JPH0285716A - Rotary encoder - Google Patents

Rotary encoder

Info

Publication number
JPH0285716A
JPH0285716A JP23796888A JP23796888A JPH0285716A JP H0285716 A JPH0285716 A JP H0285716A JP 23796888 A JP23796888 A JP 23796888A JP 23796888 A JP23796888 A JP 23796888A JP H0285716 A JPH0285716 A JP H0285716A
Authority
JP
Japan
Prior art keywords
light
diffraction grating
rays
grating
diffracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23796888A
Other languages
Japanese (ja)
Inventor
Tetsuji Nishimura
西村 哲治
Masaaki Tsukiji
築地 正彰
Satoru Ishii
哲 石井
Akira Ishizuka
公 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP23796888A priority Critical patent/JPH0285716A/en
Publication of JPH0285716A publication Critical patent/JPH0285716A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)

Abstract

PURPOSE:To miniaturize the size and to reduce the thickness of a rotary encoder by utilizing diffracted rays of light of a specific number of order from a cylindrical diffraction grating coupled with a rotating object to be detected. CONSTITUTION:Luminous fluxes emitted from both end faces of a laser 1 are respectively changed to parallel rays of light 81 and 82 by means of collimator lenses 21 and 22. One luminous flux 81 is changed to clockwise circularly polarized rays of light and made incident on one point M1 of a diffraction grating 4. The other luminous flux 82 is changed to counterclockwise circularly polarized rays of light and made incident on another point M2 of the grating 4. Then the positive and negative m-th order diffracted rays of light of the diffracted rays of light respectively produced at the points M1 and M2 are superimposed upon each other through a non-polarization beam splitter 5. Since the superimposed diffracted rays of light become linearly polarized rays of light with the polarizing direction rotated following the rotation of the grating 4, bright-and-dark changes are produced by polarizing plates 61 and 62. When the grating 4 is turned by one grating pitch, the + or -m-th order diffracted rays of light change in phase by + or -2mpi and the rays of light passed through the plates 61 and 62 produce bright-and-dark changes 2m times and, as a result, 2m pieces of sine signals can be obtained from photodetectors 71 and 72.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はロータリーエンコーダーに関し、特に円筒状物
体の外周面又は内周面上に例えば透光部と反射部の格子
模様を複数個、周期的に該んた回折格子を回転物体に取
付け、該回折格子に例えばレーザーからの光束を照射し
、該回折格子からの回折光を利用して、回折格子若しく
は回転物体の回転速度や回転速度の変動量等の回転状態
を充電的に検出するロータリーエンコーダーに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a rotary encoder, and in particular, to a rotary encoder, in particular, a cylindrical object having a plurality of lattice patterns of transparent parts and reflective parts on the outer circumferential surface or inner circumferential surface of a cylindrical object in a periodic manner. Attach a diffraction grating to a rotating object, irradiate the diffraction grating with a beam of light from, for example, a laser, and use the diffracted light from the diffraction grating to change the rotational speed or rotational speed of the diffraction grating or the rotating object. This invention relates to a rotary encoder that electrically detects rotational conditions such as rotational speed.

(従来の技術) 従来よりフロッピーデスクの駆動等のコンピューター機
器、プリンター等の事務機器、あるいはNC工作機械さ
らにはVTRのキャブステンモーターや回転ドラム等の
回転機構の回転速度や回転速度の変動量を検出する為の
手段として光電的なロータリーエンコーダーが利用され
てきている。
(Prior art) Conventionally, it has been used to measure the rotational speed and the amount of variation in rotational speed of computer equipment such as the drive of a floppy desk, office equipment such as a printer, or NC machine tools, as well as rotational mechanisms such as the carburetor stainless steel motor and rotating drum of a VTR. A photoelectric rotary encoder has been used as a means for detection.

