JPH028689A - Waste heat recovery device - Google Patents

Waste heat recovery device

Info

Publication number
JPH028689A
JPH028689A JP15790388A JP15790388A JPH028689A JP H028689 A JPH028689 A JP H028689A JP 15790388 A JP15790388 A JP 15790388A JP 15790388 A JP15790388 A JP 15790388A JP H028689 A JPH028689 A JP H028689A
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
pipe
tank
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15790388A
Other languages
Japanese (ja)
Inventor
Masahiko Furukawa
昌彦 古川
Shigeru Kobayashi
茂 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP15790388A priority Critical patent/JPH028689A/en
Publication of JPH028689A publication Critical patent/JPH028689A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE:To prevent oxidization and corrosion of a pipe within a heat exchanger by a method wherein medium of a low temperature range out of media produced by mixing within a preliminary tank thermal medium of normal temperature with another thermal medium heated in a heat exchanger is supplied to the heat exchanger and medium of high temperature range is recovered. CONSTITUTION:A preliminary tank 11 is composed of an outer tank 13 and an inner tank 14. Water of normal temperature is supplied from a pipe 12 to an outer first tank 13a. Hot water heated by a heat exchanger 3 is supplied to an upper part of the first tank 13a through a pipe 18 and automatically mixed with water of normal temperature. Water of low temperature range collected near a bottom surface of the first tank 13a is heated up to 50 deg.C through its automatic mixing, lifted up by a lifting pipe 15 and a lifting pump 16 and then supplied to the heat exchanger 3. With this arrangement, a temperature at an outer surface of the pipe within the heat exchanger 3 is kept at a temperature higher than its dew point and thus it is possible to prevent any oxidation and corrosion of the pipe. Hot water of high temperature range is discharged and its recovered heat can be utilized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は蒸気生成装置、或は溶液燃焼装置、ガス燃焼装
置、発電用ボイラ、ディーゼルエンジン等から排出され
る高熱ガスの熱を回収する際に用いることのできる廃熱
回収装置に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is applicable to the recovery of heat from high-temperature gas discharged from steam generation equipment, solution combustion equipment, gas combustion equipment, power generation boilers, diesel engines, etc. The present invention relates to a waste heat recovery device that can be used for.

(従来の技術) 一般に化学物質生産工場等においては、所望のものを生
産するために用いた物質(固体、液体、気体)を焼却し
、且つ無害なものに変えるべく、例えば溶液等の液体の
場合、溶液燃焼装置等において、例えば硫黄等の成分を
含む高温ガスをそのまま大気中に排出した場合、公害発
生の一因となる恐れがあるので、脱ガス装置を設けたり
、高温ガスの温度を低下させて無害化を図り、かつ廃熱
を再利用するために廃熱回収装置を設けることがある。
(Prior art) In general, in chemical substance production factories, etc., in order to incinerate the substances (solid, liquid, gas) used to produce desired products and convert them into harmless substances, for example, liquids such as solutions are incinerated. If high-temperature gas containing components such as sulfur is discharged directly into the atmosphere in solution combustion equipment, it may contribute to pollution, so it is necessary to install a degassing device or to lower the temperature of the high-temperature gas. A waste heat recovery device may be installed to reduce the amount of waste heat to make it harmless and to reuse the waste heat.

第3図は従来の廃熱回収装置の一例を示すものであり、
例えば磁気テープ等め磁気記録媒体の製造工程に適用さ
れているものである。
Figure 3 shows an example of a conventional waste heat recovery device.
For example, it is applied to the manufacturing process of magnetic recording media such as magnetic tapes.

溶剤ガス処理装置1は、磁気テープ製造時の溶剤廃液又
は溶剤ガスを処理するものであり、燃焼によって生じた
ガス中の硫黄等の有害成分を基卓量以下に除去するもの
である。前記溶剤ガス処理装置1は、例えば800°C
程度の高温度にて溶剤廃液などを燃焼処理し、有害成分
除去とともにガスの温度を400°C程度に温度低下さ
せてから、該ガスを次の処理段階である蒸気回収装置2
に供給する。
The solvent gas treatment device 1 is for treating solvent waste liquid or solvent gas during the production of magnetic tapes, and is for removing harmful components such as sulfur from the gas generated by combustion to below the standard amount. The solvent gas treatment device 1 has a temperature of, for example, 800°C.
After burning the solvent waste liquid etc. at a high temperature of about 400°C, removing harmful components and lowering the gas temperature to about 400°C, the gas is transferred to the next processing stage, the steam recovery equipment 2.
supply to.

