JPH0286821A - Cellulose-base laminated membrane and production thereof - Google Patents

Cellulose-base laminated membrane and production thereof

Info

Publication number
JPH0286821A
JPH0286821A JP23854188A JP23854188A JPH0286821A JP H0286821 A JPH0286821 A JP H0286821A JP 23854188 A JP23854188 A JP 23854188A JP 23854188 A JP23854188 A JP 23854188A JP H0286821 A JPH0286821 A JP H0286821A
Authority
JP
Japan
Prior art keywords
membrane
cellulose
chitosan
water
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23854188A
Other languages
Japanese (ja)
Other versions
JPH0474048B2 (en
Inventor
Yasuhiko Hirabayashi
平林 靖彦
Kazumitsu Shimizu
志水 一允
Tomoyuki Fujii
智之 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NORIN SUISANSYO RINGYO SHIKENJO
Original Assignee
NORIN SUISANSYO RINGYO SHIKENJO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NORIN SUISANSYO RINGYO SHIKENJO filed Critical NORIN SUISANSYO RINGYO SHIKENJO
Priority to JP23854188A priority Critical patent/JPH0286821A/en
Publication of JPH0286821A publication Critical patent/JPH0286821A/en
Publication of JPH0474048B2 publication Critical patent/JPH0474048B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides

Abstract

PURPOSE:To increase the separation factor of a cellulose-based laminated membrane and the rate of permeation by integrating a chitosan membrane with a membrane of a cellulose deriv. obtd. by introducing carboxyl groups into cellulose to produce the laminated membrane. CONSTITUTION:A chitosan soln. is film casted and solidified on a substrate, and an aq. alkali soln. or an aldehyde compd. is brought into contact with the resulting chitosan membrane. A soln. of a cellulose deriv. obtd. by introducing carboxyl groups into cellulose is film casted and solidified on the chitosan membrane and the resulting cellulose deriv. membrane is integrated with the chitosan membrane to produce a laminated membrane. Ammonia or an aq. acid soln. may be brought into contact with the chitosan membrane.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、パーベーパレーション法により液体混合物を
個々の成分に分離する分離膜として用いるセルロース系
複合膜、およびその製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a cellulose-based composite membrane used as a separation membrane for separating a liquid mixture into individual components by a pervaporation method, and a method for producing the same.

(発明の背景) 液体混合物からある特定の成分を分1211fi製する
技術(水と有機溶媒の混合液から水を選択的に分離する
技術)として、膜を用いた分離法があり、このうちの分
離膜の一方の側に液体混合物をおき、分1lllliの
他方の側に減圧または窒素ガスなどの不活性キャリアガ
スを流し、該膜を液体混合物の各成分が透過する際の透
過速度の違いによって分離することを内容とするパーベ
ーパレーション法は!950年代から研究が進められて
いる。
(Background of the Invention) As a technology for producing a specific component from a liquid mixture (a technology for selectively separating water from a mixture of water and an organic solvent), there is a separation method using a membrane. A liquid mixture is placed on one side of the separation membrane, and reduced pressure or an inert carrier gas such as nitrogen gas is passed through the other side of the separation membrane, and the difference in permeation rate when each component of the liquid mixture permeates through the membrane The pervaporation method is about separation! Research has been underway since the 1950s.

このパーベーパレーションは、蒸留法では分離が困難な
共沸混合物、沸点の接近した液体の混合物などの分離に
適し、蒸留法より省エネルギー的でコスト的に有利な方
法であるとされている0例えば現在工業的に実施されて
いるアルコール醗酵によるエタノールの製造では、醗酵
液からのエタノール回収に蒸留法を用いているが、蒸留
の際に大容量の熱を加えるためにエネルギーコストがか
さむ、これに対しパーベーパレーション法ではこのよう
な加熱の必要がない点で省エネルギー的であると言える
This pervaporation is suitable for separating azeotropic mixtures that are difficult to separate by distillation, mixtures of liquids with close boiling points, etc., and is said to be a method that is more energy-saving and cost-effective than distillation. In the current industrial production of ethanol by alcohol fermentation, distillation is used to recover ethanol from the fermentation liquid, but energy costs are high due to the large amount of heat that is applied during distillation. On the other hand, the pervaporation method can be said to be energy-saving in that it does not require such heating.

パーベーパレーション法はこのように低コストでアルコ
ールの濃縮を可能とする分離技術として近時において注
目されている。
As described above, the pervaporation method has recently attracted attention as a separation technique that enables concentration of alcohol at low cost.

(従来の技術) 上記のような特徴のあるパーベーパレーション法による
液体混合物の分離については従来から数多く検討されて
いる。
(Prior Art) Many studies have been made in the past regarding the separation of liquid mixtures by the pervaporation method, which has the characteristics described above.

例えば、水とエタノールの混合物の分離にポリマレイミ
ド・アクリロニトリル膜を用いた例(分離係数7.5.
透過速度0.107kg/rrs” + h) (Jo
urnalof  Po1y+*er  5cienc
e  ; Po1y+*er  ChemistryE
dition、Vol、22.2159〜2168(1
984)) 、N置換フェニルマレイミド・スチレン共
重合膜を用いた例(分離係数20.透過速度0.004
kg/ni’ −h)(Polymer Journa
l、シo1.17.36:1〜368(1985))、
酢酸セルロース膜を用いた例(分離膜a5.9゜透過速
度04kg/m” I h) (Journ、al o
f AppliedPolya+er 5cience
 、Vol、16.1061(1972)   キトサ
ン膜を用いた例(分離係数0.47〜4.4 、 if
i過速度4.9〜20 kg/ゴ・h) (高分子論文
集、42巻。
For example, a polymaleimide acrylonitrile membrane was used to separate a mixture of water and ethanol (separation coefficient: 7.5.
Transmission rate 0.107kg/rrs” + h) (Jo
urnalof Po1y+*er 5cienc
e; Po1y+*er ChemistryE
dition, Vol, 22.2159-2168 (1
984)), an example using an N-substituted phenylmaleimide/styrene copolymer membrane (separation coefficient 20, permeation rate 0.004
kg/ni'-h) (Polymer Journa
l, Shio1.17.36:1-368 (1985)),
Example using cellulose acetate membrane (separation membrane a5.9゜permeation rate 04kg/m"I h) (Journ, al o
f Applied Polya+er 5science
, Vol. 16.1061 (1972) Example using chitosan membrane (separation coefficient 0.47-4.4, if
i overspeed 4.9-20 kg/h) (Kobunshi Papers, Vol. 42.

1.39〜142 (19,85)、特開昭60−31
803号公報)などが報告されている。ここで分離係数
とは、水とエタノールの透過性の違いを表わす数値であ
り、次式で求められる。
1.39-142 (19,85), JP-A-60-31
Publication No. 803), etc. have been reported. The separation coefficient here is a numerical value representing the difference in permeability between water and ethanol, and is determined by the following formula.

(ただし上式において 水、 エヶッー7.は混合液供給側の水と    X エタノールの重量分率を表わし、 Y水、Yエタ/−7)は透過側の水とエタノールの重量
分率を表わす。) (発明が解決しようとする課題) しかしながら、上述される従来の分m膜は、分離係数は
大きいものの透過速度が遅いなど膜の総合的性能が十分
でないため、これらの膜をそのまま実用に供すことはで
きない。
(However, in the above formula, water, 7. represents the weight fraction of water and X ethanol on the mixed liquid supply side, and Y water, Y eta/-7) represents the weight fraction of water and ethanol on the permeation side. ) (Problems to be Solved by the Invention) However, the conventional separation membranes mentioned above have insufficient overall membrane performance, such as a large separation coefficient but a slow permeation rate, so it is difficult to put these membranes into practical use as is. It is not possible.