充電的なロータリーエンコーダーは例えば第10図に示
すように回転軸30に連絡した円板35の周囲に透光部
と遮光部を等間隔に設けた、所謂メインスケール31と
これに対応してメインスケールと等しい間隔で透光部と
遮光部とを設けた所謂固定のインデックススケール32
との双方のスケールを投光手段33と受光手段34で挟
んで対向配置した所謂インデックススケール方式の構成
を採っている。この方法はメインスケールの回転に伴っ
て双方のスケールの透光部と遮光部の間隔に同期した信
号が得られ、この信号を周波数解析して回転軸の回転速
度の変動を検出している。この為、双方のスケールの透
光部と遮光部とのスケール間隔を細かくすればする程、
検出精度を高めることができる。しかしながらスケール
間隔を細かくすると回折光の影響で受光手段からの゛出
力信号のS/N比が低下し、検出精度が低下してしまう
欠点があった。この為メインスケールの透光部と遮光部
の格子の総本数を固定させ、透光部と遮光部の間隔を回
折光の影習を受けない程度まで拡大しようとするとメイ
ンスケールの円板の直径が増大し更に厚さも増大し装置
全体が大型化し、この結果被検回転物体への負荷が大き
くなフてくる等の欠点があった。
For example, as shown in FIG. 10, a rechargeable rotary encoder has a so-called main scale 31 in which light-transmitting parts and light-shielding parts are provided at equal intervals around a disc 35 connected to a rotating shaft 30, and a corresponding main scale. A so-called fixed index scale 32 that has a light-transmitting part and a light-blocking part at equal intervals to the scale.
A so-called index scale system configuration is adopted in which both scales are placed facing each other with the light projecting means 33 and the light receiving means 34 sandwiching them. In this method, as the main scale rotates, a signal synchronized with the interval between the light-transmitting part and the light-blocking part of both scales is obtained, and this signal is frequency-analyzed to detect fluctuations in the rotational speed of the rotating shaft. For this reason, the finer the scale interval between the light-transmitting part and the light-blocking part of both scales, the more
Detection accuracy can be improved. However, when the scale interval is made smaller, the S/N ratio of the output signal from the light receiving means decreases due to the influence of the diffracted light, resulting in a decrease in detection accuracy. Therefore, if you fix the total number of gratings in the light-transmitting part and the light-blocking part of the main scale, and try to increase the distance between the light-transmitting part and the light-blocking part to the extent that they are not influenced by diffracted light, the diameter of the disc of the main scale This increases the thickness and increases the overall size of the device, resulting in disadvantages such as a heavy load on the rotating object to be tested.

(発明が解決しようとする問題点) 本発明は被検回転物体の負荷が小さく、装置全体の小型
化及び薄型化が容易で、しかも回転状態を高精度に検出
することのできるロータリーエンコーダーの提供を目的
とする。
(Problems to be Solved by the Invention) The present invention provides a rotary encoder that has a small load on a rotating object to be inspected, can easily reduce the size and thickness of the entire device, and can detect the rotational state with high precision. With the goal.

(問題点を解決するための手段) 可干渉性の光源からの光束を回転物体に連結した円筒状
物体の内周面又は外周面に設けた回折格子上の互いに異
なる位置に各々入射させ、該回折格子の異なる位置から
発生する特定次数の回折光を重ね合わせて干渉させ、該
干渉光束を受光手段により受光し、該受光手段からの出
力信号を利用して該回転物体の回転状態を求めたことで
ある。
(Means for solving the problem) Light beams from a coherent light source are made incident on different positions on a diffraction grating provided on the inner circumferential surface or outer circumferential surface of a cylindrical object connected to a rotating object, and Diffracted lights of specific orders generated from different positions of the diffraction grating are superimposed and interfered with each other, the interference light flux is received by a light receiving means, and the rotational state of the rotating object is determined using an output signal from the light receiving means. That's true.

この他本発明としては、可干渉性の光源からの第1と第
2の光束を回転物体に連結した円筒状物体の内周面又は
外周面に設けた回折格子の位置M1に入射させ、該位置
M1から第1と第2の光束により発生する回折光のうち
特定次数の第1と第2の回折光を該回折格子の回転中心
に対して該位置M1と略点対称の位WM2に同一光路を
進行させて入射させ、該位置M2で第1と第2の回折光
により発生する特定次数の回折光同志を互いに干渉させ
、該干渉光束を受光手段により受光し、該受光手段から
の出力信号を利用して該回転物体の回転状態を求めてい
る。
In addition, in the present invention, the first and second light beams from a coherent light source are made incident on the position M1 of a diffraction grating provided on the inner circumferential surface or outer circumferential surface of a cylindrical object connected to a rotating object. Among the diffracted lights generated by the first and second light beams from the position M1, the first and second diffracted lights of specific orders are placed at a position WM2 that is approximately point symmetrical to the position M1 with respect to the rotation center of the diffraction grating. Proceeding the optical path to make the light incident, the diffracted lights of a specific order generated by the first and second diffracted lights interfere with each other at the position M2, the interference light flux is received by the light receiving means, and the output from the light receiving means The rotation state of the rotating object is determined using the signal.

