値と前記
単一ピーク波形の波高値の分布の最頻値とを比較して最
頻値の比等の比較値を算出する変形能算出手段とを備え
たものである。
Another red blood cell deformability measuring device of the present invention partitions a pair of electrodes with an insulator having pores through which a blood diluent passes, and applies a voltage between the electrodes so that each time the red blood cells pass through the pores, a voltage is applied between the electrodes. particle detection means for outputting a red blood cell detection signal appearing between the electrodes; trough height value detection means for detecting a peak value of a valley of a capacitive type signal having a valley in the red blood cell detection signal; trough peak value maximum value detection means for detecting the mode of the distribution of trough peak values; single peak peak value detection means for detecting the peak value of a signal with a single peak waveform among the red blood cell detection signals; Single peak peak value mode detecting means for detecting the mode of the distribution of peak values of the single peak waveform; and the mode of the distribution of peak values of the capacitive trough and the single peak waveform. and deformability calculating means for calculating a comparison value such as a ratio of the mode by comparing the mode with the mode of the distribution of peak values.

(作 用) この発明の赤血球変形能測定装置は、赤血球の変形能の
大きさと粒子検出手段の赤血球検出信号の谷波形信号の
谷の深さとの間に因果関係があるので、谷の深さ信号発
生手段より谷の深さ信号を発生させ、変形能算出手段よ
り谷の深さ信号の強度分布の統計量を得ると、この統計
量は血液希釈液の赤血球の変形能の大きさを表すことと
なる。
(Function) The red blood cell deformability measuring device of the present invention has a causal relationship between the magnitude of the deformability of red blood cells and the depth of the trough of the trough waveform signal of the red blood cell detection signal of the particle detection means. When the signal generation means generates a valley depth signal and the deformability calculation means obtains the statistical value of the intensity distribution of the valley depth signal, this statistical value represents the magnitude of the deformability of red blood cells in the blood dilution solution. That will happen.

したがって、従来のフィルタを用いることなく赤血球の
変形能を測定でき、しかも赤血球数を同時に求めること
ができる。
Therefore, the deformability of red blood cells can be measured without using conventional filters, and the number of red blood cells can be determined simultaneously.

この発明の他の赤血球変形能測定装置は、赤血球の変形
能の大きさと赤血球検出信号の谷波形の信号の谷の波高
値の最頻値と単一ピーク波形の信号の波高値の最頻値と
の不一致の程度との間に因果関係があるので、容性高値
検出手段および容性高値最頻値検出手段より得られた谷
波形の谷の波高値の最頻値と、単一ピーク波高値検出手
段および単一ピーク波高値最頻値検出手段より得られた
単一ピーク波形の波高値の最頻値とから、変形能算出手
段で比較値を得ると、この比較値は血液希釈液の赤血球
の変形能の大きさを表し、このため従来のフィルタを用
いることなく赤血球の変形能を測定でき、しかも赤血球
数を同時に求めることができる。
Another red blood cell deformability measuring device of the present invention is characterized in that the magnitude of deformability of red blood cells, the mode of the peak value of the trough of the signal of the valley waveform of the red blood cell detection signal, and the mode of the peak value of the signal of the single peak waveform are determined. Since there is a causal relationship between the degree of discrepancy between When a comparison value is obtained by the deformability calculation means from the mode of the peak value of the single peak waveform obtained by the high value detection means and the single peak peak value mode detection means, this comparison value is Therefore, the deformability of red blood cells can be measured without using conventional filters, and the number of red blood cells can be determined at the same time.

(実施例) この発明の第1の実施例を第1図ないし第9図に基づい
て説明する。すなわち、この赤血球変形能測定装置は、
粒子検出手段1と、谷深さ信号発生手段2と、変形能算
出手段3とを有する。
(Example) A first example of the present invention will be described based on FIGS. 1 to 9. In other words, this red blood cell deformability measuring device:
It has a particle detection means 1, a valley depth signal generation means 2, and a deformability calculation means 3.

粒子検出手段1は、第2図に示すように、血液希釈液5
が通過する細孔6を有する絶縁体7により一対の電極9
.10間を仕切るとともに電極910間に電圧を印加し
細孔6を赤血球が通過するごとに電極9.10間に現れ
る赤血球検出信号を出力するものである。第2図では、
絶縁体7は容器8内に浸漬された検出器を実施例とし、
細孔6を通して血液希釈液5を吸引する液体制御装置1
1を検出器に設けている。12は検出回路であり、赤血
球が細孔6を通過するたびに赤血球と血液希釈液5との
電気的インピーダンスの差に基づいて、赤血球の大きさ
に比例したパルス状の信号を発生する。
The particle detection means 1, as shown in FIG.
A pair of electrodes 9 are formed by an insulator 7 having pores 6 through which
.. A voltage is applied between the electrodes 910 and a red blood cell detection signal appearing between the electrodes 9 and 10 is output each time a red blood cell passes through the pore 6. In Figure 2,
The insulator 7 is an example of a detector immersed in a container 8,
Liquid control device 1 sucking blood diluent 5 through pore 6
1 is installed on the detector. A detection circuit 12 generates a pulse-like signal proportional to the size of the red blood cells based on the difference in electrical impedance between the red blood cells and the blood diluent 5 each time the red blood cells pass through the pores 6.

この粒子検出手段1より得られる赤血球検出信号の詳細
を第3図により説明する。すなわち、第3図は細孔6付
近を拡大して示した説明図であり、絶縁体7の細孔6を
通じてのみ第2図の電pii9゜10間に電流が流れる
ように電極9,10間に電圧が印加されている。
Details of the red blood cell detection signal obtained by this particle detection means 1 will be explained with reference to FIG. That is, FIG. 3 is an explanatory diagram showing the vicinity of the pore 6 in an enlarged manner, and the electrodes 9 and 10 are connected so that the current flows only through the pore 6 of the insulator 7 between the electrodes 9 and 10 in FIG. voltage is applied to.