例えばこ′の種の膜として実用的に使用できる一応の目
安とされている分離係数50以上、透過速度0.5kg
/n?・h以上、あるいは膜性能の総合判定に用いられ
る分離係数と透過速度の積値で25を越える性能をもつ
分離膜は、既存の膜としては知られていない。
For example, a separation coefficient of 50 or more and a permeation rate of 0.5 kg are considered practical guidelines for this type of membrane.
/n?・No existing membrane is known to have a performance of more than h or more than 25 in terms of the product of separation coefficient and permeation rate used for comprehensive evaluation of membrane performance.

このように従来のパーベーパレーション法に用いられる
セルロース誘導体膜あるいはキトサン膜などの単独膜で
は、パーベーパレーション法による液体混合物の分離に
十分な性能が発揮されないことに鑑み、本発明者等は複
数の膜素材を複合化することを考え、成膜に種々の工夫
を加えて検討を重ねた結果、本発明の複合した分m膜を
開発するに至ったものである。
In view of the fact that single membranes such as cellulose derivative membranes or chitosan membranes used in conventional pervaporation methods do not exhibit sufficient performance for separating liquid mixtures by pervaporation methods, the present inventors have developed several As a result of considering the idea of compositing the membrane materials of the present invention and adding various ideas to film formation, we have developed the composite membrane of the present invention.

すなわち本発明者等は、種々の複合膜について鋭意研究
を進めたところ、カルボキシル基を導入したセルロース
誘導体の薄膜とキトサンの薄膜を積層−株化した複合膜
が、水を選択的に透過する分離膜として優れた性能を有
していることを見い出した。
In other words, the present inventors conducted intensive research on various composite membranes, and found that a composite membrane made by laminating a thin film of a cellulose derivative with carboxyl groups introduced therein and a thin film of chitosan was able to selectively permeate water. It was discovered that it has excellent performance as a membrane.

本発明はかかる知見に基づいてなされたものであり、そ
の目的は分離係数が高く、かつ透過速度が大きいという
特徴をもった複合膜を提供するところにある。
The present invention was made based on this knowledge, and its purpose is to provide a composite membrane having the characteristics of a high separation coefficient and a high permeation rate.

また本発明の別の目的は、特に、蒸煮・爆砕処理を行な
った木質原料から、当該処理により可溶化したヘミセル
ロースとリグニンを前抽出処理で除去し、残ったセルロ
ースをメタンスルホン酸中でサクシノイル化(無水コハ
ク酸によるエステル化)することでカルホキスル基を導
入したサクシノイル化セルロース膜と、キトサン膜とを
複合することで、特に優れた分離係数および透過速度を
有するパーベーパレーションの分l!1lR1として用
いる複合膜を提供するところにある。
Another object of the present invention is to remove hemicellulose and lignin solubilized by the process from wood raw materials that have been subjected to the steaming and blasting process in a pre-extraction process, and to convert the remaining cellulose into succinoylation in methanesulfonic acid. By combining a succinoylated cellulose membrane into which carphoxyl groups have been introduced by esterification with succinic anhydride and a chitosan membrane, a pervaporation membrane with particularly excellent separation coefficient and permeation rate! The present invention provides a composite membrane for use as 11R1.

(課題を解決するための手段) 而して、かかる目的の実現のためになされた本発明より
なるパーベーパレーション法に用しAる複合膜の特徴は
、キトサン膜と、セルロースにカルボキシル基を導入し
たセルロース誘導体膜との積層一体止構造とした構成を
なすところにある。
(Means for Solving the Problems) The composite membrane A used in the pervaporation method according to the present invention, which was made to achieve the above object, is characterized by a chitosan membrane and a cellulose with carboxyl groups. It has a laminated integral structure with the introduced cellulose derivative membrane.

本発明はまた更に、カルボキシル基をエステル化により
導入したセルロース誘導体膜、代表的には、サクシノイ
ル化(特にメタンスルホン酸中でのサクシノイル化)に
よりカルボキシル基を導入したセルロース誘導体膜であ
る場合に、膜の均−性等の点で特に優れた上記複合膜を
提供することができる特徴がある。
The present invention further provides a cellulose derivative membrane into which a carboxyl group has been introduced by esterification, typically a cellulose derivative membrane into which a carboxyl group has been introduced by succinoylation (particularly succinoylation in methanesulfonic acid). It has the feature that it can provide the above-mentioned composite membrane which is particularly excellent in terms of membrane uniformity and the like.

ここでr !It 層−株化」とは、代表的には後述の
流延法により一体に密着されることをいい、単に機械的
に接合したものは含まない。
Here r! The term "It layer-separated" typically means that the layers are adhered together by the casting method described below, and does not include those that are simply mechanically joined.

セルロースとは一般的には植物細胞壁に由来するia維
状状物質総称をいい、狭義にはセルロース、又はリグノ
セルロースをいう場合もあるが、本発明においてはこれ
らの誘導体も包含するものである。
Cellulose generally refers to IA fibrous substances derived from plant cell walls, and may also refer to cellulose or lignocellulose in a narrow sense, but the present invention also includes derivatives thereof.

本発明の複合膜は、積層一体止構造の一層とじてキトサ
ン膜を有することを特徴とする。
The composite membrane of the present invention is characterized by having a chitosan membrane as one layer of a laminated, integrally fixed structure.

キトサンはカニやエビなど甲殻類の外殻成分のひとつで
あるキチンを脱アセチル化して得られる物質であって、
0−グルコサミン単量体がβ−1,4結合によって結合
した多糖類であり、ギ酸、酢酸、塩酸などを含む稀薄水
溶液に酸と塩を形成して溶解する。本発明において使用
されるキトサンを得るためのキチンの脱アセチル化度は
70%以上、望ましくは85%以上、更に好ましくは9
0%以上とすることがよい。脱アセチル化度が低いキト
サンであると溶解性が低く、不溶分が多いという問題が
あるため上記範囲とされる。本発明におけるこのキトサ
ン膜は、ラミネートされるセルロース系誘導体等の膜の
補強材としての役割ももつ。さらにキトサンには、多の
高分子例えばポリエチレングリコール、ポリビニルアル
コール、ポリ酢酸ビニルなどの中性水溶性ポリマー あ
るいはポリエチレンイミン、ポリアリ°ルアミンなどの
塩基性水溶性ポリマーをブレンドして用いることもでき
る。
Chitosan is a substance obtained by deacetylating chitin, which is one of the outer shell components of crustaceans such as crabs and shrimp.
It is a polysaccharide in which 0-glucosamine monomers are bonded through β-1,4 bonds, and dissolves in dilute aqueous solutions containing formic acid, acetic acid, hydrochloric acid, etc. by forming a salt with the acid. The degree of deacetylation of chitin to obtain chitosan used in the present invention is 70% or more, preferably 85% or more, more preferably 9
It is preferable to set it to 0% or more. Chitosan with a low degree of deacetylation has a problem of low solubility and a large amount of insoluble matter, so the above range is set. This chitosan film in the present invention also serves as a reinforcing material for the cellulose derivative film to be laminated. Furthermore, chitosan can be blended with a number of polymers, such as neutral water-soluble polymers such as polyethylene glycol, polyvinyl alcohol, and polyvinyl acetate, or basic water-soluble polymers such as polyethyleneimine and polyarylamine.

本発明の複合膜は、上記キトサン膜に積層−株化される
他の一層として、セルロースにカルボキシル基を導入し
たセルロース誘導体膜を有することを特徴とし、このよ
うなカルボキシル基を導入したセルロース誘導体として
具体的に、次の■〜■のものを例示することができる。
The composite membrane of the present invention is characterized in that it has a cellulose derivative membrane in which carboxyl groups are introduced into cellulose as another layer laminated to the chitosan membrane, and as a cellulose derivative membrane in which carboxyl groups are introduced into cellulose. Specifically, the following items (1) to (2) can be exemplified.