(実施例) 第1図は本発明の第1実施例の要部概略図である。同図
に右いて1は半導体レーザーなどの可干渉性の光源であ
り、両端部から可干渉性の光束を発振している。22,
2□はコリメーターレンズ、31.3□は1/4波長板
で、その偏光軸は光源lの偏光方位に対して±45°の
方位に置かれている。4は円筒状の回折格子で、ガラス
又は金属の円筒状物体の内面に複数の格子が等間隔に刻
まれている。この円筒状の回折格子4は不図示の被検回
転物体に連結され回転している。5は非偏光ビームスプ
リッタ−16,,62は偏光板で、偏光方位が相対的に
45°傾いて配置されている。7..72は受光素子で
ある。
(Embodiment) FIG. 1 is a schematic diagram of a main part of a first embodiment of the present invention. Reference numeral 1 on the right side of the figure is a coherent light source such as a semiconductor laser, which oscillates a coherent light beam from both ends. 22,
2□ is a collimator lens, and 31.3□ is a quarter-wave plate, the polarization axis of which is placed at an orientation of ±45° with respect to the polarization direction of the light source l. 4 is a cylindrical diffraction grating, and a plurality of gratings are carved at equal intervals on the inner surface of a cylindrical object made of glass or metal. This cylindrical diffraction grating 4 is connected to a rotating object to be detected (not shown) and rotates. Reference numeral 5 denotes a non-polarizing beam splitter, and reference numerals 16 and 62 denote polarizing plates, which are arranged so that their polarization directions are tilted relative to each other by 45 degrees. 7. .. 72 is a light receiving element.

次に本実施例の被検回転物体の回転状態の検出方法につ
いて説明する。半導体レーザー1の両端面から出射した
光束は、コリメーターレンズ21.2□によってほぼ平
行な光束8..82となる。
Next, a method for detecting the rotational state of the rotating object to be tested according to this embodiment will be explained. The light beams emitted from both end faces of the semiconductor laser 1 are transformed into substantially parallel light beams 8. by the collimator lens 21.2□. .. It becomes 82.

このうち光束81は1/4波長板3Iによって右回り(
あるいは左回り)円偏光となって円筒状の回折格子4の
1点M、に入射する。また、他方の光束8.は1/4波
長板32によって左回り(あるいは右回り)円偏光とな
って、円筒状の回折格子4の1点M2に入射する。ここ
で点M1と点M2は円筒状の回折格子4の回転中心に対
してほぼ対称な位置関係にある。そして点M、と点M2
で発生した回折光のうち点M1での+(あるいは−)m
次回先光、点M2での−(あるいは+)m次回先光を非
偏光ビームスプリッタ−5を介して重ね合わせる。
Of these, the light beam 81 is rotated clockwise (
(or counterclockwise) becomes circularly polarized light and enters one point M of the cylindrical diffraction grating 4. Also, the other luminous flux 8. is turned into counterclockwise (or clockwise) circularly polarized light by the quarter-wave plate 32, and is incident on one point M2 of the cylindrical diffraction grating 4. Here, the points M1 and M2 are in a substantially symmetrical positional relationship with respect to the rotation center of the cylindrical diffraction grating 4. and point M, and point M2
+ (or -) m at point M1 of the diffracted light generated at
The next-time forward light, the - (or +) mth-th forward light at point M2, is superimposed via the non-polarizing beam splitter 5.

ここでmは正整数である。右回り及び左回り円偏光が重
なり合う結果、直線偏光となるが、その偏光方位が回折
格子4の回転に伴って回転することにより、偏光板6.
.62によって明暗の変化となる。±m次の回折光は回
折格子4が1格子ピツチたけ回転すると±2mπだけ位
相が変化するので、偏光板6..62を透過した光は回
折格子4の1格子ピツチ回転によフて2m回の明暗変化
となり、受光素子72,7□からは2m個の正弦波信号
が得られることになる。
Here m is a positive integer. The overlapping of right-handed and left-handed circularly polarized light results in linearly polarized light, but as the polarization direction rotates with the rotation of the diffraction grating 4, the polarizing plate 6.
.. 62 results in a change in brightness and darkness. The phase of ±m-order diffracted light changes by ±2mπ when the diffraction grating 4 is rotated by one grating pitch, so the polarizing plate 6. .. The light transmitted through the diffraction grating 62 changes brightness and darkness 2m times due to one grating pitch rotation of the diffraction grating 4, and 2m sine wave signals are obtained from the light receiving elements 72, 7□.