前記蒸気回収装置2は、高熱ガス中から高温蒸気を除去
し、更に250で程度に温度低下させるものである。し
かし、250°C程度の気体をそのまま大気中に排出し
てたのでは危険であること、更にこの廃熱を無駄に捨て
るのではなく再利用するれば省エネルギーの観点から望
ましい。このために、−mに前記蒸気回収装置2の後処
理工程として廃熱回収可能な熱交換器3が設けられてい
る。
The steam recovery device 2 removes high-temperature steam from the high-temperature gas and further lowers the temperature to about 250 yen. However, it is dangerous to discharge the gas at about 250°C directly into the atmosphere, and it is desirable from the viewpoint of energy conservation to reuse this waste heat instead of wasting it. For this purpose, a heat exchanger 3 capable of recovering waste heat is provided at -m as a post-treatment process of the steam recovery device 2.

前記熱交換器3は熱媒体として水を用いたものであり、
高熱ガス中に常温(例えば20°C)の水を通過させ、
高熱ガスを180°C程度に冷却すると同時に、前記水
を前記高熱ガスの温度を利用して例えば60°C程度の
温水に加熱するものである。前記熱交換器3によって冷
却された高熱ガスは、煙突4を介して大気中に排出され
る。
The heat exchanger 3 uses water as a heat medium,
Passing water at room temperature (e.g. 20°C) through high-temperature gas,
The high-temperature gas is cooled to about 180°C, and at the same time, the water is heated to, for example, about 60°C using the temperature of the high-temperature gas. The high-temperature gas cooled by the heat exchanger 3 is discharged into the atmosphere through the chimney 4.

そして、前記熱交換器3から排出される温水は、高熱ガ
スの廃熱を可能なかぎり回収して他の目的で有効利用さ
れる。
The hot water discharged from the heat exchanger 3 is effectively used for other purposes by recovering as much of the waste heat of the high-temperature gas as possible.

(発明が解決しようとする課題) 前記熱交換器3の構造は、いわゆるラジェータ構造にな
されていて、高熱ガス中にテンレスやその地熱伝導率の
良い金属パイプを蛇行状に配管し、更に必要に応じて該
金属パイプにフィン等を設けたごく一般的な構成であり
、該金属パイプ中に前記常温の水を供給することにより
、水の吸熱によって高熱ガスの温度低下を行うとともに
水を加熱するものである。
(Problems to be Solved by the Invention) The structure of the heat exchanger 3 is a so-called radiator structure, in which stainless steel or metal pipes with good geothermal conductivity are arranged in a meandering manner in the high-temperature gas, and This is a very common configuration in which the metal pipe is provided with fins, etc., and by supplying the room temperature water into the metal pipe, the temperature of the high-temperature gas is lowered by the water absorbing heat, and the water is heated. It is something.

ところで、前記構成では、前記熱交換器3に供給する高
熱ガスの温度を一定以上(金属パイプに供給する水の温
度や送水量等の諸条件によって変化するが、一般に25
0°C前後がその臨界温度である)に設定しないと、前
記金属パイプの外側表面、換言すれば高熱ガスとの接触
面が当業者間でいう酸露点(高熱ガスが結露を生じる温
度)以下になり、高熱ガス中の硫黄含溶液(硫酸)が前
記金属パイプの外側表面に凝縮付着する。
By the way, in the above configuration, the temperature of the high-temperature gas supplied to the heat exchanger 3 is set at a certain level or higher (this varies depending on various conditions such as the temperature of the water supplied to the metal pipe and the amount of water supplied, but generally 25
If the outside surface of the metal pipe, in other words the surface that comes into contact with the hot gas, is not set at a temperature of around 0°C (its critical temperature is around 0°C), the temperature will drop below what is known by those skilled in the art as the acid dew point (the temperature at which hot gas condenses). The sulfur-containing solution (sulfuric acid) in the hot gas condenses and adheres to the outer surface of the metal pipe.