赤血球検出信号の波形は、細孔6における赤血球の粒子
16のたとえば通過経路イル二に対応して第4図のイ′
〜二′のようになる。ただし、図は赤血球の通過を重ね
て表しており、実際には各状態が別個に起こる程度に懸
濁液の赤血球濃度は調整されている。
The waveform of the red blood cell detection signal is as shown in FIG.
It becomes like ~2′. However, the diagram shows the passage of red blood cells in an overlapping manner, and in reality, the red blood cell concentration in the suspension is adjusted to such an extent that each state occurs separately.

第4図において、波形イ′は、細孔6の壁面のごく近く
を赤血球の粒子16が通過する、通過経路イの場合のも
のであり、細孔6の入口および出口で鋭い波高値のピー
クを示し、2つのピークの間にはゆるやかな谷がある。
In FIG. 4, waveform A' is for passage path A in which red blood cell particles 16 pass very close to the wall surface of pore 6, with sharp peaks at the entrance and exit of pore 6. , and there is a gentle valley between the two peaks.

この波形イ′のような形状の信号を以下、谷波形の信号
と呼ぶ。
A signal having a shape like this waveform A' will hereinafter be referred to as a valley waveform signal.

波形口′は、細孔6の中心近くを2つの粒子16が近接
して通過する、通過経路口の場合のものであり、2つの
ピークの間に深い谷がある。
The corrugated opening' is a case of a passageway opening in which two particles 16 pass close to each other near the center of the pore 6, and there is a deep valley between the two peaks.

波形ハ′は、細孔6の丁度中心を粒子16が通過する、
通過経路への場合のものであり、ピークが1つである対
象形のきれいな波形を示している。
The waveform C' indicates that the particle 16 passes through the exact center of the pore 6.
It shows a clear symmetrical waveform with one peak.

この波形ハ′のような形状の信号を以下、単一ピーク波
形の信号と呼ぶ。
A signal having a shape like this waveform C' will hereinafter be referred to as a signal with a single peak waveform.

波形二′は、入口では細孔6の壁面近くを、出口では中
心付近を通るように斜めに通過する、通過経路二の場合
のものであり、入口付近でのみ鋭いピークを示している
Waveform 2' is for passage route 2, in which the pore passes diagonally near the wall surface of the pore 6 at the entrance and near the center at the exit, and shows a sharp peak only near the entrance.

このように細孔6の入口、出口の壁面近くを粒子16が
通過したときに波形が鋭いピークを示すのは、この付近
(いわゆる細孔6のエツジ部分)の電流密度が高いため
である。また粒子16が細孔6の中心を通過したときよ
りも細孔6の壁面近くを通過したときの方が波形の幅が
長いのは、壁面近くでは流速が遅くなっており、中心部
を通過したときよりも粒子16の通過に時間がかかるた
めである。
The reason why the waveform exhibits a sharp peak when the particle 16 passes near the wall surfaces of the entrance and exit of the pore 6 is that the current density is high in this vicinity (the so-called edge portion of the pore 6). Furthermore, the waveform width is longer when the particles 16 pass near the wall of the pore 6 than when they pass through the center of the pore 6, because the flow velocity is slower near the wall and the particle 16 passes through the center. This is because it takes more time for the particles 16 to pass than when the particles 16 do.

なお、この粒子検出手段1は、粒子が細孔を通過する流
路を中心部の狭い範囲に流体力学的に絞る、いわゆる「
シースフロー」を形成した装置とは異なる。また仮に同
じ大きさの粒子16が細孔6を通過した場合でも、その
通過経路の違いによって波形のピークの波高値は異なる
ことになるが、細孔の長さがその径よりも長いときには
、粒子の通過経路には無関係に粒子検出波形の中央の波
高値が粒子の体積に正確に比例するという性質を有する
ので、単一ピーク波形の信号に対してはピークの波高値
を検出し、谷波形の信号に対しては谷の部分の波高値を
検出することにより、粒子の体積に比例した大きさの赤
血球検出信号を得ることができる(たとえば、特開昭6
0−257342号、特願昭62−137299号)。
Note that this particle detection means 1 uses a so-called "
This is different from the device that created "Sheath Flow". Furthermore, even if particles 16 of the same size pass through the pores 6, the wave height value of the peak of the waveform will differ depending on the difference in the passage route, but when the length of the pore is longer than its diameter, Since the peak value at the center of the particle detection waveform has the property of being exactly proportional to the volume of the particle, regardless of the particle passage path, for a signal with a single peak waveform, the peak peak value is detected and the trough is detected. For a waveform signal, by detecting the wave height value of the valley part, it is possible to obtain a red blood cell detection signal whose size is proportional to the volume of the particle (for example, as disclosed in Japanese Patent Laid-Open No. 6
No. 0-257342, Japanese Patent Application No. 137299/1982).

つぎに谷深さ信号発生手段2について、説明する。すな
わち、この谷深さ信号発生手段2は、赤血球検出信号の
うち谷を有する谷波形の信号の最初のピークの波高値と
前記谷の波高値との差である谷の深さ信号を発生するも
のである。第5図に示すように、第1のピークホールド
手段17に赤血球検出信号を入力するとたとえば谷波形
の信号M1はその最初のピークである第1のピークホー
ルド値M2が得られる。つぎに第1の差信号発生手段1
8により第1のピークホールド値M2と谷波形の信号M
lとの差である第1の差信号M4が得られ、第2のピー
クホールド手段19により第N 1の差信号M4の最初のピークである第2のピークホー
ルド値M5が得られ、これが谷の深さ信号となる。これ
らのより具体的な回路は粒子の体積に正確に比例した波
高値を得る発明(特願昭62137299号)の構成の
一部と共通している。
Next, the valley depth signal generating means 2 will be explained. That is, this valley depth signal generating means 2 generates a valley depth signal which is the difference between the peak value of the first peak of the signal of the valley waveform having valleys in the red blood cell detection signal and the peak value of the valley. It is something. As shown in FIG. 5, when a red blood cell detection signal is inputted to the first peak hold means 17, a first peak hold value M2, which is the first peak of the signal M1 having a trough waveform, for example, is obtained. Next, the first difference signal generating means 1
8, the first peak hold value M2 and the valley waveform signal M
A first difference signal M4, which is the difference from the N1 difference signal M4, is obtained, and a second peak hold value M5, which is the first peak of the N1 difference signal M4, is obtained by the second peak hold means 19, which is the trough. becomes the depth signal. These more specific circuits share a part of the structure of the invention (Japanese Patent Application No. 62137299) which obtains a wave height value that is exactly proportional to the volume of particles.