円筒状の回折格子4に刻線されている格子の数をN本と
すれば、回折格子4の1回転に伴って受光素子70,7
□からは2mN個の正弦波が得られる。例えば、内径2
1mmの円筒面に2μmピッチで32,400本の格子
を刻線し、±1次の回折光を用いると、1回転で64,
800個の正弦波信号が得られる。これは正弦波信号、
1周期あたりで20角度秒に相当する。又、偏光板6.
.62の偏光方位を相対的に45°ずらしているので受
光素子7I、7□からは回折格子4の回転に伴って90
0の位相差をもった正弦波信号が得られ、これにより回
転方向の判別を可能としている。
If the number of gratings marked on the cylindrical diffraction grating 4 is N, then the light receiving elements 70, 7
2 mN sine waves are obtained from □. For example, inner diameter 2
If 32,400 gratings are scored at a pitch of 2 μm on a 1 mm cylindrical surface and ±1st order diffracted light is used, 64,
800 sinusoidal signals are obtained. This is a sine wave signal,
One cycle corresponds to 20 angular seconds. Also, a polarizing plate 6.
.. Since the polarization direction of 62 is relatively shifted by 45 degrees, the light receiving elements 7I and 7□ receive 90
A sine wave signal with a phase difference of 0 is obtained, which makes it possible to determine the direction of rotation.

本実施例では円筒状の回折格子4の回転中心に対して略
点対称の2つの位置の点M r 、 M 2からの回折
光を利用することにより回転物体の回転中心と円筒状回
折格子4の中心との偏心による測定誤差を軽減させてい
る。
In this embodiment, the rotation center of the rotating object and the cylindrical diffraction grating 4 are determined by using diffracted light from two points M r and M 2 that are approximately symmetrical with respect to the rotation center of the cylindrical diffraction grating 4. This reduces measurement errors caused by eccentricity with respect to the center.

又、半導体レーザ1の両端から射出する光束の強度がほ
ぼ同一となる様に、半導体レーザ1を構成するか、半導
体レーザ1の一方の端部から射出する強度か強い方の光
束の光路中にNDフィルタなどを設け、互いに干渉させ
る回折光の強度が等しくなる様にすることで干渉縞の明
暗比を上げるのが好ましい。
In addition, the semiconductor laser 1 is configured so that the intensity of the light beams emitted from both ends of the semiconductor laser 1 is almost the same, or the light beam with the stronger intensity emitted from one end of the semiconductor laser 1 is placed in the optical path. It is preferable to increase the brightness ratio of the interference fringes by providing an ND filter or the like so that the intensities of the diffracted lights that interfere with each other become equal.

第2図は本発明の第2実施例の要部概略図である。同図
において第1図と同一の機能を有する要素には同一の番
号を付しである。第2図においては円筒状の回折格子4
の点M、と点M2での回折光のうち、受光素子7I、7
□で検出する±m次の回折光とは逆符号の回折光、即ち
不m次の回折光を非偏光ヒ゛−ムスブリッター52で重
ね合わせている。
FIG. 2 is a schematic diagram of main parts of a second embodiment of the present invention. In this figure, elements having the same functions as in FIG. 1 are given the same numbers. In Fig. 2, a cylindrical diffraction grating 4 is shown.
Among the diffracted lights at points M and M2, the light receiving elements 7I and 7
The non-polarizing beam splitter 52 superimposes the diffracted light of the opposite sign to the ±m-order diffracted light detected by □, that is, the non-m-order diffracted light.