■セルロースエーテル誘導体 ■セルロースエステル誘導体 ■セルロース酸化物 ■セルロースグラフト共重合物 ■上記■〜■のm数の構造を有するセルロース誘導体 上記■のセルロース誘導体としては例えば、カルボキシ
メチルセルロース、カルボキシエチルセルロースなどの
カルボキシアルキルセルロース、およびこれらのナトリ
ウム塩、カリウム塩を例示することができる。
■Cellulose ether derivatives ■Cellulose ester derivatives ■Cellulose oxides ■Cellulose graft copolymers ■Cellulose derivatives having the structure of m numbers from ■ to ■ Above Examples of the cellulose derivatives mentioned in ■ above include carboxyalkyl cellulose such as carboxymethyl cellulose and carboxyethyl cellulose. Examples include cellulose and their sodium and potassium salts.

上記■のセルロースエステル誘導体としては例えば、コ
ハク酸セルロースエステル(サクシノイル化セルロニス
)、フタル酸酢酸セルロースエステル、マレイン酸酢酸
セルロースエステル、およびこれらのナトリウム塩、カ
リウム塩を例示することができる。
Examples of the cellulose ester derivatives in (2) above include cellulose succinate (succinoylated cellulonis), cellulose phthalate acetate, cellulose acetate maleate, and their sodium and potassium salts.

上記■のセルロース酸化物としては例えば、セルロース
の二酸化窒素による酸化生成物であるモノカルボキシセ
ルロース、セルロースの過ヨウ素酸ナトリウム、過ヨウ
素酸、四酢酸鉛およびクロム酸による酸化生成物をさら
に亜塩素酸または塩素酸ナトリウムで酸化した生成物で
あるジカルボキシセルロース、又はトリカルボキシルセ
ルロースおよびこれらのナトリウム塩、カリウム塩など
を例示する二とができる。
Examples of the cellulose oxide mentioned in (■) above include monocarboxycellulose, which is the oxidation product of cellulose with nitrogen dioxide, the oxidation product of cellulose with sodium periodate, periodic acid, lead tetraacetate, and chromic acid, and the oxidation product of cellulose with chlorite. Alternatively, dicarboxycellulose or tricarboxylcellulose, which is a product oxidized with sodium chlorate, and their sodium and potassium salts can be used.

上記■のセルロースグラフト共重合物としては例えば、
アクリル酸、メタアクリル酸などのカルボキシル基を含
むビニルモノマー およびこれらのナトリウム塩、カリ
ウム塩、あるいは低級アルキルエステルがセルロース分
子鎮又はセルロース誘導体分子鎖の水酸基にグラフト結
合した共重合物、またはセルロース誘導体中の水酸基以
外の活性基にグラフト結合した共重合体を例示すること
ができる。
Examples of the cellulose graft copolymer described in (2) above include:
Copolymers in which vinyl monomers containing carboxyl groups such as acrylic acid and methacrylic acid, and their sodium salts, potassium salts, or lower alkyl esters are graft-bonded to the hydroxyl groups of cellulose molecular chains or cellulose derivative molecular chains, or in cellulose derivatives. Examples include copolymers in which active groups other than hydroxyl groups are graft-bonded.

本発明において、カルボキシル基を含有するセルロース
誘導体は、水または無機(アルカリ等)↓有機の化合物
を含む水溶液あるいは有機溶媒に溶解して溶液となり、
溶媒(あるいは水)が除かれると再び固化するものをい
う。溶解性はカルボキシル基を含む原子団の大きさ、カ
ルボキシル基含量、分布等に影響される0本発明におい
て使用されるセルロース誘導体は、一般的には1g当り
 0.5ないし1.Qmeq以上のカルボキシル基を含
み、均一な分布をしているものであることが溶解性、成
膜性、膜の性能等の点で望ましく、例えばセルロース溶
媒薫触媒として用いるメタンスルホン酸中でのセルロー
スのサクシノイル化はかかる特性をもつカルボキシル基
含有セルロース誘導体を与えるものとして特に好ましい
。セルロース溶媒としては上記メタンスルホン酸の他、
例えば四酸化二窒素−ジメチルスルホキシド(DMSO
)、塩化ニトロシル−DMSO,四酸化二窒素−ジメチ
ルホルムアミド(DMF) 、四酸化二窒素−ジメチル
アセトアミド(DMAc)、パラホルムアルデヒド−D
MSO1塩化リチウム−DMAc等などのセルロース溶
媒系を例示できる。
In the present invention, a cellulose derivative containing a carboxyl group is dissolved in water or an aqueous solution or an organic solvent containing an inorganic (alkali, etc.)↓organic compound to form a solution,
A substance that solidifies again when the solvent (or water) is removed. The solubility is influenced by the size of the atomic group containing the carboxyl group, the content of the carboxyl group, the distribution, etc. The cellulose derivative used in the present invention is generally 0.5 to 1.0 g/g. It is desirable to have carboxyl groups of Qmeq or higher and have a uniform distribution in terms of solubility, film formability, membrane performance, etc. For example, cellulose in methanesulfonic acid used as a cellulose solvent smoke catalyst Succinoylation of is particularly preferred as it provides carboxyl group-containing cellulose derivatives having such properties. In addition to the above methanesulfonic acid, cellulose solvents include
For example, dinitrogen tetroxide-dimethyl sulfoxide (DMSO
), nitrosyl chloride-DMSO, dinitrogen tetroxide-dimethylformamide (DMF), dinitrogen tetroxide-dimethylacetamide (DMAc), paraformaldehyde-D
Examples include cellulose solvent systems such as MSO1 lithium chloride-DMAc.

セルロース誘導体膜とキトサン膜の積層−株化した本発
明の複合膜の製造は、代表的には例えば次のようにして
行なうことができる。
The composite membrane of the present invention in which a cellulose derivative membrane and a chitosan membrane are laminated can be typically produced, for example, as follows.

例えばまず第1工程として、キトサンの稀酸水溶液(例
えば0.5零〜1tの酢酸水溶液)にキトサンを溶解し
てキトサン濃度を0,1〜1.0亀としたキトサン水溶
液を、所定の寸法の樹脂製基板(以下樹脂板という)の
上に所定量(例えば20〜zoog)流延し、この樹脂
板を水平に保持して温度20〜60℃、望ましくは例え
ば30℃の一定温度で、湿度20〜90*、望ましくは
例えば4091の一定湿度で、数時間から1日間水分を
蒸発させ、これにより該樹脂板上に酸と塩を形成し固化
したキトサン膜を形成させる。上記稀酸としての酢酸は
、これに換えてギ酸、乳酸、アスコルビン酸等の有機酸
、塩酸等の無機酸を使用することもできる。なおキトサ
ンの溶媒としては上記希酸を含む水−メタノール、ギ酸
、ジクロル酢酸、トリクロル酢酸等を使用することもで
きる。
For example, in the first step, chitosan is dissolved in a dilute aqueous solution of chitosan (e.g., 0.5 to 1 t of acetic acid aqueous solution) to give a chitosan concentration of 0.1 to 1.0 mm. A predetermined amount (e.g. 20~zoog) is cast onto a resin substrate (hereinafter referred to as a resin plate), and the resin plate is held horizontally at a constant temperature of 20~60°C, preferably 30°C. At a constant humidity of 20 to 90*, preferably 4091, moisture is evaporated for several hours to one day, thereby forming acid and salt on the resin plate to form a solidified chitosan film. Instead of acetic acid as the dilute acid, organic acids such as formic acid, lactic acid, and ascorbic acid, and inorganic acids such as hydrochloric acid can also be used. Note that as a solvent for chitosan, water-methanol containing the above-mentioned dilute acid, formic acid, dichloroacetic acid, trichloroacetic acid, etc. can also be used.