ところで、赤血球希釈液の試料を測定して、単一ピーク
波形の信号および谷波形の信号の発生頻度を調べてみる
と、健常者の赤血球希釈液試料と赤血球に固定化処理を
施した同定赤血球の試料とでは若干の差があるが、いず
れも谷波形の信号の発生頻度は10%ないし20%の範
囲にあった。
By the way, when we measured samples of diluted red blood cells and investigated the frequency of single peak waveform signals and signals with trough waveforms, we found that the diluted red blood cell samples of healthy individuals and the identified red blood cells that had been subjected to the fixation process were Although there are some differences between the two samples, the frequency of occurrence of valley waveform signals was in the range of 10% to 20% in all cases.

ところが、谷波形の信号の形状をオシロスコープにより
詳細に観察すると、健常者の赤血球希釈液試料と固定赤
血球の試料とでは明確な差があることがわかった。第6
図ないし第9図は、いずれもオシロスコープにより観察
した赤血球検出信号の波形を示すものである。第6図は
健常者の赤血球希釈液試料を測定したときに観察された
単一ピーク波形の信号の代表例の信号20を示すもので
あり、第7図は同じく谷波形の信号の代表例の信号21
を示すものである。また第8図は固定赤血球の試料を測
定したときに観察された単一ピーク波形の信号の代表例
の信号22を示すものであり、第9図は同じく谷波形の
信号の代表例の信号23を示すものである。これらの信
号のうち谷波形の信号の場合、細孔6内の粒子16の通
過経路によって谷波形の信号の形状は種々に変形するが
、健常者の赤血球の場合にはほとんどの谷波形が第7図
に示すような明確な谷の深さN1を有する2つのピーク
を持つものであった。これに対して、固定赤血球の試料
の場合の谷波形は、はとんどが第9図に示すように谷の
深さN2が小さく最初のピークが明確でないものであっ
た。しかし単一ピーク波形信号については、第6図およ
び第8図に示すように、両波形に特徴的な差は見られな
い。
However, when the shape of the valley waveform signal was observed in detail using an oscilloscope, it was found that there was a clear difference between the diluted red blood cell sample and the fixed red blood cell sample from healthy individuals. 6th
9 through 9 each show the waveform of a red blood cell detection signal observed with an oscilloscope. Figure 6 shows a signal 20 that is a typical example of a signal with a single peak waveform observed when measuring a diluted red blood cell sample of a healthy person, and Figure 7 shows a typical example of a signal with a trough waveform. signal 21
This shows that. Further, FIG. 8 shows a signal 22 which is a typical example of a signal with a single peak waveform observed when a sample of fixed red blood cells was measured, and FIG. 9 shows a signal 23 which is a typical example of a signal with a trough waveform. This shows that. Among these signals, in the case of a trough waveform signal, the shape of the trough waveform signal changes variously depending on the passage path of the particle 16 in the pore 6, but in the case of red blood cells of a healthy person, most of the trough waveforms are It had two peaks with a clear valley depth N1 as shown in Figure 7. On the other hand, in the case of fixed red blood cell samples, the valley waveforms were mostly such that the valley depth N2 was small and the first peak was not clear, as shown in FIG. However, as for the single peak waveform signal, as shown in FIGS. 6 and 8, there is no characteristic difference between the two waveforms.

周知の通り、健常者の赤血球は大きな変形能を有し、固
定赤血球はほとんど変形能を持たない。
As is well known, healthy red blood cells have a large deformability, while fixed red blood cells have almost no deformability.

このため、赤血球が細孔6を通過するときには大きなす
り応力を受けるので、健常者の赤血球は大きく変形する
が、固定赤血球はほとんど変形しないはずである。
Therefore, when the red blood cells pass through the pores 6, they are subjected to a large abrasion stress, so the red blood cells of a healthy person are greatly deformed, but the fixed red blood cells should hardly be deformed.

したがって、前記現象は、その詳細なメカニズムは不明
であるが、細孔6のエツジ付近すなわち電界強度が最も
高くなっている箇所を赤血球が通過するときの赤血球検
出信号の波形(すなわち谷波形)に、赤血球の変形能の
差が現れたものと考えることができる。
Therefore, although the detailed mechanism is unknown, the above phenomenon is caused by the waveform (i.e., trough waveform) of the red blood cell detection signal when the red blood cell passes near the edge of the pore 6, that is, the location where the electric field strength is highest. This can be considered to be due to the difference in the deformability of red blood cells.

その結果、谷波形の最初のピークの高さ(波高値)と谷
の部分の高さ(波高値)との差、すなわち谷の深さを検
出すれば、赤血球の変形能を比較でき、また変形能を知
ることができる。
As a result, by detecting the difference between the height of the first peak of the trough waveform (wave height value) and the height of the trough portion (wave height value), that is, the depth of the trough, it is possible to compare the deformability of red blood cells. You can know the deformability.

なお、谷深さ信号発生手段2は、周知のピークホールド
手段により谷波形信号の最初のピーク値をホールドし、
同じく周知のサンプルホールド手段により谷波形信号の
谷の部分の波高値をホールドし、前者のホールド値から
後者のホールド値を引く回路構成としてもよい。
Note that the valley depth signal generating means 2 holds the first peak value of the valley waveform signal by a well-known peak hold means,
Similarly, a circuit configuration may be employed in which the peak value of the valley portion of the valley waveform signal is held by a well-known sample and hold means, and the latter hold value is subtracted from the former hold value.