前記現象は、金属パイプを酸化腐食させるものであり、
該金属パイプの寿命を著しく損なうものであった。
The phenomenon causes oxidative corrosion of metal pipes,
This significantly shortened the life of the metal pipe.

このため従来は、金属パイプの交換に多大の費用と手間
がかかり、前記廃熱回収装置の最大の難点になっていた
。しかも、煙突4から排出されるガスの温度を大幅に低
下させにくいだけではなく、熱回収効率を向上させ得な
い大きな問題点7゛υtj)9た。
For this reason, conventionally, replacing the metal pipe required a great deal of cost and effort, which was the biggest drawback of the waste heat recovery device. Moreover, it is not only difficult to significantly lower the temperature of the gas discharged from the chimney 4, but also has the major problem of not being able to improve the heat recovery efficiency.

本発明の目的は、前記問題点を解消することにあり、長
期間の使用に耐え得ると同時に従来以上に効率の良い廃
熱回収を行い得る廃熱回収装置を提供するものである。
An object of the present invention is to solve the above-mentioned problems, and to provide a waste heat recovery device that can withstand long-term use and at the same time can recover waste heat more efficiently than before.

(課題を解決するための手段) 本発明に係る前記目的は、排出する高熱ガスを熱交換器
に供給し、該熱交換器内に設けた還流経路に前記高熱ガ
スに対し低温の熱媒体を還流させ、該熱媒体により前記
高熱ガスから熱を回収する廃熱回収装置において、常温
の前記熱媒体と前記熱交換器内の還流によって加熱され
た該熱媒体とを自然混合の状態にて収納する予備タンク
を設け、前記予備タンクに収納された前記媒体のうち低
温領域の該媒体を前記熱交換器の還流経路に供給する供
給手段と、前記予備タンク内の高温領域の前記媒体を該
予備タンクから取り出す回収手段とを備えてなり、前記
熱交換器内を還流する前記熱媒体の温度を高くするよう
に構成したことを特徴とする廃熱回収装置により達成さ
れる。
(Means for Solving the Problems) The object of the present invention is to supply high-temperature gas to be discharged to a heat exchanger, and supply a low-temperature heat medium to the high-temperature gas in a reflux path provided in the heat exchanger. In a waste heat recovery device that recovers heat from the high-temperature gas by refluxing and using the heat medium, the heat medium at room temperature and the heat medium heated by the reflux in the heat exchanger are stored in a state of natural mixing. a supply means for supplying a medium in a low temperature region of the medium stored in the preliminary tank to a reflux path of the heat exchanger; and a supply means for supplying the medium in a high temperature region in the preliminary tank to the This is achieved by a waste heat recovery apparatus characterized in that the waste heat recovery apparatus includes a recovery means for taking out the heat medium from the tank, and is configured to increase the temperature of the heat medium flowing back through the heat exchanger.

即ち、前記予備タンク内に常温の気体または液体を供給
し、これを前記熱交換器内の還流経路から回収される熱
により所定温度に加熱して前記還流経路の入力側に供給
することにより、前記還流経路となる金属パイプの内側
温度が上昇し、高熱ガスの温度に対応した金属パイプの
外側温度との温度差が減少する。この結果、高熱ガス番
症中壽mから従来以上のの熱量を奪いその温度を低下せ
しめても前記金属パイプの外側温度が酸露点以下に低下
せず、これにより硫酸の凝縮付着を低域して酸化腐食を
防止することができる。
That is, by supplying room temperature gas or liquid into the reserve tank, heating it to a predetermined temperature by heat recovered from the reflux route in the heat exchanger, and supplying it to the input side of the reflux route, The temperature inside the metal pipe serving as the reflux path increases, and the temperature difference between the outside temperature of the metal pipe and the temperature of the high-temperature gas decreases. As a result, even if a higher amount of heat than before is taken from the high-temperature gas pipe and its temperature is lowered, the outside temperature of the metal pipe does not fall below the acid dew point, thereby reducing the condensation and adhesion of sulfuric acid. can prevent oxidative corrosion.