そして非偏光ビームスプリッタ−52で重ね合わせた光
を受光j子73で検出している。受光素子73・は偏光
板を介して受光していないので、その出力は干渉信号に
はならず、点MI1点M2で発生したm次回先光の光量
変化のみか出力される。従って、受光素子7Jの出力と
、受光素子71.7□の出力との差分なとれば受光素子
71.72の出力のうち、直流変動分が除去できる。
The light beams superimposed by the non-polarizing beam splitter 52 are detected by the light receiving element 73. Since the light-receiving element 73 does not receive light through a polarizing plate, its output does not become an interference signal, and only the change in the amount of light of the m-th forward light occurring at point MI1 and point M2 is output. Therefore, if the difference between the output of the light-receiving element 7J and the output of the light-receiving element 71.7□ is taken, the DC fluctuation portion of the output of the light-receiving element 71.72 can be removed.

即ち 回折格子4の格子の反射率が一様でなかったり、
振幅型の回折格子を用いた場合に反射部の線幅の太さが
均一でなかったり、位相型の回折格子を用いた場合に刻
線の溝形状(高さ、あるいは幅)が一定でなかったりす
ると回折光の回折効率が一様でなくなり、受光素子71
,7□からの出力信号の干渉信号は直流変動分で変調を
受けた不安定な43号となる。又、この直流変動は可干
渉性の光源lの出力が温度変化等の環境変化によって変
動することによっても生じる。
In other words, the reflectance of the grating of the diffraction grating 4 is not uniform,
When using an amplitude type diffraction grating, the line width of the reflective part is not uniform, and when using a phase type diffraction grating, the groove shape (height or width) of the grooves is not constant. If the diffraction efficiency of the diffracted light becomes uneven, the light receiving element 71
The interference signal of the output signal from , 7□ becomes unstable No. 43 modulated by DC fluctuation. This DC fluctuation also occurs when the output of the coherent light source l fluctuates due to environmental changes such as temperature changes.

本実施例ではこのときの直流変動分を、非偏光ビームス
プリッタ−52と受光素子73で検出して、受光素子7
..72の出力信号の安定化を図っている。これにより
、より高鯖度な測定を可能としている。
In this embodiment, the DC fluctuation at this time is detected by the non-polarizing beam splitter 52 and the light receiving element 73, and the
.. .. 72 output signal is stabilized. This makes it possible to perform measurements with higher accuracy.

第3図は本発明の第3実施例の要部概略図である。同図
において第1図と同一機能を有する要素には同符番を付
している。第3図において2はコリメーターレンズ、5
3.54は反射鏡である。
FIG. 3 is a schematic diagram of main parts of a third embodiment of the present invention. In this figure, elements having the same functions as those in FIG. 1 are given the same reference numerals. In Fig. 3, 2 is a collimator lens, and 5 is a collimator lens.
3.54 is a reflecting mirror.

次に本実施例における被検回転物体の回転状態の検出方
法について説明する、。
Next, a method for detecting the rotational state of the rotating object to be tested in this embodiment will be explained.