つぎに変形能算出手段3について、説明する。Next, the deformability calculating means 3 will be explained.

すなわち、この変形能算出手段3は、谷の深さ信号の強
度分布の平均値等の統計量を算出するものである。この
実施例では、第5図における谷の深さ信号M5をA/D
変換したのち、谷の深さ信号M5の強度分布に関する統
計量を算出する。統計量としては、強度分布の平均値や
最頻値等がある。
That is, the deformability calculation means 3 calculates statistics such as the average value of the intensity distribution of the valley depth signal. In this embodiment, the valley depth signal M5 in FIG.
After the conversion, statistics regarding the intensity distribution of the valley depth signal M5 are calculated. Examples of statistics include the average value and mode of the intensity distribution.

なお、同一の赤血球希釈液試料中の赤血球から得られる
谷の深さ信号であっても、各々の谷の深さ信号M5の大
きさは、赤血球の大きさおよび細孔6内における赤血球
の通過経路によって異なってくる。しかし、たとえば谷
の深さ信号の強度分布の平均値を算出すると、その平均
値は、赤血球希釈液試料中の赤血球の変形能の平均的な
値を示すことになる。
Note that even if the valley depth signals are obtained from red blood cells in the same diluted red blood cell sample, the magnitude of each valley depth signal M5 depends on the size of the red blood cells and the passage of the red blood cells in the pore 6. It varies depending on the route. However, for example, when the average value of the intensity distribution of the valley depth signal is calculated, the average value indicates the average value of the deformability of the red blood cells in the diluted red blood cell sample.

さらに、この変形能算出手段3は変形能を直接表す数値
に統計量を変換してもよい。たとえば、あらかじめこの
発明により得られる統計量と、従来例より得られる変形
能との間の較正曲線を求めて変形能算出手段3に記憶し
ておき、その較正曲線にしたがって変形能を算出し出力
する。
Furthermore, the deformability calculation means 3 may convert the statistical amount into a numerical value that directly represents the deformability. For example, a calibration curve between the statistics obtained by the present invention and the deformability obtained from the conventional example is obtained and stored in the deformability calculating means 3, and the deformability is calculated and output according to the calibration curve. do.

なお、赤血球の変形能を表す標準的な方法は現在のとこ
ろ存在しないので、この発明における統計量をそのまま
赤血球の変形能として出力してもよい。
Note that, since there is currently no standard method for expressing the deformability of red blood cells, the statistics in this invention may be directly output as the deformability of red blood cells.

また、谷の深さ信号の強度には赤血球の大きさの情報も
ある程度含まれているので、前記統計量を、同一の赤血
球希釈液試料中の赤血球の平均体積で割って、赤血球の
大きさに影響されないようにすることも有効である。赤
血球の平均体積は赤血球数および赤血球の大きさに比例
して波高値を検出することにより容易に算出される。
In addition, since the intensity of the valley depth signal includes some information about the size of red blood cells, the above statistics can be divided by the average volume of red blood cells in the same diluted red blood cell sample to determine the size of red blood cells. It is also effective to avoid being influenced by The average volume of red blood cells can be easily calculated by detecting the peak value in proportion to the number and size of red blood cells.

この実施例によれば、赤血球の変形能の大きさと粒子検
出手段1の赤血球検出信号の谷波形信号の谷の深さとの
間に因果関係があるので、谷の深さ信号発生手段2より
谷の深さ信号を発生させ、変形能算出手段3より谷の深
さ信号の強度分布の統計量を得ると、この統計量は血液
希釈液の赤血球の変形能の大きさを表すこととなる。し
たがって、従来のフィルタを用いることなく赤血球の変
形能を測定できる。
According to this embodiment, since there is a causal relationship between the deformability of red blood cells and the depth of the valley of the valley waveform signal of the red blood cell detection signal of the particle detection means 1, the valley depth signal generation means 2 When a depth signal is generated and a statistic of the intensity distribution of the valley depth signal is obtained from the deformability calculation means 3, this statistic represents the magnitude of the deformability of red blood cells in the blood dilution solution. Therefore, the deformability of red blood cells can be measured without using conventional filters.

しかも、フィルタを用いないため、測定試料の赤血球検
出信号をカウントすることができるので、赤血球数を同
時に求めることができる。その結果、従来のように赤血
球の変形能を測定する装置と赤血球数を求める装置とを
別々の装置としていた場合よりも、はるかに簡単な構成
とすることができる。
Moreover, since no filter is used, the red blood cell detection signal of the measurement sample can be counted, so the number of red blood cells can be determined at the same time. As a result, the configuration can be much simpler than the conventional case in which a device for measuring the deformability of red blood cells and a device for determining the number of red blood cells are separate devices.

この発明の第2の実施例を第10図ないし第14図によ
り説明する。すなわち、この赤血球変形能測定装置は、
粒子検出手段1と、容性高値検出手段27と、谷波高値
最頻値検出手段28と、単一ピーク波高値検出手段25
と、単一ピーク波高値最頻値検出手段26と、変形能算
出手段29とを有する。
A second embodiment of the invention will be explained with reference to FIGS. 10 to 14. In other words, this red blood cell deformability measuring device:
Particle detection means 1, capacitive high value detection means 27, trough height value mode detection means 28, and single peak wave height value detection means 25
, single peak peak value mode detection means 26 , and deformability calculation means 29 .

粒子検出手段1は第1の実施例と同様である。The particle detection means 1 is the same as in the first embodiment.