(実施態様) 次に、図面を参照して本発明の実施態様を説明する。(Embodiment) Next, embodiments of the present invention will be described with reference to the drawings.

なお、第1図は本実施態様の廃熱回収装置の概略構成図
であり、第3図と同様の動作をなす部分には同一の符号
を付し、説明の重複を避けるものとする。更に、第2図
は熱交換器部分におけるパイプ外表面温度とパイプ内表
面温度との関係を説明するためにパイプ壁面断面を用い
た模式図である。
Note that FIG. 1 is a schematic configuration diagram of the waste heat recovery apparatus of this embodiment, and parts that operate in the same way as in FIG. 3 are given the same reference numerals to avoid duplication of explanation. Furthermore, FIG. 2 is a schematic diagram using a pipe wall cross section to explain the relationship between the pipe outer surface temperature and the pipe inner surface temperature in the heat exchanger portion.

本実施態様の廃熱回収装置は、基本的には従来と同様の
熱交換器3と予備タンク11とをパイプ系にて適宜繋げ
た構成である。給水パイプ12からは常温(例えば20
°C)の水が前記予備タンク11に給水される。前記予
備タンク11は外側タンク13と内側タンク14とで構
成され、常温の水は外側の第1槽13aに排出される。
The waste heat recovery device of this embodiment basically has a structure in which a heat exchanger 3 and a reserve tank 11 are appropriately connected by a pipe system, similar to the conventional one. The water from the water supply pipe 12 is at room temperature (for example, 20
°C) water is supplied to the preliminary tank 11. The reserve tank 11 is composed of an outer tank 13 and an inner tank 14, and water at room temperature is discharged into the first outer tank 13a.

そして、前記第1槽13aに給水された水は第13aの
低部(給水パイプ12とは反対側)から揚水パイプ15
、揚水ポンプ16によって揚水され、パイプ17を介し
て前記熱交換器3に給水される。この結果、常温の水は
、前記熱交換器3内に設けられた還流経路慢特神呻吟を
還流することになり、所定の通過時間において高熱ガス
の熱を吸収し加熱されることになる。この廃熱回収によ
って約90°C程度に加熱された温水は前記熱交換器3
の還流経路の出力側からパイプ18を介して排出され、
再び前記第1槽13a内に給水される。
The water supplied to the first tank 13a is transferred from the lower part of the tank 13a (on the opposite side to the water supply pipe 12) to the pumping pipe 15.
, water is pumped up by a water pump 16 and supplied to the heat exchanger 3 via a pipe 17. As a result, the water at room temperature will flow back through the reflux path provided in the heat exchanger 3, and will be heated by absorbing the heat of the high-temperature gas during a predetermined passage time. The hot water heated to about 90°C by this waste heat recovery is transferred to the heat exchanger 3.
is discharged from the output side of the reflux path through the pipe 18,
Water is again supplied into the first tank 13a.

前記第1槽13aの上部から該槽13aに排出された前
記温水は、前記給水パイプ12から給水され続けている
常温の水と自然混合される。ここで言う自然混合とは、
強制的に攪拌することなく、前記第1槽13aにおいて
高温の水が水面近傍に集まって高温領域を形成し、また
、低温の水が前記第1槽13aの底面近傍に集まって低
温領域を形成することを言う。このように、前記第1槽
13aの低部に低温水が滞留し、比較的高温の水は前記
第1槽13aの上部に滞留する。そして、前記第1槽1
3a内の水位が内側槽14(上部が開放されている)の
高さより高くなった時、高温の水、即ち前記混合により
85°C程度(高温水と常温水との給水量の調整により
温度調節可能である)に僅かに温度低下した水が前記内
側槽14に流入し、更に排水パイプ19、排水ポンプ2
0により排水され、廃熱回収した再利用可能な温水を得
ることができる。
The hot water discharged from the upper part of the first tank 13a into the tank 13a is naturally mixed with the room temperature water that is continuously being supplied from the water supply pipe 12. What is meant by natural mixing here?
Without forcible stirring, high-temperature water gathers near the water surface in the first tank 13a to form a high-temperature region, and low-temperature water gathers near the bottom of the first tank 13a to form a low-temperature region. say what you do In this way, low-temperature water stays in the lower part of the first tank 13a, and relatively high-temperature water stays in the upper part of the first tank 13a. and the first tank 1
When the water level in 3a becomes higher than the height of the inner tank 14 (the upper part is open), the high temperature water, that is, the temperature rises to about 85 ° C due to the above mixing (by adjusting the water supply amount of high temperature water and normal temperature water) The water whose temperature has been slightly lowered (adjustable) flows into the inner tank 14 and is further connected to the drain pipe 19 and the drain pump 2.
0, it is possible to obtain reusable hot water with waste heat recovery.