次に第2工程として、カルボキシル基を含有するセルロ
ース誘導体を、これを溶解する溶媒に溶解させてポリマ
ー濃度O11〜2tの溶液とし、この溶液を上記第1工
程で形成したキトサン膜の上に所定量(例えば20〜2
0θg)流延し、温度20〜70℃、望ましくは例えば
30℃の一定温度で、湿度2O−9ON、望ましくは例
えば40Xの一定湿度で、数10秒から1日間溶媒を蒸
発させ、これにより樹脂板上に、上記キトサン膜、更に
その上にセルロース誘導体膜を積層−株化させて複合膜
を形成させる。
Next, as a second step, a cellulose derivative containing a carboxyl group is dissolved in a solvent to form a solution with a polymer concentration of O11-2t, and this solution is placed on the chitosan film formed in the first step. quantitative (e.g. 20-2
The solvent is evaporated for several tens of seconds to one day at a constant temperature of 20 to 70°C, preferably 30°C, and a constant humidity of 2O-9ON, preferably 40X. A composite membrane is formed by laminating the chitosan membrane and a cellulose derivative membrane thereon on the plate.

以上のような複合膜の製造において上記第1工程でキト
サン溶液を流延させる樹脂板としては、流延されるキト
サン溶液に侵されず適度の親和性があって流延した溶液
が該樹脂板上で一様に広がることができる性質を有し、
かつ流延形成されたキトサン膜が自然状態では容易には
がれないが、乾燥状態では例えば作業者が手で容易には
がせる程度の接着性を示すものが好ましく選択される。
In the production of the above-described composite membrane, the resin plate on which the chitosan solution is cast in the first step is a resin plate that is not affected by the chitosan solution and has a suitable affinity for the resin plate. It has the property of being able to spread uniformly on the
In addition, a chitosan film formed by casting is not easily peeled off in its natural state, but it is preferably selected to exhibit adhesion to the extent that it can be easily peeled off by hand, for example, by an operator in a dry state.

このような樹脂板の素材として具体的には、例えばポリ
アクリル樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂
等が特に好ましいものとして例示される。はっ水性の大
きな例えばテフロン樹脂等は、大きな膜を成膜させる場
合には適当でない場合が多い。またキトサン溶液に対す
るなじみがよくかつ形成されたキトサン膜との間の密着
性が高すぎる例えばガラス板等については、乾燥状態で
基板から膜を剥離することが容易でないためにこれを湿
潤状態で行なうことが必要になるので上記樹脂板が好ま
しい。
Specifically preferred materials for such a resin plate include polyacrylic resin, polystyrene resin, polyvinyl chloride resin, and the like. For example, Teflon resin, which has high water repellency, is often not suitable for forming a large film. In addition, for example, for glass plates, etc., which have good compatibility with the chitosan solution and have too high adhesion with the formed chitosan film, it is difficult to peel the film from the substrate in a dry state, so this is done in a wet state. Since this is necessary, the above-mentioned resin plate is preferable.

また上記第1工程においては、樹脂板上に形成された稀
酸(酢酸)型キトサン膜を、稀アルカリ水溶液と接触さ
せ、水洗することによって遊離のアミノ基型のキトサン
膜に変換したり、1〜5%のホルムアルデヒドなどのア
ルデヒド化合物に接触させる処理を行なうことも好まし
い。この処理をすることなく第2工程のセルロース誘導
体溶液の流延を行なうと、キトサン膜が膨潤してrしわ
」を発生し、製造された複合膜の平面性が得られない場
合がある。上記稀アルカリ水溶液との接触処理は、通常
数秒程度好ましくは5秒以上行なわれ、代表的には1%
程度の水酸化ナトリウム、水酸化リチウム、水酸化カリ
ウム、水酸化カルシウムあるいは3%程度のアンモニア
水等が稀アルカリ水溶液として例示される。上記アルデ
ヒド化合物のキトサン膜との接触は、アルデヒド化合物
である例えば1〜5%のホルムアルデヒド水溶液に10
分間以上室温で接触させるとか、ホルムアルデヒド蒸気
に1〜数時間、20〜50’Cで接触させるかすること
で行なうことかできる。
In the first step, the dilute acid (acetic acid) type chitosan film formed on the resin plate is brought into contact with a dilute alkaline aqueous solution and washed with water to convert it into a free amino group type chitosan film. It is also preferred to carry out a contact treatment with an aldehyde compound such as ~5% formaldehyde. If the cellulose derivative solution is cast in the second step without this treatment, the chitosan membrane will swell and wrinkles will occur, and the flatness of the manufactured composite membrane may not be obtained. The contact treatment with the dilute alkali aqueous solution is usually carried out for several seconds, preferably for 5 seconds or more, and typically 1%
Examples of dilute alkaline aqueous solutions include sodium hydroxide, lithium hydroxide, potassium hydroxide, calcium hydroxide, and aqueous ammonia of about 3%. The above-mentioned aldehyde compound is brought into contact with the chitosan membrane by adding 10% to 5% formaldehyde aqueous solution to the aldehyde compound, for example.
This can be carried out by contacting for more than a minute at room temperature, or by contacting with formaldehyde vapor for one to several hours at 20 to 50'C.

本発明の第1工程で形成されるキトサン膜の厚さは、キ
トサン水溶液のキトサン濃度、流延量および樹脂板の面
積(すなわち流延面積)で調整することかできるが、−
M的には1〜lo。
The thickness of the chitosan film formed in the first step of the present invention can be adjusted by adjusting the chitosan concentration of the chitosan aqueous solution, the casting amount, and the area of the resin plate (i.e., the casting area).
In terms of M, it is 1~lo.

μm程度、好ましくは2.5〜90μmとされることが
好ましい。
It is preferable that the thickness is about μm, preferably 2.5 to 90 μm.

本発明の上記第2工程において、場合によっては膜の不
溶化のために、形成したセルロース誘導体等の膜をアン
モニア蒸気に数時間から1日間程度、20〜50℃で接
触させた後水洗するか、酢酸、塩酸等の弱酸性水溶液(
例えば983〜4)に接触させた後、必要であれば水洗
し、前記と同様の条件で水分を蒸発させることによって
該セルロース誘導体膜を不溶化してもよい。
In the second step of the present invention, in some cases, in order to insolubilize the film, the formed film of cellulose derivative or the like is brought into contact with ammonia vapor at 20 to 50°C for several hours to one day, and then washed with water, or Weakly acidic aqueous solutions such as acetic acid and hydrochloric acid (
For example, after contacting with 983-4), if necessary, the cellulose derivative film may be made insolubilized by washing with water and evaporating water under the same conditions as above.

本発明の複合膜の製造においては、上記で代表的に説明
される第1工程と第2工程を順序を逆にして行なうよう
にしてもよい。この場合も形成されたセルロース誘導体
膜の剥離が可能な関係を考慮して樹脂板を選択すること
が必要である。
In manufacturing the composite membrane of the present invention, the first and second steps typically described above may be performed in reverse order. In this case as well, it is necessary to select the resin plate in consideration of the relationship in which the formed cellulose derivative film can be peeled off.

この順序を逆にして複合膜を製造する場合には、上述し
たrしわ防止1と同じ目的で、第2工程のキトサン溶液
の流延に先立って第1工程で成膜したセルロース誘導体
膜に対してアンモニアを接触させるか又は酸水78液を
接触させることがよい。処理の内容は上述と同様でよい
When manufacturing a composite film by reversing this order, for the same purpose as wrinkle prevention 1 mentioned above, the cellulose derivative film formed in the first step is It is preferable to contact with ammonia or with acid water 78 liquid. The contents of the process may be the same as described above.