容性高値検出手段27は、粒子検出手段lで得られる赤
血球検出信号のうち谷を有する谷波形の信号の谷の波高
値を検出する。実施例では第11図に示すように、第1
のピークホールド手段17に赤血球検出信号が入力され
ると谷波形の信号M1の場合最初のピークである第1の
ピークホールド値M2が得られ、第1の差信号発生手段
18により第1のピークホールド値M2と谷波形信号M
1との差である第1の差信号M4が得られ、第2のピー
クホールド手段19により第1の差信号M4の最初のピ
ークである第2のピークホールド値貼が得られ第2の差
信号発生手段20により第1のピークホールド値M2と
第2のピークホールド値M5との差である第2の差信号
M6が得られ、この第2の差信号M6が谷波形の信号M
lの谷M3の波高値となる。このブロックの具体的な回
路構成は、たとえば特願昭62−137299号に示さ
れたものと同様であるので説明を省略する。
The capacitance high value detection means 27 detects the peak value of the trough of a signal having a trough waveform among the red blood cell detection signals obtained by the particle detection means 1. In the example, as shown in FIG.
When the red blood cell detection signal is input to the peak hold means 17, a first peak hold value M2, which is the first peak, is obtained in the case of a valley waveform signal M1, and the first peak hold value M2 is obtained by the first difference signal generating means 18. Hold value M2 and valley waveform signal M
A first difference signal M4, which is the difference from 1, is obtained, and a second peak hold value, which is the first peak of the first difference signal M4, is obtained by the second peak hold means 19, and the second difference signal M4 is obtained. A second difference signal M6, which is the difference between the first peak hold value M2 and the second peak hold value M5, is obtained by the signal generating means 20, and this second difference signal M6 is a valley waveform signal M.
This is the peak value of the valley M3 of l. The specific circuit configuration of this block is the same as that shown in, for example, Japanese Patent Application No. 137299/1982, so a description thereof will be omitted.

谷波高値最頻値検出手段28は、前記谷の波高値の強度
分布の最頻値を検出する。すなわち、容性高値検出手段
27から入力された波高値はA/D変換されたのち、波
高値分布の最頻値(ピークの位置)を求めるようにする
The trough peak value mode detecting means 28 detects the mode of the intensity distribution of the trough peak values. That is, the peak value input from the capacitive peak value detection means 27 is A/D converted, and then the mode (peak position) of the peak value distribution is determined.

単一ピーク波高値検出手段25は、赤血球検出信号のう
ち単一ピーク波形の信号の波高値を検出する。この波高
値は、第11図に示す容性高値検出手段27の第1のピ
ークホールド値M2を第2の差信号発生手段20で差を
とらないことにより出力することより検出することがで
きる。また、通常のピークホールド回路によってももち
ろん検出できる。
The single peak peak value detection means 25 detects the peak value of a signal having a single peak waveform among the red blood cell detection signals. This peak value can be detected by outputting the first peak hold value M2 of the capacitive high value detection means 27 shown in FIG. 11 by the second difference signal generation means 20 without taking the difference. Of course, it can also be detected using a normal peak hold circuit.

単一ピーク波高値最頻値検出手段26は、単一ピーク波
形の波高値の分布の最頻値を検出する。
The single peak peak value mode detecting means 26 detects the mode of the distribution of peak values of the single peak waveform.

すなわち、容性高値最頻値検出手段28と同様に、入力
された波高値をA/D変換したのち、波高値の分布の最
頻値(ピークの位置)を求める。なお、第4図に示す2
つのピークの間に深い谷がある波形口′のような信号は
、谷波形ではなく、2つの単一ピーク波形が近接して重
なって現れたものであるから、2つのピークそれぞれを
単一ピーク波形の信号のピークの波高値として取り出す
That is, like the capacity peak value mode detection means 28, after A/D converting the input peak value, the mode (peak position) of the distribution of peak values is determined. Note that 2 shown in Figure 4
A signal with a deep valley between two peaks is not a valley waveform, but two single peak waveforms that overlap closely, so each of the two peaks is treated as a single peak. Extract as the peak value of the waveform signal.

さて、第12図ないし第14図は、同一の赤血球希釈液
試料中の赤血球による、単一ピーク波形の信号の波高値
の分布曲線pと、谷波形の信号の谷の波高値の分布曲線
qとを重ねて表したもので、図の横軸は信号の強度を、
縦軸は頻度を表している。このうち第12図は、健常者
の赤血球希釈液の試料を測定したとき得られたものであ
る。この図において、分布曲線p、qの各々の平均粒子
体積(すなわち平均信号強度)を求めると、分布曲線p
においては92.5fIl (フェムトリットル)であ
り、分布曲線qにおいては92.9fβであった。この
ことから、平均粒子体積について両者の間にはほとんど
差が無く、したがって前述の細孔6の長さがその径より
も長いときには粒子16の通過経路には無関係に粒子検
出波形の中央の波高値が粒子16の体積に正確に比例す
るという性質が確認され、分布曲線p、qの各分布をあ
わせて平均赤血球体積を求めても良いことがわかる。
Now, FIGS. 12 to 14 show the distribution curve p of the peak value of a signal with a single peak waveform and the distribution curve q of the peak value of the trough of a signal with a trough waveform due to red blood cells in the same diluted red blood cell sample. The horizontal axis of the figure represents the signal strength,
The vertical axis represents frequency. Of these, FIG. 12 is the result obtained when a sample of diluted red blood cells of a healthy person was measured. In this figure, when the average particle volume (i.e., average signal intensity) of each of the distribution curves p and q is determined, the distribution curve p
It was 92.5fIl (femtoliter) in the distribution curve q, and 92.9fβ in the distribution curve q. From this, it can be seen that there is almost no difference between the two in terms of average particle volume, and therefore, when the length of the aforementioned pore 6 is longer than its diameter, the central wave of the particle detection waveform is independent of the passage path of the particle 16. The property that the high value is exactly proportional to the volume of the particles 16 has been confirmed, and it can be seen that the average red blood cell volume can be determined by combining each distribution of the distribution curves p and q.