レーザー1から出射した可干渉性の光束はコリメーター
レンズによってほぼ平行な光束となり、円筒状の回折格
子4の1点M1に回折格子4の配列方向に対してほぼ垂
直に入射する。点M1においては、回折格子4の格子ピ
ッチや、レーザー1の波長λに応じて、 θea = 5in−’(mλ/P)    −−−−
−−−−−−−−(1)で表わされる角度θm  (m
は正整数)で±m次の回折光が発生する。点M、で発生
する±m次の回折光を表示するのに便宜上第3図の紙面
上、左側に発生する回折光を210、右側に発生する回
折光を220とする。円筒状の回折格子4が第3図の矢
印の方向に1格子ピツチだけ回転すると回折光210の
位相は2mπたけ変化し、回折光220の位相は回折光
210の位相変化とは逆方向に2mπだけ変化する。回
折光210.220は反射鏡53.54で反射し、1/
4波長板38.3□で右回り(あるいは左回り)円偏光
及び左回り(あるいは右回り)円偏光となって、反射鏡
53.54で再度反射されて円筒状の回折格子4の1点
M2に入射する。ここで点M1と点M2は円筒状の回折
格子4の回転中心に対して、はぼ対称な位置関係にある
。そして点M2には回折光210は箪3図の紙面上で右
側から入射角θ。で人射し、回折光220は第3図の紙
面上で左側から入射角θ1で入射する。すると点M2で
発生するm次の回折光は入射光210,220に対して
、ともにほぼ垂直な方向に出射し、重なり合うことにな
る。円筒状の回折格子4が第3図の矢印の方向に1格子
ピツチだけ回転すると、入射光210に対して点M2で
垂直な方向に出射するm次回先光の位相は点M1におい
て同一方向に2mπだけ変化する。つまり、レーザー1
を出射して点M31点M2でm次の回折をうける結果、
円筒状の回折格子4の1格子ピツチの回転に対して光束
210の位相は4mπだけ変化する。同様にして光束2
20は位相は点M39点M2でのm次回折の結果、光束
210の位相変化とは逆方向に4mπたけ変化する。
A coherent light beam emitted from the laser 1 is turned into a substantially parallel light beam by a collimator lens, and is incident on one point M1 of the cylindrical diffraction grating 4 almost perpendicularly to the arrangement direction of the diffraction grating 4. At point M1, depending on the grating pitch of the diffraction grating 4 and the wavelength λ of the laser 1, θea = 5in-'(mλ/P) -----
----------Angle θm (m
is a positive integer), and ±m-order diffracted light is generated. For convenience of displaying the ±m-order diffracted light generated at point M, the diffracted light generated on the left side of the paper in FIG. 3 is designated as 210, and the diffracted light generated on the right side is designated as 220. When the cylindrical diffraction grating 4 rotates by one grating pitch in the direction of the arrow in FIG. only changes. The diffracted light 210.220 is reflected by the reflecting mirror 53.54 and is 1/
The 4-wavelength plate 38.3□ converts the light into clockwise (or counterclockwise) circularly polarized light and counterclockwise (or clockwise) circularly polarized light, which is reflected again by the reflecting mirror 53.54 to one point on the cylindrical diffraction grating 4. It enters M2. Here, the points M1 and M2 are in a nearly symmetrical positional relationship with respect to the rotation center of the cylindrical diffraction grating 4. The diffracted light 210 enters the point M2 from the right side on the paper of Figure 3 at an incident angle θ. The diffracted light 220 enters from the left side on the paper surface of FIG. 3 at an incident angle θ1. Then, the m-th order diffracted light generated at point M2 is emitted in a direction substantially perpendicular to the incident lights 210 and 220, and overlaps with each other. When the cylindrical diffraction grating 4 rotates by one grating pitch in the direction of the arrow in FIG. It changes by 2mπ. In other words, laser 1
As a result of being emitted and undergoing m-th order diffraction at point M31 and point M2,
The phase of the light beam 210 changes by 4 mπ with respect to rotation of one grating pitch of the cylindrical diffraction grating 4. Similarly, luminous flux 2
20, the phase changes by 4mπ in the opposite direction to the phase change of the light beam 210 as a result of the m-th order diffraction at the point M39 and the point M2.

こうして点M2での回折後型なり合フた光束は、右回り
及び左回り円偏光が重なり合う結果、直線偏光となるが
、その偏光方位が回折格子4の回転に伴って回転するこ
とになり、偏光板6I。
In this way, the diffracted light beam at point M2 becomes linearly polarized light as a result of the overlapping of clockwise and counterclockwise circularly polarized light, but its polarization direction rotates as the diffraction grating 4 rotates. Polarizing plate 6I.

62によって明暗の変化となる。回折格子4が1格子ピ
ツチ回転すると上述した如く、重なり合った光束の位相
は±4mπ変化するので、偏光板69.6□を透過した
光は4m回の明暗を繰り返し、受光素子7..72から
は4m個の正弦波信号が得られる。
62 results in a change in brightness and darkness. As described above, when the diffraction grating 4 rotates by one grating pitch, the phase of the overlapping light beams changes by ±4 mπ, so the light transmitted through the polarizing plate 69.6□ repeats brightness and darkness 4 m times, and the light receiving element 7. .. 72, 4m sine wave signals are obtained.

円筒状の回折格子4に刻線されている格子の数をN木と
すれば回折格子4の1回転に伴って受光素子71.7□
からは4mN個の正弦波が得られることになる。例えば
内径21mmの円筒面に2μmピッチで32,400本
の格子を刻線し、±1次の回折光を用いると1回転で1
29,600個の正弦波信号が得られる。これは正弦波
信号1周期あたりで10角度秒に相当する。また偏光板
61.6゜の偏光方位を相対的に450ずらしているの
で受光素子7..72からは回折格子4の回転に伴フて
90°の位相差をもった正弦波信号が得られ、回転方向
の判別も可能となる。
If the number of gratings marked on the cylindrical diffraction grating 4 is N tree, the number of light receiving elements 71.7□ will increase with one rotation of the diffraction grating 4.
From this, 4 mN sine waves are obtained. For example, if 32,400 gratings are scored at a pitch of 2 μm on a cylindrical surface with an inner diameter of 21 mm, and using ±1st-order diffracted light, one rotation will result in 1 rotation.
29,600 sinusoidal signals are obtained. This corresponds to 10 angular seconds per period of the sine wave signal. Also, since the polarization direction of the polarizing plate 61.6° is relatively shifted by 450 degrees, the light receiving element 7. .. As the diffraction grating 4 rotates, a sine wave signal having a phase difference of 90° is obtained from the grating 72, and the direction of rotation can also be determined.