一方、前記第1槽13a内の低部に滞留している水の温
度は、前記混合(強制攪拌なしの自然混合)によって5
0°C程度に上昇させることができる。
On the other hand, the temperature of the water staying in the lower part of the first tank 13a is reduced to 5.0 by the mixing (natural mixing without forced stirring).
The temperature can be raised to about 0°C.

従って、本態様の廃熱回収装置の作動し始めにおいては
、前記熱交換器3に供給される水の温度は常温であるも
のの、所定時間経過後、即ち廃熱回収が行われるように
なってからは、前記熱交換器3に供給される水は50°
C程度に加熱された水が揚水されることになる。したが
って、前記熱交換器3内のパイプ外表面における温度を
前記酸露点以上の温度に保ち腐食防止を行いつつ効果的
な廃熱回収を行うことができる。この理由については、
第2図を参照して50°C程度に加熱された水の供給に
よる腐食防止作用について以下説明する。
Therefore, at the beginning of the operation of the waste heat recovery device of this embodiment, the temperature of the water supplied to the heat exchanger 3 is at room temperature, but after a predetermined period of time has elapsed, that is, waste heat recovery begins. , the water supplied to the heat exchanger 3 is at 50°
Water heated to about C will be pumped. Therefore, it is possible to effectively recover waste heat while maintaining the temperature on the outer surface of the pipe in the heat exchanger 3 at a temperature equal to or higher than the acid dew point and preventing corrosion. For this reason,
The corrosion prevention effect by supplying water heated to about 50°C will be explained below with reference to FIG.

前記熱交換器3内には上記したように金属パイプによっ
て還流経路が構成され、第2図に一部拡大して示したパ
イプ壁部30の左側を水Wが通過し、右側を高熱ガスG
が通過するものとする。また、前記パイプ壁部30の壁
部に沿って図中上下方向に温度高低(上方が高温)を示
すものと仮定し、酸露点を点31にて示すものとする。
In the heat exchanger 3, a reflux path is constructed of metal pipes as described above, and water W passes through the left side of the pipe wall 30, which is partially enlarged in FIG. 2, and high-temperature gas G flows through the right side.
shall pass. Further, it is assumed that the temperature rises and falls in the vertical direction in the figure along the wall of the pipe wall 30 (higher temperature is higher), and the acid dew point is shown as a point 31.

このことから、図中において高熱ガスGの温度は前記点
31よりも上方に位置し、水Wの温度は下方に位置する
。また、前記酸露点の温度は高熱ガスGの種類、ガス圧
やガス温度などの諸条件により変わるが、一般に磁気テ
ープ等の磁気記録媒体に使用される溶剤の燃焼処理ガス
の場合、約120°C程度である。
Therefore, in the figure, the temperature of the high-temperature gas G is located above the point 31, and the temperature of the water W is located below. The temperature of the acid dew point varies depending on various conditions such as the type of high-temperature gas G, gas pressure, and gas temperature, but generally, in the case of a combustion treatment gas for a solvent used in magnetic recording media such as magnetic tape, it is approximately 120°. It is about C.