一方、分布曲線p、qのピークの位置すなわち分布の最
頻値を比較すると、分布曲線qの最頻値の方が明らかに
信号の大きい側へずれていることがわかる。第13図は
第12図における分布曲線qのピークの高さを分布部&
’51pのピークの高さに一致するように描き直したも
のであるが、分布曲線p、qのピークの位置がずれてい
ることが、より明確になっている。
On the other hand, when comparing the peak positions of the distribution curves p and q, that is, the mode of the distribution, it is found that the mode of the distribution curve q clearly deviates to the side where the signal is larger. Figure 13 shows the height of the peak of the distribution curve q in Figure 12 as the distribution part &
Although it has been redrawn to match the peak height of '51p, it is now clearer that the peak positions of distribution curves p and q are shifted.

これに対して、第14図は固定赤血球の試料を測定した
ときの単一ピーク波形の信号の波高値の分布と谷波形の
信号の谷の波高値の分布とを重ねて表したものであり、
第13図と同様に分布曲線qのピークの高さを分布部w
Apのピークの高さに一致するように描いている。この
図から明らかなように、第14図の固定赤血球の試料の
場合には第13図の健常者の赤血球希釈液試料の場合と
は異なり、分布曲線p、qのピーク位置はほぼ一致して
いる。
On the other hand, Fig. 14 shows the distribution of the peak value of the single peak waveform signal and the distribution of the peak value of the trough of the trough waveform signal superimposed when measuring a sample of fixed red blood cells. ,
Similarly to Fig. 13, the height of the peak of the distribution curve q is defined as the distribution part w.
It is drawn to match the peak height of Ap. As is clear from this figure, in the case of the fixed red blood cell sample in Figure 14, the peak positions of the distribution curves p and q are almost the same, unlike in the case of the diluted red blood cell sample of a healthy person in Figure 13. There is.

前述の通り、健常者の赤血球は大きな変形能を有し、固
定赤血球はほとんど変形能を持たないため、谷の深さ信
号のときと同様に詳細なメカニズムは不明であるが、赤
血球の変形能の差が分布曲線p、  qのピーク位置の
ずれの程度の差として現れたものと考えることができる
As mentioned above, healthy red blood cells have a large deformability, and fixed red blood cells have almost no deformability.As with the trough depth signal, the detailed mechanism is unknown, but the deformability of red blood cells is It can be considered that the difference between the distribution curves p and q appears as a difference in the degree of deviation of the peak positions of the distribution curves p and q.

変形能算出手段29は、谷波形の谷の波高値の分布の最
頻値と前記単一ピーク波形の波高値の分布の最頻値とを
比較して最頻値の比等の比較値を算出する。両最頻値の
比をとって比較値としだ場合には、赤血球の大きさ情報
はキャンセルされるから、比較値は赤血球の大きさに影
響されない。
The deformability calculation means 29 compares the mode of the distribution of peak values of the valleys of the valley waveform with the mode of the distribution of peak values of the single peak waveform, and calculates a comparison value such as a ratio of the mode values. calculate. When the comparison value is determined by taking the ratio of both modes, the size information of the red blood cells is canceled, so the comparison value is not affected by the size of the red blood cells.

また比較値として、両最頻値の差をとってもよいが、最
頻値自身には赤血球の大きさに関する情報が含まれてい
るから、その比較値は赤血球の大きさに影響される点を
考慮する必要がある。
Also, as a comparison value, you can take the difference between both mode values, but since the mode itself includes information about the size of red blood cells, it should be taken into consideration that the comparison value will be affected by the size of red blood cells. There is a need to.

さらに、この変形能算出手段29は第1の実施例の変形
能算出手段3と同様に、変形能を直接表す数値に比較値
を変換してもよい。
Furthermore, the deformability calculation means 29 may convert the comparison value into a numerical value that directly represents the deformability, similarly to the deformability calculation means 3 of the first embodiment.

なお、容性高値検出手段27は、周知のサンプルホール
ド手段により谷波形の信号の谷の部分の波高値を直接ホ
ールドする構成としても良い。また単一ピーク波高値検
出手段25.容性高値検出手段27ともに第11図に示
す構成を採用すれば、単一ピーク波高値検出手段25お
よび容性高値検出手段27を共用とすることができ、装
置構成を簡略化する上で好都合である。
Note that the capacitive high value detection means 27 may be configured to directly hold the peak value of the valley portion of the signal of the valley waveform using a well-known sample hold means. Also, single peak peak value detection means 25. If both the capacitive high value detecting means 27 adopt the configuration shown in FIG. 11, the single peak peak value detecting means 25 and the capacitive high value detecting means 27 can be used in common, which is convenient for simplifying the device configuration. It is.

また単一ピーク波高値最顧値検出手段26は、容性高値
最頻値検出手段28と同じ機能を持つので、一つの最頻
値検出手段を共用にしてもよい。
Further, since the single peak peak value most frequent value detection means 26 has the same function as the capacitance maximum value most common value detection means 28, one mode detection means may be used in common.

この実施例によれば、赤血球の変形能の大きさと赤血球
検出信号の谷波形の信号の谷の波高値の最頻値と単一ピ
ーク波形の信号の波高値の最頻値との不一致の程度との
間に因果関係があるので、合波高値検出手段27および
谷波高値最頻値検出手段28より得られた谷波形の谷の
波高値の最頻値と、単一ピーク波高値検出手段25およ
び単一ピーク波高値最頻値検出手段26より得られた単
一ピーク波形の波高値の最頻値とから、変形能算出手段
29で比較値を得ると、この比較値は血液希釈液の赤血
球の変形能の大きさを表し、このため従来のフィルタを
用いることなく赤血球の変形能を測定でき、しかも赤血
球数を同時に求めることができる。
According to this embodiment, the magnitude of the deformability of red blood cells and the degree of discrepancy between the mode of the trough peak values of the trough waveform of the red blood cell detection signal and the mode of the peak values of the signal of the single peak waveform. Since there is a causal relationship between the peak value of the trough of the trough waveform obtained by the combined peak value detection means 27 and the trough peak value detection means 28, the single peak peak value detection means 25 and the mode of the peak value of the single peak waveform obtained by the single peak peak value mode detection means 26, the deformability calculation means 29 obtains a comparison value. Therefore, the deformability of red blood cells can be measured without using conventional filters, and the number of red blood cells can be determined at the same time.