本実施例では円筒状の回折格子4の回転中心に対してほ
ぼ点対称の2つの位置M、、M2からの回折光を利用す
ることにより、回転物体の回転中心と、円筒状の回折格
子4の中心との偏心による測定誤差を軽減させている。
In this embodiment, by using diffracted light from two positions M, , M2 that are approximately point symmetrical with respect to the rotation center of the cylindrical diffraction grating 4, the rotation center of the rotating object and the cylindrical diffraction grating 4 are This reduces measurement errors caused by eccentricity with respect to the center.

さらに、本実施例では互いに干渉させる2つの光路21
0,220が合致する位置M、、M2に円筒状の回折格
子4を配置するようにし、回折格子4の面積度が悪くて
も測定精度が低下しない。
Furthermore, in this embodiment, two optical paths 21 are made to interfere with each other.
The cylindrical diffraction grating 4 is arranged at the positions M, .

つまり、回折格子4の製造が容易という利点を有してい
る。
In other words, it has the advantage that the diffraction grating 4 is easy to manufacture.

第4図は本発明の第4実施例の要部概略図である。同図
におい°て第1図と同一機能の要素には同符番な付して
いる。
FIG. 4 is a schematic diagram of the main parts of a fourth embodiment of the present invention. In this figure, elements having the same functions as those in FIG. 1 are given the same reference numerals.

第4図において9I、9□は偏光ビームスプリッタ−で
あり、レーザー1から出射した光束を互いに直交した直
線偏光である2つの光束41゜42に分割する。即ち、
光束41は紙面に平行な方位の直線偏光、光束42は紙
面に垂直な方位の直線偏光で反射鏡53.54を介して
回折格子4の点M1に(1)式で示す回折角±01で入
射させている。点M、で発生する±m次の回折光は、と
もに点M1から垂直な方向に重なり合フて出射し回折格
子4の回転中心に対しほぼ点対称な位置M2に入射する
。そして点M2で再び発生する±m次の回折光を反射鏡
5..56と偏光ビームスプリッタ−92によって重ね
合わせる。1/4波長板31によって左右逆回りの円偏
光を重ね合わせて回転する直線偏光とし、偏光板6..
62による明暗変化を受光素子71.7□で検出するこ
とは第3図の実施例と同様である。
In FIG. 4, reference numerals 9I and 9□ are polarizing beam splitters, which split the light beam emitted from the laser 1 into two light beams 41° and 42 which are linearly polarized lights orthogonal to each other. That is,
The light beam 41 is a linearly polarized light oriented parallel to the plane of the paper, and the light flux 42 is a linearly polarized light oriented perpendicular to the plane of the paper, which is transmitted to the point M1 of the diffraction grating 4 via a reflecting mirror 53, 54 at a diffraction angle of ±01 as shown by equation (1). It is incident. The ±m-order diffracted lights generated at point M are emitted from point M1 in an overlapping manner in a perpendicular direction, and enter a position M2 that is approximately symmetrical about the rotation center of the diffraction grating 4. Then, the ±m-order diffracted light generated again at point M2 is reflected by the reflecting mirror 5. .. 56 and a polarizing beam splitter 92. A quarter-wave plate 31 superimposes left and right circularly polarized light into rotating linearly polarized light, and a polarizing plate 6. ..
Detecting the change in brightness caused by 62 using the light receiving element 71.7□ is similar to the embodiment shown in FIG.

第3図では点M、に垂直に入射させて点M2での垂直方
向に出射する回折光で検出しているが、第4図の如く点
M、に回折角で入射させ、点M2に垂直に入射させても
同一の効果が得られる。
In Fig. 3, the diffracted light is detected by making the light incident perpendicularly to the point M and emitting in the vertical direction at the point M2, but as shown in Fig. 4, the diffracted light is made incident to the point M at a diffraction angle and is perpendicular to the point M2. The same effect can be obtained even if it is incident on .