したがって、前記蒸気回収装置2から前記熱交換器3に
供給される高熱ガスGの温度を250°C程度に設定し
た条件下に於いて、前記パイプ17から50’C程度の
温水を給水すると、前記パイプ壁部30の内側と外側と
の温度差は実線で示すような温度傾斜綿Xになり、該温
度傾斜線Xと前記パイプ壁部30との交点Pで示すパイ
プ外表面の実際の温度は、前記酸露点よりも高温に保た
れている。すなわち、前記パイプ壁部30の内部温度は
、50°Cに加熱された温水によって従来の場合に比較
して約30°C程度上昇しており、従来の温度傾斜線Y
に比べてその傾斜も緩やかであるので、前記パイプ壁部
30の内側と外側表面の温度差が小になり、前記高熱ガ
スGが接するパイプ外側表面の温度も大幅に低下するこ
とがなく、酸露点以上の温度に保ち易くなる。
Therefore, when hot water of about 50'C is supplied from the pipe 17 under conditions where the temperature of the high-temperature gas G supplied from the steam recovery device 2 to the heat exchanger 3 is set to about 250°C, The temperature difference between the inside and outside of the pipe wall 30 results in a temperature gradient X as shown by the solid line, and the actual temperature of the outer surface of the pipe is indicated by the intersection P of the temperature gradient line X and the pipe wall 30. is maintained at a higher temperature than the acid dew point. That is, the internal temperature of the pipe wall 30 has increased by about 30°C compared to the conventional case due to the hot water heated to 50°C, and the temperature gradient line Y
Since the slope is gentle compared to the above, the temperature difference between the inside and outside surfaces of the pipe wall portion 30 is small, and the temperature of the outside surface of the pipe that is in contact with the high-temperature gas G does not drop significantly. It becomes easier to maintain the temperature above the dew point.

この結果、前記高熱ガスGは、硫黄、炭素、酸素、水素
等を含有しているが、パイプ外側表面の温度が酸露点以
上であるので、前記硫黄分が金属パイプの外側表面に結
露せず、硫酸水凝縮を完全に無くすことが出来、金属パ
イプの酸化腐食を防止することができる。
As a result, the high-temperature gas G contains sulfur, carbon, oxygen, hydrogen, etc., but since the temperature of the outer surface of the pipe is above the acid dew point, the sulfur content does not condense on the outer surface of the metal pipe. , sulfuric acid water condensation can be completely eliminated, and oxidation corrosion of metal pipes can be prevented.

ここで比較のため、第2図を用いて前記パイプ17に常
温の水を給水した従来の場合について説明すると、金属
パイプの内側温度と外側温度とが大きくなることによっ
て、前記温度傾斜線Yの傾斜が大きくなり、パイプ外側
表面の温度Qも大幅に低下して、酸露点以下の温度にな
る。従って、上述したように、前記熱交換器3から排出
する前記高熱ガスGの温度を180°C程度以上に保つ
ような廃熱回収を行わないと、硫黄分を含む硫酸水が凝
縮して金属パイプを酸化腐食させる。
For comparison, a conventional case in which water at room temperature is supplied to the pipe 17 will be explained using FIG. 2. As the inside temperature and outside temperature of the metal pipe increase, the temperature gradient line Y As the slope increases, the temperature Q of the outer surface of the pipe also decreases significantly, reaching a temperature below the acid dew point. Therefore, as mentioned above, unless waste heat recovery is performed to maintain the temperature of the high-temperature gas G discharged from the heat exchanger 3 at about 180°C or higher, the sulfuric acid water containing sulfur will condense and cause metal Oxidation corrodes the pipes.

更に本実施態様の如き構成によれば、前記予備タンク1
1を設けて50°C程度に加熱された温水を前記パイプ
17に給水するこ七により、前記酸化腐食を未然に防止
することができるだけではなく、従来以上に高温の温水
を得ることができるとともに、温水回収後のガス温度、
即ち煙突4から大気中に排出するガス温度を従来よりも
低い150°C程度まで低下させることができ、公害防
止の見地からみても好ましい結果となる。
Furthermore, according to the configuration of this embodiment, the reserve tank 1
1 and supplying hot water heated to about 50°C to the pipe 17, it is possible not only to prevent the oxidation corrosion, but also to obtain hot water at a higher temperature than before. , gas temperature after hot water recovery,
That is, the temperature of the gas discharged into the atmosphere from the chimney 4 can be lowered to about 150°C, which is lower than before, which is a favorable result from the standpoint of pollution prevention.

以上に、本発明の実施態様を説明したが、本発明は第1
図に示した構成に限定されるものではなく、種々の変形
が可能である。
The embodiments of the present invention have been described above, but the present invention is the first embodiment.
The configuration is not limited to the one shown in the figure, and various modifications are possible.