〔発明の効果〕〔Effect of the invention〕

この発明の赤血球変形能測定装置によれば、赤血球の変
形能の大きさと粒子検出手段の赤血球検出信号の谷波形
信号の谷の深さとの間に因果関係があるので、谷の深さ
信号発生手段より谷の深さ信号を発生させ、変形能算出
手段より谷の深さ信号の強度分布の統計量を得ると、こ
の統計量は血液希釈液の赤血球の変形能の大きさを表す
こととなる。したがって、従来のフィルタを用いること
なく赤血球の変形能を測定でき、しかも赤血球数を同時
に求めることができるという効果がある。
According to the red blood cell deformability measuring device of the present invention, since there is a causal relationship between the magnitude of red blood cell deformability and the depth of the valley of the valley waveform signal of the red blood cell detection signal of the particle detection means, the valley depth signal is generated. When a trough depth signal is generated by the means and a statistic of the intensity distribution of the trough depth signal is obtained by the deformability calculation means, this statistic represents the magnitude of the deformability of red blood cells in the blood dilution solution. Become. Therefore, there is an effect that the deformability of red blood cells can be measured without using a conventional filter, and the number of red blood cells can be determined at the same time.

この発明の他の赤血球変形能測定装置によれば、赤血球
の変形能の大きさと赤血球検出信号の谷波形の信号の谷
の波高値の最頻値と単一ピーク波形の信号の波高値の最
頻値との不一致の程度との間に因果関係があるので、合
波高値検出手段および谷波高値最頻値検出手段より得ら
れた谷波形の谷の波高値の最頻値と、単一ピーク波高値
検出手段および単一ピーク波高値最頻値検出手段より得
られた単一ピーク波形の波高値の最頻値とから、変形能
算出手段で比較値を得ると、この比較値は血液希釈液の
赤血球の変形能の大きさを表し、このため従来のフィル
タを用いることなく赤血球の変形能を測定でき、しかも
赤血球数を同時に求めることができるという効果がある
According to another red blood cell deformability measuring device of the present invention, the magnitude of the deformability of red blood cells, the mode of the peak value of the signal trough of the valley waveform of the red blood cell detection signal, and the maximum value of the peak value of the signal of the single peak waveform are determined. Since there is a causal relationship between the degree of discrepancy with the frequency, the mode of the peak value of the trough of the trough waveform obtained from the combined high value detection means and the trough peak value mode detection means and the single When a comparison value is obtained by the deformability calculation means from the mode of the wave height of the single peak waveform obtained by the peak wave height value detection means and the single peak wave height value mode detection means, this comparison value It represents the degree of deformability of red blood cells in a diluted solution, and therefore has the effect that the deformability of red blood cells can be measured without using a conventional filter, and the number of red blood cells can be determined at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の実施例の概略説明図、第2図
は粒子検出手段の概略図、第3図は粒子が細孔を通過す
る過程を説明した説明図、第4図は細孔を通過する粒子
の各種の赤血球検出信号の波形図、第5図は谷の深さ信
号検出手段のブロック図、第6図は健常者の赤血球希釈
液試料を測定したときにオシロスコープにより観察され
た単一ピーク波形の信号の代表例を示す波形図、第7図
は同じく健常者の谷波形の信号の代表例を示す波形図、
第8図は固定赤血球の試料を測定したときにオシロスコ
ープにより観察された単一ピーク波形の信号の代表例を
示す波形図、第9図は同じく固定赤血球試料の谷波形の
信号の代表例を示す波形図、第10図はこの発明の第2
の実施例のブロック図、第11図は合波高値検出手段の
ブロック図、第12図は健常者の赤血球希釈液試料を測
定したとき得られた単一ピーク波形の信号の波高値の分
布と谷波形の信号の谷の波高値の分布とを重ねて表した
分布図、第13図は第12図における分布qのピークの
高さを分布pのピークの高さに一致するように描き直し
たときの分布図、第14図は固定赤血球希釈液試料を測
定したとき得られた単一ピーク波形の信号の波高値の分
布と谷波形の信号の谷の波高値の分布とを重ねて表した
分布図である。 1・・・粒子検出手段、2・・・谷の深さ信号発生手段
、3.29・・・変形能算出手段、25・・・単一ピー
ク波高値検出手段、26・・・単一ピーク波高値最頻値
検出手段、27・・・合波高値検出手段、28・・・谷
波高値最頻値検出手段 第 図 第 図 第 図 第 図
FIG. 1 is a schematic diagram of the first embodiment of the present invention, FIG. 2 is a schematic diagram of a particle detection means, FIG. 3 is an explanatory diagram illustrating the process of particles passing through pores, and FIG. Waveform diagrams of various red blood cell detection signals of particles passing through the pores, Figure 5 is a block diagram of the valley depth signal detection means, Figure 6 is the waveform observed with an oscilloscope when measuring a diluted red blood cell sample from a healthy person. FIG. 7 is a waveform diagram showing a typical example of a signal with a single peak waveform, and FIG. 7 is a waveform diagram showing a typical example of a signal with a trough waveform of a healthy person.
Figure 8 is a waveform diagram showing a typical example of a signal with a single peak waveform observed by an oscilloscope when measuring a sample of fixed red blood cells, and Figure 9 shows a typical example of a signal with a trough waveform of a fixed red blood cell sample. The waveform diagram, Figure 10, is the second waveform diagram of this invention.
Fig. 11 is a block diagram of the combined wave peak value detection means, and Fig. 12 shows the distribution of peak values of a signal with a single peak waveform obtained when measuring a diluted red blood cell sample of a healthy person. Figure 13 is a distribution diagram that shows the distribution of peak values of the valley waveform signal overlaid with the peak value distribution of the valley. Figure 13 is a distribution diagram in which the height of the peak of distribution q in Figure 12 is redrawn to match the height of the peak of distribution p. Figure 14 shows the distribution of peak values of single peak waveform signals and the distribution of peak values of valleys of trough waveform signals obtained when measuring fixed red blood cell dilution samples. It is a distribution map. DESCRIPTION OF SYMBOLS 1... Particle detection means, 2... Valley depth signal generation means, 3.29... Deformability calculation means, 25... Single peak peak value detection means, 26... Single peak Wave peak value mode detection means, 27... Combined wave peak value detection means, 28... Valley peak value mode detection means (Fig. 1).