更にまた第2工程で成膜したキトサン膜の不溶化処理も
必要に応じて行なうことができる。
Furthermore, the chitosan film formed in the second step can be insolubilized as necessary.

本発明の積層一体化構造を有する複合膜は、上述したよ
うに、カルボキシル基を含有するセルロース誘導体膜と
、キトサン膜の積層構造の膜をいうが、両者の膜の接す
る界面においてカルボキシル基とアミノ基が静電的イオ
ン結合していわゆるポリイオンコンプレックス(高分子
電解質錯体)を形成するものに限定されるものではない
As mentioned above, the composite membrane having a laminated integrated structure of the present invention refers to a membrane having a laminated structure of a cellulose derivative membrane containing carboxyl groups and a chitosan membrane, and the carboxyl group and amino It is not limited to those in which the groups form a so-called polyion complex (polymer electrolyte complex) through electrostatic ionic bonding.

また本発明の複合膜は二層に限定されるものではなく、
三層ないしそれ以上の層をなす複合膜として形成するこ
ともできる。この場合には上記した第1工程および第2
工程を交互に繰返して膜を製造すればよい、更にまたこ
れらの膜に第3の成分からなる膜、例えば有機合成樹脂
膜や無機高分子膜を積層してもよい。
Furthermore, the composite membrane of the present invention is not limited to two layers;
It can also be formed as a composite membrane having three or more layers. In this case, the above-mentioned first step and second step
Membranes may be manufactured by repeating the steps alternately.Furthermore, a membrane made of a third component, such as an organic synthetic resin membrane or an inorganic polymer membrane, may be laminated on these membranes.

本発明よりなる複合膜は、少なくとも厚み3μm程度以
上とすることがよい。膜が薄すぎると膜強度が弱くなる
からである。また膜が厚すぎると透過速度が遅くなるか
ら好ましくは膜厚を5〜100μm程度とすることかで
適当である場合が多い。
The composite membrane according to the present invention preferably has a thickness of at least about 3 μm or more. This is because if the film is too thin, the film strength will be weakened. Furthermore, if the membrane is too thick, the permeation rate will be slow, so it is often appropriate to set the membrane thickness to about 5 to 100 .mu.m.

キトサン膜とセルロース誘導体膜の膜厚の比は、膜の強
度0分離性能、透過速度等のかね合いで適宜選択すれば
よいが、一般的には100:1〜t :1GG、好まし
くは10:1〜1:lO程度とすることがよい。
The ratio of the thickness of the chitosan membrane to the cellulose derivative membrane may be selected appropriately depending on the strength, separation performance, permeation rate, etc. of the membrane, but is generally 100:1 to t:1GG, preferably 10:1. It is preferable to set it to about 1 to 1:1O.

本発明の複合膜は、既存のパーベーパレーション装置で
実施することができる他、図面第2図で示した本発明に
おいて提案する新規なパーベーパレーション装置におい
て好まし〈実施される。
The composite membrane of the present invention can be implemented in existing pervaporation equipment, and is preferably implemented in the novel pervaporation equipment proposed in the present invention as shown in FIG. 2 of the drawings.

すなわち既知のパーベーパレーション装置は供給液側の
実容量と膜の有効透過面積の比が比較的小さい0例え“
・ばJournal of AppliedPolym
er 5cience、 vol、14.2341〜2
35B(1970)では500411 / 83.3c
m+2−6.0 、同vo1.16゜1061〜107
B (1972)では110mj! / 20.0cm
2= 5.5、同vol 、30. 179〜188 
(1985)では80 m115.7c+a2=14、
Journal of Polymer 5cienc
e、 Poly−mer  Chemistry  E
ditlon  、  vol、22. 2159〜2
168(1984)では200a+ft/ t2.8c
m2= 15.8であるが、本発明で実施に用いたパー
ベーパレーション装置においては、供給側容器の実容量
を400 mAとし、装着した複合膜の有効透過面積を
9.62cm’として、供給側容量と膜の有効面積の比
を41.6として、透過に伴−′なう供給液の組成変化
を可及的に少なくするように工夫した。
In other words, known pervaporation devices have a relatively small ratio between the actual volume on the feed liquid side and the effective permeation area of the membrane.
・Journal of Applied Polym
er 5science, vol, 14.2341-2
35B (1970) is 500411/83.3c
m+2-6.0, same vo1.16゜1061~107
110 mj in B (1972)! / 20.0cm
2=5.5, same vol, 30. 179-188
(1985), 80 m115.7c+a2=14,
Journal of Polymer 5cienc
e, Polymer Chemistry E
ditlon, vol, 22. 2159-2
168 (1984) is 200a+ft/t2.8c
m2 = 15.8, but in the pervaporation device used in the present invention, the actual capacity of the supply side container is 400 mA, and the effective permeation area of the attached composite membrane is 9.62 cm'. The ratio of the side volume to the effective area of the membrane was set to 41.6 in order to minimize changes in the composition of the feed liquid due to permeation.

本発明の複合膜を使用して行なう分lli!を操作にお
いては、原料液供給側の圧力は常圧付近とすることがよ
く、また透過側の圧力は5 mmHg以下望ましくは1
 mmHg以下とすることがよい。
This is done using the composite membrane of the present invention! In this operation, the pressure on the raw material supply side is preferably around normal pressure, and the pressure on the permeate side is preferably 5 mmHg or less, preferably 1
It is preferable to set it to below mmHg.

また第2図に示したパーベーパレーション装置は、透過
側では減圧方式とキャリヤガス方式を兼用できるように
したという特徴もある。
Furthermore, the pervaporation device shown in FIG. 2 is characterized in that it can be used both as a pressure reduction method and as a carrier gas method on the permeation side.

本発明の複合膜は、パーベーパレーション法に使用され
て、例えば農業および林業バイオマスのアルコール醗酵
によるエタノールの濃縮、透析用、ガス分離用、逆浸透
用等に使用することができる。
The composite membrane of the present invention can be used in a pervaporation method, for example, for concentration of ethanol by alcohol fermentation of agricultural and forestry biomass, for dialysis, for gas separation, for reverse osmosis, etc.

上記構成をなす本発明の複合膜によって分離される液体
混合物の代表例として、少なくとも有機液体をその構成
成分の一つとする液体混合物であり、例えば水/メタノ
ール、水/エタノール、水/プロパツールなどの水/ア
ルコール類、水/アセトン、水/メチルエチルケトン、
水/ジオキサン、水/エチレングリコール、水/グリセ
リンなどの水と相溶性の有機液体と水との液体混合物、
アセトン/アルコール類、アセトン/四塩化炭素、アセ
トン/ベンゼン、エタノール/ベンゼン、エタノール/
エチルベンゼン、クロロホルム/ベンゼンなどの相互相
溶性の二成分系有機液体混合物、二成分系さらに三成分
系の共沸混合物、またはそれを構成する成分の混合物等
を例示することができる。
Typical examples of liquid mixtures separated by the composite membrane of the present invention having the above configuration include liquid mixtures containing at least an organic liquid as one of its constituents, such as water/methanol, water/ethanol, water/propertool, etc. water/alcohols, water/acetone, water/methyl ethyl ketone,
liquid mixtures of water and water-compatible organic liquids such as water/dioxane, water/ethylene glycol, water/glycerin;
Acetone/alcohols, acetone/carbon tetrachloride, acetone/benzene, ethanol/benzene, ethanol/
Examples include mutually compatible binary organic liquid mixtures such as ethylbenzene and chloroform/benzene, binary or ternary azeotropic mixtures, and mixtures of constituent components thereof.