例えば、水に代えて他の熱媒体(液体または気体)を熱
交換器に供給しても廃熱回収を行うことができ、また、
冒頭にものべたように、ガス燃焼装置、発電用ボイラ、
ディーゼルエンジン等の各種装置に適宜利用することが
できる。
For example, waste heat recovery can be performed by supplying another heat medium (liquid or gas) to the heat exchanger instead of water, and
As mentioned at the beginning, gas combustion equipment, power generation boilers,
It can be appropriately used in various devices such as diesel engines.

(発明の効果) 以上述べたように、本発明の廃熱回収装置は、常温の熱
媒体と熱交換器内の還流によって加熱された該熱媒体と
を自然混合の状態にて収納する予備タンクを設け、前記
予備タンクに収納された前記媒体のうち低温領域の該媒
体を前記熱交換器の還流経路に供給し、且つ前記予備タ
ンク内の高温領域の前記媒体を該予備タンクから取り出
すようにすることにより、前記熱交換器内を還流する前
記熱媒体の温度を高(するように構成したので、廃棄す
る高熱ガスから従来以上のの熱量を奪いその温度を低下
せしめても、前記熱交換器内の金属パイプの外側温度が
酸露点以下に低下せず、これにより硫酸の凝縮付着を低
減して酸化腐食を防止することができ、前記熱交換器の
寿命を飛躍的にのばすことができる。また、本発明によ
れば、加熱された温水を前記金属パイプに給水すること
により、従来以上に高温の温水を得ることができ、熱回
収の効率向上を行うことができる。
(Effects of the Invention) As described above, the waste heat recovery device of the present invention has a preliminary tank that stores the heat medium at room temperature and the heat medium heated by reflux in the heat exchanger in a state of natural mixing. and supplying the medium in the low temperature region of the medium stored in the reserve tank to the reflux path of the heat exchanger, and taking out the medium in the high temperature region in the reserve tank from the reserve tank. By doing so, the temperature of the heat medium flowing back through the heat exchanger is increased, so that even if more heat is taken from the high-temperature gas to be disposed of than before and the temperature is lowered, the heat exchanger is The outside temperature of the metal pipe inside the vessel does not drop below the acid dew point, which reduces sulfuric acid condensation and prevents oxidative corrosion, dramatically extending the life of the heat exchanger. Furthermore, according to the present invention, by supplying heated hot water to the metal pipe, hot water at a higher temperature than before can be obtained, and the efficiency of heat recovery can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施態様を示す廃熱回収装置の概略構
成図、第2図は酸露点と金属パイプの両側面の温度との
関係を示すを示すためのパイプ壁部断面を用いた模式図
、第3図は従来の廃熱回収装置を示す概略構成図である
。 図中の符号 1・・・溶剤ガス処理装置、 3・・・熱交換器、 11・・・予備タンク、 13・・・外側タンク、 14・・・内側タンク、 16・・・揚水ポンプ 20・・・排出ポンプ 31・・・酸露点。 2・・・蒸気回収装置、 4・・・煙突、 12・・・給水パイプ、 13a・・・第1槽、 15・・・揚水パイプ、 17.18・・・パイプ、 30・・・パイプ壁部、 第 図 第 図
Figure 1 is a schematic configuration diagram of a waste heat recovery device showing an embodiment of the present invention, and Figure 2 is a pipe wall cross section used to illustrate the relationship between the acid dew point and the temperature on both sides of the metal pipe. The schematic diagram and FIG. 3 are schematic configuration diagrams showing a conventional waste heat recovery device. Reference numeral 1 in the figure: solvent gas treatment device, 3: heat exchanger, 11: reserve tank, 13: outer tank, 14: inner tank, 16: water pump 20. ...Discharge pump 31...Acid dew point. 2... Steam recovery device, 4... Chimney, 12... Water supply pipe, 13a... First tank, 15... Lifting pipe, 17.18... Pipe, 30... Pipe wall Section, Figure Figure

Claims (1)