Claims (2)

【特許請求の範囲】[Claims] (1)血液希釈液が通過する細孔を有する絶縁体により
一対の電極間を仕切るとともに前記電極間に電圧を印加
し前記細孔を赤血球が通過するごとに前記電極間に現れ
る赤血球検出信号を出力する粒子検出手段と、前記赤血
球検出信号のうち谷を有する谷波形の信号の最初のピー
クの波高値と前記谷の波高値との差である谷の深さ信号
を発生する谷深さ信号発生手段と、前記谷の深さ信号の
強度分布の平均値等の統計量を算出する変形能算出手段
とを備えた赤血球変形能測定装置。
(1) A pair of electrodes is separated by an insulator having pores through which the blood diluent passes, and a voltage is applied between the electrodes to detect a red blood cell detection signal appearing between the electrodes each time a red blood cell passes through the pores. a particle detection means for outputting, and a valley depth signal for generating a valley depth signal that is the difference between the peak value of the first peak of the signal of the valley waveform having valleys in the red blood cell detection signal and the peak value of the valley. A red blood cell deformability measuring device comprising a generating means and a deformability calculating means for calculating a statistic such as an average value of the intensity distribution of the valley depth signal.
(2)血液希釈液が通過する細孔を有する絶縁体により
一対の電極間を仕切るとともに前記電極間に電圧を印加
し前記細孔を赤血球が通過するごとに前記電極間に現れ
る赤血球検出信号を出力する粒子検出手段と、前記赤血
球検出信号のうち谷を有する谷波形の信号の谷の波高値
を検出する谷波高値検出手段と、前記谷波形の谷の波高
値の分布の最頻値を検出する谷波高値最頻値検出手段と
、前記赤血球検出信号のうち単一ピーク波形の信号の波
高値を検出する単一ピーク波高値検出手段と、前記単一
ピーク波形の波高値の分布の最頻値を検出する単一ピー
ク波高値最頻値検出手段と、前記谷波形の谷の波高値の
分布の最頻値と前記単一ピーク波形の波高値の分布の最
頻値とを比較して最頻値の比等の比較値を算出する変形
能算出手段とを備えた赤血球変形能測定装置。
(2) A pair of electrodes is separated by an insulator having pores through which the blood diluent passes, and a voltage is applied between the electrodes to detect a red blood cell detection signal appearing between the electrodes each time a red blood cell passes through the pores. a particle detection means for outputting, a trough height detection means for detecting a trough height value of a signal having a trough waveform among the red blood cell detection signals; a means for detecting the mode of the trough height value; a single peak value detecting means for detecting the peak value of a signal having a single peak waveform among the red blood cell detection signals; A single peak peak value mode detection means for detecting the mode, and comparing the mode of the distribution of the peak values of the troughs of the trough waveform with the mode of the distribution of the peak values of the single peak waveform. A red blood cell deformability measuring device comprising a deformability calculation means for calculating a comparison value such as a ratio of the mode value.
JP23953488A 1988-09-24 1988-09-24 Measuring apparatus for deformability of red blood cell Pending JPH0287043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23953488A JPH0287043A (en) 1988-09-24 1988-09-24 Measuring apparatus for deformability of red blood cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23953488A JPH0287043A (en) 1988-09-24 1988-09-24 Measuring apparatus for deformability of red blood cell

Publications (1)

Publication Number Publication Date
JPH0287043A true JPH0287043A (en) 1990-03-27

Family

ID=17046239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23953488A Pending JPH0287043A (en) 1988-09-24 1988-09-24 Measuring apparatus for deformability of red blood cell

Country Status (1)

Country Link
JP (1) JPH0287043A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009506320A (en) * 2005-08-24 2009-02-12 ベックマン コールター, インコーポレイテッド Method and apparatus for finding the center amplitude of a pulse representing the particle size produced by an aperture-based sizing system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009506320A (en) * 2005-08-24 2009-02-12 ベックマン コールター, インコーポレイテッド Method and apparatus for finding the center amplitude of a pulse representing the particle size produced by an aperture-based sizing system

Similar Documents

Publication Publication Date Title
US8841924B2 (en) Fingered electrodes for microfluidic single particle analysis
JPH03194444A (en) Particle analyzer and blood cell counter
EP0292523B1 (en) Particle analyzer for measuring the resistance and reactance of a particle
JPH0225133B2 (en)
US4525666A (en) Cell breakdown
US4653078A (en) Method and apparatus for detecting occurrence of clogging conditions by counting particles suspended in a liquid method
US3668531A (en) Pulse analyzing apparatus
JPH0287043A (en) Measuring apparatus for deformability of red blood cell
US3961249A (en) Particle size distribution analyzation employing trailing edge differentiation
JPH0287042A (en) Measuring apparatus for deformability of red blood cell
De Bisschop et al. Low-frequency electronic gate detection for the counting and sizing of cells, bacteria, and colloidal particles in liquids
JP2714629B2 (en) Particle counting method and device
US6218190B1 (en) Method for testing a cell suspension
JPS59230139A (en) Particle counting device
JPS6142817B2 (en)
JPS6130707B2 (en)
JPS60128327A (en) Blood cell measuring device
JP2668062B2 (en) Particle counting method and device
JPS5825144A (en) Method and apparatus for analyzing blood
JPS6239374B2 (en)
De Bisschop Electronic gating for particle/cell counting and sizing, DSP-operated
JPH0311724Y2 (en)
JPH0311723Y2 (en)
JPS6113179B2 (en)
JPH0239732B2 (en)