(実施例) 以下本発明を実施例に基づいて説明するが、本発明がこ
れらの実施例に限定されるものではない。
(Examples) The present invention will be described below based on Examples, but the present invention is not limited to these Examples.

実施例1〜3 脱アセチル化度89%、分子量約70万のキトサン粉末
5gを水990gに加え、攪拌しながら酢酸5gを加え
て 0.5%キトサン水溶液を調製し、この溶液をビニ
ルテープで周囲をせき止めたアクリル樹脂板(たて30
cm、よこ30cm、厚さ1 cm)上に160g流延
し、樹脂板を水平に保持して、温度30℃、湿度35%
にて20時間水分を蒸発させてアクリル樹脂板上にキト
サン膜を形成させた。次に樹脂板上のキトサン膜を、1
%水酸化ナトリウム水溶液200 mILで3分間接触
処理後、水洗し、前記と同様の条件で3時間水分を蒸発
させた。
Examples 1 to 3 5 g of chitosan powder with a degree of deacetylation of 89% and a molecular weight of approximately 700,000 was added to 990 g of water, and 5 g of acetic acid was added while stirring to prepare a 0.5% chitosan aqueous solution. Acrylic resin board (vertical 30
160g was cast onto a resin plate (30cm wide, 1cm thick), and the resin plate was held horizontally at a temperature of 30°C and a humidity of 35%.
The water was evaporated for 20 hours to form a chitosan film on the acrylic resin plate. Next, the chitosan film on the resin plate was
After contact treatment with 200 mL of % sodium hydroxide aqueous solution for 3 minutes, the sample was washed with water and water was evaporated for 3 hours under the same conditions as above.

次にカルボキシル基台ff13.2meq/g 、分子
量62万のカルボキシメチルセルロースナトリウム塩5
gを水995gに溶解した濃度0.5%のカルボキシメ
チルセルロース水溶液160gを、上記キトサン膜の上
に流延し、樹脂板を水平に保持して、前記と同様の条件
で20時間水分を蒸発させ、その後、アクリル樹脂板上
の複合膜をはがして厚み19μmの透明膜を得た。
Next, carboxyl base ff13.2 meq/g, carboxymethylcellulose sodium salt with a molecular weight of 620,000 5
160 g of a carboxymethylcellulose aqueous solution with a concentration of 0.5%, prepared by dissolving 1.5 g of carboxymethylcellulose in 995 g of water, was cast onto the chitosan membrane, and the resin plate was held horizontally, and water was evaporated for 20 hours under the same conditions as above. Then, the composite film on the acrylic resin plate was peeled off to obtain a transparent film with a thickness of 19 μm.

この@1を、第2図に示したバーベーベシーションセル
2に、図示する如く供給液3側にカルボキシルメチルセ
ルロース膜を向け、透過側4にキトサン膜を向けて?P
 A盤5上にセットとし、エタノール初期濃度19.8
wt%(実施例1 ) 、 49.9wt%(実施例2
)、及び83.2wt%(実施例3)の供給液(水−エ
タノール混合液)  300gそれぞれについて、原料
液の供給圧力常圧、供給液温度40℃、透過側圧力0.
45mmHgで供給液を攪拌羽根7で攪拌しながらパー
ベーパレーションを行なった。なお装置内はジャケット
6に温水を通水することで一定温度(40℃)に保った
This @1 is placed in the barbecuing cell 2 shown in FIG. 2, with the carboxymethylcellulose membrane facing the feed liquid 3 side and the chitosan membrane facing the permeate side 4 as shown in the figure. P
Set on A board 5, initial concentration of ethanol 19.8
wt% (Example 1), 49.9wt% (Example 2)
), and 83.2 wt% (Example 3) of 300 g of the feed liquid (water-ethanol mixed liquid), the feed pressure of the raw material liquid was normal pressure, the feed liquid temperature was 40°C, and the permeation side pressure was 0.
Pervaporation was performed while stirring the feed liquid with a stirring blade 7 at 45 mmHg. The inside of the apparatus was kept at a constant temperature (40° C.) by passing hot water through the jacket 6.

その結果を第1表に示した。The results are shown in Table 1.

なお本例で用いたキトンサンとセルロース誘導体膜の分
子量はゲルfAクロマトグラフィー法で測定した。
The molecular weights of the chitonsan and cellulose derivative membranes used in this example were measured by gel fA chromatography.

実施例4〜6 本例においてはまず、シラカンバを蒸煮・爆砕% 理し
、ヘミセルロースとリグニンの一部を抽出処理で除去し
て残ったリグノセルロースを原料として、Die Ma
kromolekrale Chemie、Vol。
Examples 4 to 6 In this example, birch was first steamed and exploded, and part of the hemicellulose and lignin were removed by extraction, and the remaining lignocellulose was used as a raw material to produce Die Ma
kromolekrale Chemie, Vol.

185.2371〜2376 (1985)、および第
35回日本木材学会大会研究発表要旨集、 I)255
(1985)に記載の方法に従ってサクシノイル化リグ
ノセルロース水溶液を合成した。
185.2371-2376 (1985), and collection of research presentation abstracts of the 35th Japan Wood Society Conference, I) 255
(1985), an aqueous succinoylated lignocellulose solution was synthesized.

すなわち、シラカンバチツブを15J/cm’のスチー
ムで15分間処理し、温水抽出、ジオキサン抽出をした
乾燥残さ繊維(8,0g)を25℃にて、メタンスルホ
ン酸(100mj2)に投入して5分間攪拌した後、約
lθ℃に冷却しておき、更に予め無水コハク酸(25g
)をメタンスルホン酸に溶解した溶液を没入して攪拌を
続け、適宜冷却して反応温度を25℃に保った。無水コ
ハク酸溶液を没入してから10分後、反応液を氷−水(
1,5ft)に攪拌しながら投入し、沈澱した生成物を
遠心分離で回収し、この生成物を0.1N −HCIL
(1,5℃)で洗浄した後、水(500mJZ)中に懸
濁し、IOM −NaOH水溶液で中和して溶解後、透
析して精製し、グラスファイバーメンブレンで不溶物を
r過除去し、限外?PA膜で濃縮し、連結真空乾燥して
生成物を得た。同一の合成操作を3回行ない、同生成物
即ちサクシノイル化リグノセルロースを計17g得た。
That is, birch beetles were treated with steam at 15 J/cm' for 15 minutes, and the dry residue fibers (8.0 g), which had been extracted with hot water and dioxane, were put into methanesulfonic acid (100 mj2) at 25°C. After stirring for a minute, it was cooled to about lθ℃, and further succinic anhydride (25g
) dissolved in methanesulfonic acid was poured into the mixture, stirring was continued, and the reaction temperature was maintained at 25° C. by cooling appropriately. 10 minutes after immersing the succinic anhydride solution, the reaction solution was poured into ice-water (
1.5ft) with stirring, the precipitated product was collected by centrifugation, and this product was added to 0.1N-HCIL.
(1.5°C), suspended in water (500 mJZ), neutralized and dissolved with IOM-NaOH aqueous solution, purified by dialysis, and insoluble matter was removed by filtration with a glass fiber membrane. Out of bounds? The product was concentrated using a PA membrane and dried under vacuum. The same synthetic operation was performed three times to obtain a total of 17 g of the same product, ie, succinoylated lignocellulose.