【特許請求の範囲】[Claims] 排出する高熱ガスを熱交換器に供給し、該熱交換器内に
設けた還流経路に前記高熱ガスに対し低温の熱媒体を還
流させ、該熱媒体により前記高熱ガスから熱を回収する
廃熱回収装置において、常温の前記熱媒体と前記熱交換
器内の還流によって加熱された該熱媒体とを自然混合の
状態にて収納する予備タンクを設け、前記予備タンクに
収納された前記媒体のうち低温領域の該媒体を前記熱交
換器の還流経路に供給する供給手段と、前記予備タンク
内の高温領域の前記媒体を該予備タンクから取り出す回
収手段とを備えてなり、前記熱交換器内を還流する前記
熱媒体の温度を高くするように構成したことを特徴とす
る廃熱回収装置。
Waste heat in which the high-temperature gas to be discharged is supplied to a heat exchanger, a low-temperature heat medium is refluxed to the high-temperature gas through a reflux path provided in the heat exchanger, and heat is recovered from the high-temperature gas by the heat medium. In the recovery device, a reserve tank is provided to store the heat medium at room temperature and the heat medium heated by reflux in the heat exchanger in a state of natural mixing, and among the medium stored in the reserve tank, A supply means for supplying the medium in the low temperature region to the reflux path of the heat exchanger, and a recovery means for taking out the medium in the high temperature region in the reserve tank from the reserve tank. A waste heat recovery device characterized in that it is configured to increase the temperature of the heat medium that is refluxed.
JP15790388A 1988-06-28 1988-06-28 Waste heat recovery device Pending JPH028689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15790388A JPH028689A (en) 1988-06-28 1988-06-28 Waste heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15790388A JPH028689A (en) 1988-06-28 1988-06-28 Waste heat recovery device

Publications (1)

Publication Number Publication Date
JPH028689A true JPH028689A (en) 1990-01-12

Family

ID=15659954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15790388A Pending JPH028689A (en) 1988-06-28 1988-06-28 Waste heat recovery device

Country Status (1)

Country Link
JP (1) JPH028689A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100672571B1 (en) * 2004-08-11 2007-01-24 엘지전자 주식회사 Defroster of evaporator for refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100672571B1 (en) * 2004-08-11 2007-01-24 엘지전자 주식회사 Defroster of evaporator for refrigerator

Similar Documents

Publication Publication Date Title
CN105937765B (en) A kind of the burning quenching apparatus and method of processing high viscosity strong corrosive salt bearing liquid wastes
CN101078532B (en) Device for heating using residual heat of sulfuric acid production
CN109595947B (en) Industrial slag sensible heat recovery system and recovery method thereof
WO2020029684A1 (en) System and method for treating high-salt and high-organic-matter wastewater and recovering energy
JPH028689A (en) Waste heat recovery device
WO2021018030A1 (en) Converter gas aftertreatment and waste heat recovery device
CN213019588U (en) Periodic sewage discharge system of household garbage incineration power plant boiler
CN205965413U (en) Energy -efficient carbon black tail gas water trap
CN106705110B (en) Corrosion-proof type waste incineration and generating electricity steam type airheater pipe-line system
CN211367389U (en) Shock wave sludge drying equipment and sludge drying system
CN212005195U (en) Condensate collecting and recycling system of steam reforming device
CN211060085U (en) Exhaust-heat boiler blowdown system
KR100213303B1 (en) Waste gas regenerating heat exchanger using water flowing layer
CA1117462A (en) Device for concentration of mineral acids, particularly sulphuric acid
CN206755219U (en) A kind of low temperature SCR denitration and flue gas take off white device
CN104528662A (en) System for generating hot water by recovering low-temperature waste heat in process of making acid by using smoke
CN220338434U (en) Boiler fixed exhaust steam waste heat recovery system
CN219889343U (en) Ammonia supply device for high-temperature industry
CN116293631A (en) Heat recovery device and recovery method for boiler
CN218864213U (en) Graphite quench tower for high-chlorine-content hazardous waste incineration
CN217541538U (en) Water purification system for purified flue gas after wet desulphurization
KR100439250B1 (en) System for deaerating
JPH0317443A (en) Heat exchanger
CN204630403U (en) A kind of graphite purifying furnace residual heat using device
CN213983526U (en) Boiler blow-down water waste heat recovery device