次に、実施例1〜3で調製した0、5%キトサン水溶液
40gをビニルテープで周囲をせき止めたアクリル樹脂
板(たて15 c、m 、よこ15cm、厚さ1 cm
)上に流延し、樹脂板を水平に保持して、温度30℃、
湿度35%にて20時間水分を蒸発させ、その後アクリ
ル樹脂板上のキトサン膜を1%水酸化ナトリウム水1?
&50+nfLで3分間接触処理し、水洗して前記と同
様の条件で3時間水分を蒸発させた。
Next, 40 g of the 0.5% chitosan aqueous solution prepared in Examples 1 to 3 was placed on an acrylic resin plate (height 15 cm, width 15 cm, thickness 1 cm) with vinyl tape.
) and held the resin plate horizontally at a temperature of 30°C.
Water was allowed to evaporate for 20 hours at a humidity of 35%, and then the chitosan film on the acrylic resin plate was diluted with 1% sodium hydroxide solution.
&50+nfL for 3 minutes, washed with water, and evaporated water for 3 hours under the same conditions as above.

次に上記により合成したカルボキシル基含量2.3me
q/g 、分子ff125万のサクシノイル化リグノセ
ルロース水溶液40gを、上記キトサン膜の上に流延し
、樹脂板を水平に保持して、前記と同様の条件で20時
間水分を蒸発させアクリル樹脂板上に複合膜を形成させ
た。さらにこの複合膜の付着しているアクリル樹脂板を
29%アンモニア水50 ff1ilを底にはったデシ
ケータに入れて、室温23℃にて16時間アンモニア蒸
気に接触後、水洗して前記と同様の条件で3時間水分を
蒸発させ、樹脂板上の複合膜をはがして厚さ16μm 
(スクリュウマイクロメータで測定)の淡黄色透明の複
合膜を得た。
Next, the carboxyl group content 2.3me synthesized as above
q/g, 40 g of a succinoylated lignocellulose aqueous solution with a molecular f of 1.25 million was cast onto the above chitosan membrane, the resin plate was held horizontally, and water was evaporated for 20 hours under the same conditions as above to form an acrylic resin plate. A composite membrane was formed on top. Further, the acrylic resin plate with this composite membrane attached was placed in a desiccator containing 50 ff1il of 29% ammonia water at the bottom and exposed to ammonia vapor for 16 hours at a room temperature of 23°C, then washed with water and treated in the same manner as above. The moisture was evaporated for 3 hours under the conditions, and the composite film on the resin plate was peeled off to a thickness of 16 μm.
A pale yellow transparent composite film (measured with a screw micrometer) was obtained.

第1図は、得られた複合膜を走査型電子顕徴鏡(200
0倍)で観察した横断面を示している。この図は上記作
製した複合膜を引き裂いてその引き裂き断面をキトサン
膜側から斜めに見た図を示している。
Figure 1 shows the obtained composite film under a scanning electron microscope (200
A cross section observed at 0x magnification is shown. This figure shows the torn cross section of the composite membrane prepared above, viewed diagonally from the chitosan membrane side.

このIN!1を、第2図に示したパーベーパレーション
セル2に、図示する如く供給液3側にサクシノイル化リ
グノセルロース膜を向け、透過側4にキトサン膜を向け
てセットとし、エタノール初期濃度21,8wt%(実
施例4)、51.4宵t%(実施例5)、及び83.2
+vt%(実施例6)の供給液(水−エタノール混合液
)  300gそれぞれについて、原料液の供給圧力常
圧、供給液温度40℃、透過側圧力0.45mmHgで
供給液を攪拌しながらパーベーパレーションを行なった
This IN! 1 was set in the pervaporation cell 2 shown in FIG. 2, with the succinoylated lignocellulose membrane facing the feed liquid 3 side and the chitosan membrane facing the permeation side 4 as shown in the figure, and an initial concentration of ethanol of 21.8 wt. % (Example 4), 51.4 Yoi t% (Example 5), and 83.2
+vt% (Example 6) of 300 g of each feed liquid (water-ethanol mixed liquid) was pervaporized while stirring the feed liquid at normal pressure of raw material liquid, feed liquid temperature of 40°C, and permeate side pressure of 0.45 mmHg. ration was conducted.

その結果を第1表に示した。The results are shown in Table 1.

比較例 実施例と同様に、0.5%キトサン水溶液80gをビニ
ルテープで周囲をせき止めたアクリル樹脂板(たて15
cm、よこ15cI11.厚さ1 cm)上に流延し、
樹脂板を水平に保持して、温度30℃、湿度35%にて
20時間水分を蒸発させ樹脂板上にキトサン膜を形成さ
せた0次にアクリル樹脂板上のキトサン膜を、1%水酸
化ナトリウム水溶液50 ttrJlで3分間接触処理
した後水洗し、前記と同様の条件で3時間水分を蒸発さ
せた。
Comparative Example As in the example, 80 g of a 0.5% chitosan aqueous solution was placed on an acrylic resin plate (vertically 15
cm, width 15cI11. 1 cm thick),
The resin plate was held horizontally and water was evaporated for 20 hours at a temperature of 30°C and a humidity of 35% to form a chitosan film on the resin plate. Next, the chitosan film on the acrylic resin plate was oxidized with 1% hydroxyl. After contact treatment with 50 ttrJl of sodium aqueous solution for 3 minutes, the sample was washed with water, and water was evaporated for 3 hours under the same conditions as above.

樹脂板からキトサン膜をはがし厚さ16μmの透明な膜
を得た。
The chitosan film was peeled off from the resin plate to obtain a transparent film with a thickness of 16 μm.

この膜を、実施例と同様に第2図に示したバーベーペシ
ーシコンセルにセットし、エタノール初期濃度20.0
wt%の供給液(水−エタノール混合液)  300g
について、原料液の供給圧力常圧、供給液温度40℃、
透過側圧力0.45mml(gで供給液を攪拌しながら
パーベーパレーションを行なつた。
This membrane was set in the Barbe Pepsicon cell shown in FIG. 2 in the same manner as in the example, and the initial concentration of ethanol was 20.0.
wt% feed liquid (water-ethanol mixture) 300g
Regarding, the supply pressure of raw material liquid is normal pressure, the supply liquid temperature is 40℃,
Pervaporation was performed while stirring the feed liquid at a permeate side pressure of 0.45 mml (g).

その結果を第1表に示した。The results are shown in Table 1.

(発明の効果) 本発明によれば、従来の膜に比べて高い分離係数と、大
きい透過速度でパーベーパレーションを行なうことがで
き、処理能力の増大、低コスト化が実現されて工業的規
模で混合液中の所定成分の分離が好適に行なえるという
効果がある。特にアルコール醗酵によるアルコール生産
の分野においては省エネルギー化の上でその有用性は極
めて大きいという特徴がある。
(Effects of the Invention) According to the present invention, pervaporation can be performed with a higher separation coefficient and higher permeation rate than conventional membranes, increasing processing capacity and lowering costs, resulting in industrial scale. This has the effect that a predetermined component in the mixed liquid can be suitably separated. Particularly in the field of alcohol production by alcohol fermentation, it is characterized by its extremely usefulness in terms of energy conservation.

また更に、本発明においてサクシノイル化リグノセルロ
ース膜とキトサン膜をラミネートした構造の複合膜を使
用する場合上は特にすぐれた高い分離係数、大壮い透過
速度が得られ、その効果は極めて犬なるものがある。
Furthermore, in the present invention, when a composite membrane having a structure in which a succinoylated lignocellulose membrane and a chitosan membrane are laminated is used, a particularly excellent high separation coefficient and a large permeation rate can be obtained, and the effects are extremely impressive. There is.

【図面の簡単な説明】[Brief explanation of drawings]

図面第1図は本発明の実施例4〜6で作製されたサクシ
ノイル化リグノセルロース膜とキトサン膜をラミネート
した複合膜の断面を電子顕微鏡写真(2000倍)で示
したものであり、図は上記作製した複合膜を引き裂いて
その引き裂き断面をキトサン膜側から斜めに見た図を示
している。 第2図は本発明よりなる分離膜を用いてパーベーパレー
ションを行なうセルの構造を示したものである。 1・・・分i膜     2・・・セル3・・・供給液
側    4・・・透過側他4名
Figure 1 is an electron micrograph (2000x magnification) of a cross section of a composite membrane made by laminating succinoylated lignocellulose membranes and chitosan membranes produced in Examples 4 to 6 of the present invention. This figure shows a torn cross section of the prepared composite membrane viewed diagonally from the chitosan membrane side. FIG. 2 shows the structure of a cell that performs pervaporation using the separation membrane of the present invention. 1... Separation membrane 2... Cell 3... Feed liquid side 4... Permeate side and 4 other people

Claims (1)

【特許請求の範囲】 1 キトサン膜と、セルロースにカルボキシル基を導入
したセルロース誘導体膜とを積層一体化した構造を有す
るパーベーパレーションに用いるセルロース系複合膜。 2 セルロース誘導体膜がエーテル化によりカルボキシ
ル基を導入したものであることを特徴とする請求項1に
記載のパーベーパレーションに用いるセルロース系複合
膜。 3 セルロース誘導体膜がエステル化によりカルボキシ
ル基を導入したものであることを特徴とする請求項1に
記載のパーベーパレーションに用いるセルロース系複合
膜。 4 カルボキシル基を導入したセルロース誘導体膜が、
セルロースをメタンスルホン酸中でサクシノイル化して
得たサクシノイル化セルロース膜であることを特徴とす
る請求項3に記載のセルロース系複合膜。 5 キトサン溶液を流延成膜し固化する第1の工程と、
セルロースにカルボキシル基を導入したセルロース誘導
体溶液を流延成膜し固化する第2の工程とを、基板上で
順次に行なって複合膜を製造する方法において、上記第
2の工程に先立ち、第1の工程で成膜したキトサン膜に
対してアルカリ水溶液を接触させるか、又はアルデヒド
化合物を接触させることを特徴とする請求項1乃至4項
のいずれかに記載のセルロース系複合膜の製造法。 6 セルロースにカルボキシル基を導入したセルロース
誘導体溶液を流延成膜し固化する第1の工程と、キトサ
ン溶液を流延成膜し固化する第2の工程とを、基板上で
順次に行なって複合膜を製造する方法において、上記第
2の工程に先立ち、第1の工程で成膜したセルロース誘
導体膜に対してアンモニアを接触させるか、又は酸水溶
液を接触させることを特徴とする請求項1乃至4項のい
ずれかに記載のセルロース系複合膜の製造法。
[Scope of Claims] 1. A cellulose-based composite membrane used for pervaporation, which has a structure in which a chitosan membrane and a cellulose derivative membrane in which carboxyl groups are introduced into cellulose are laminated and integrated. 2. The cellulose composite membrane used for pervaporation according to claim 1, wherein the cellulose derivative membrane has carboxyl groups introduced through etherification. 3. The cellulose composite membrane used for pervaporation according to claim 1, wherein the cellulose derivative membrane has carboxyl groups introduced through esterification. 4 The cellulose derivative membrane into which carboxyl groups have been introduced is
The cellulose-based composite membrane according to claim 3, which is a succinoylated cellulose membrane obtained by succinoylating cellulose in methanesulfonic acid. 5. A first step of casting and solidifying the chitosan solution;
A second step of casting and solidifying a cellulose derivative solution in which a carboxyl group has been introduced into cellulose is sequentially performed on a substrate, in a method for producing a composite film. 5. The method for producing a cellulose-based composite membrane according to any one of claims 1 to 4, characterized in that the chitosan membrane formed in the step is brought into contact with an alkaline aqueous solution or an aldehyde compound. 6 The first step of casting and solidifying a cellulose derivative solution in which carboxyl groups have been introduced into cellulose, and the second step of casting and solidifying a chitosan solution into a film are sequentially performed on a substrate to form a composite. 2. A method for producing a film, wherein, prior to the second step, the cellulose derivative film formed in the first step is brought into contact with ammonia or an acid aqueous solution. 4. A method for producing a cellulose-based composite membrane according to any one of Item 4.
JP23854188A 1988-09-22 1988-09-22 Cellulose-base laminated membrane and production thereof Granted JPH0286821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23854188A JPH0286821A (en) 1988-09-22 1988-09-22 Cellulose-base laminated membrane and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23854188A JPH0286821A (en) 1988-09-22 1988-09-22 Cellulose-base laminated membrane and production thereof

Publications (2)

Publication Number Publication Date
JPH0286821A true JPH0286821A (en) 1990-03-27
JPH0474048B2 JPH0474048B2 (en) 1992-11-25

Family

ID=17031787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23854188A Granted JPH0286821A (en) 1988-09-22 1988-09-22 Cellulose-base laminated membrane and production thereof

Country Status (1)

Country Link
JP (1) JPH0286821A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515580A (en) * 2005-11-11 2009-04-16 ジ・インスティチュート・オブ・キャンサー・リサーチ:ロイヤル・キャンサー・ホスピタル Time sequence volume rendering
KR20190074624A (en) * 2017-12-20 2019-06-28 셩민 리 An ultrafiltration membrane and its preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515580A (en) * 2005-11-11 2009-04-16 ジ・インスティチュート・オブ・キャンサー・リサーチ:ロイヤル・キャンサー・ホスピタル Time sequence volume rendering
KR20190074624A (en) * 2017-12-20 2019-06-28 셩민 리 An ultrafiltration membrane and its preparation method

Also Published As

Publication number Publication date
JPH0474048B2 (en) 1992-11-25

Similar Documents

Publication Publication Date Title
Edgar et al. Advances in cellulose ester performance and application
Hasegawa et al. Characterization of cellulose–chitosan blend films
JP5289619B2 (en) Barrier layer for packaging laminate and packaging laminate comprising such a barrier layer
US4075108A (en) Polycarbonate membranes and production thereof
Nguyen et al. Synthesis of membranes for the dehydration of water‐acetic acid mixtures by pervaporation, 1. Polymer material selection
WO2009020239A1 (en) Gas barrier material
JPH02135134A (en) Membrane for separating water-alcohol mixed liquid
WO1997026927A1 (en) Wound covering material
US4160791A (en) Polycarbonate membranes and production thereof
Lee et al. Pervaporation of water-ethanol through poly (vinyl alcohol)/chitosan blend membrane
JPS58342B2 (en) Polycarbonate thin film for hemodialysis
CN101259385B (en) Quaterisation chitosan penetrating and evaporating film, preparation and application thereof
CN110028591A (en) A kind of 3-(2- hydroxyphenyl) cellulose propionate ester preparation method
JPS5825764B2 (en) Polyvinyl alcohol
Jansen et al. Polymeric membranes with antioxidant activity based on cellulose esters and poly (vinylidene fluoride)/cellulose ester blends
JPH0286821A (en) Cellulose-base laminated membrane and production thereof
US4049492A (en) Self-bonding synthetic wood pulp and paper-like films thereof and method for production of same
RU2270209C1 (en) Method of manufacturing porous material from fibroin/chitosan mixture
Lee et al. Dehydration of acetic acid/water mixtures by pervaporation with a poly (4-methyl-1-pentene)/co (iii)(acetylacetonate) blend membrane
CN1093944A (en) The preparation method of vapor permeable membrance and composition
JPS624407A (en) Pervaporation film and separation process for separating liquid mixture
USRE30856E (en) Polycarbonate membranes and production thereof
JPS624401B2 (en)
JPS58192840A (en) Separation and concentration method of ethanol from aqueous solution thereof
JPH03131328A (en) Separation of liquid mixture

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term