第3図では回折格子4の反射回折光を、第4図では回折
格子4の透過回折光を検出しているが、これらを各々透
過回折光、反射回折光としても全く同様の効果が得られ
る。
In Fig. 3, the reflected diffracted light of the diffraction grating 4 is detected, and in Fig. 4, the transmitted diffracted light of the diffraction grating 4 is detected, but exactly the same effect can be obtained by detecting the transmitted diffracted light and the reflected diffracted light respectively. .

第5図、第6図、第7図は本発明の第5゜第6.第7実
施例の要部概略図である。これらの各実施例においては
回折格子4の一点Mからの回折光を利用して被検回転物
体の回転状態を検出している。
5, 6, and 7 are the 5th and 6th sections of the present invention. FIG. 7 is a schematic diagram of main parts of a seventh embodiment. In each of these embodiments, the rotation state of the rotating object to be tested is detected using the diffracted light from one point M of the diffraction grating 4.

尚、第5.第6.第7図において第3図と同一機能の要
素には同一符番を付している。
In addition, 5th. 6th. In FIG. 7, elements having the same functions as those in FIG. 3 are given the same reference numerals.

第5図に示す第5実施例においてはレーザー1の端面か
ら出射した光束はコリメーターレンズ2によってほぼ平
行な光束となって円筒状の回折格子4の1点Mに入射す
る。点Mで発生した±m次の回折光(mは正整数)は1
/4波長板3I。
In the fifth embodiment shown in FIG. 5, the light beam emitted from the end face of the laser 1 is turned into a substantially parallel light beam by the collimator lens 2, and is incident on one point M of the cylindrical diffraction grating 4. The ±m-order diffracted light (m is a positive integer) generated at point M is 1
/4 wavelength plate 3I.

3□によって右回り(あるいは左回り)及び左回り(あ
るいは右回り)円偏光となり反射鏡53゜54で反射し
、非偏光ビームスプリッタ−5を介して重なり合う。右
回り及び左回り円偏光が重なり合う結果、直線偏光とな
るが、その偏光方位は回折格子4の回転に伴って回転し
、偏光板6.。
3□, the light becomes clockwise (or counterclockwise) and counterclockwise (or clockwise) circularly polarized light, which is reflected by the reflecting mirrors 53 and 54, and overlaps via the non-polarizing beam splitter 5. The overlapping of right-handed and left-handed circularly polarized light results in linearly polarized light, but its polarization direction rotates as the diffraction grating 4 rotates, and the polarizing plate 6. .

62によって明暗の変化となる。±m次の回折光は回折
格子4が1格子ピツチだけ回転すると±2mπたけ位相
が変化するので偏光板61.62を透過した光は回折格
子4の1格子ピツチの回転によって2m回の明暗変化と
なり、受光素子7、。
62 results in a change in brightness and darkness. The phase of ±m-order diffracted light changes by ±2mπ when the diffraction grating 4 rotates by one grating pitch, so the light that passes through the polarizing plates 61 and 62 changes brightness and darkness 2m times by rotating one grating pitch of the diffraction grating 4. Thus, the light receiving element 7.

7□からは2m個の正弦波信号か得られる。円筒状の回
折格子4の刻線されている格子の数をN本とすれば、回
折格子401回転に伴って受光素子7、.72からは2
mN個の正弦波が得られる。
2m sine wave signals can be obtained from 7□. If the number of marked gratings of the cylindrical diffraction grating 4 is N, then as the diffraction grating 401 rotates, the light receiving elements 7, . 72 to 2
mN sine waves are obtained.

例えば内径21mmの円筒面に2μmピッチで32.4
00本の格子を刻線し、±1次(m= 1 )の回折光
を用いると、1回転で64,800個の正弦波信号か得
られる。これは正弦波信号1周期あたりで20角度秒に
相当する。又、偏光板6..62の偏光方位を相対的に
45°ずらしているので受光素子7..72からは、回
折格子4の回転に伴って90°の位相差をもった正弦波
信号が得られ、回転方向の判別も可能となる。
For example, 32.4 mm at a pitch of 2 μm on a cylindrical surface with an inner diameter of 21 mm.
If 00 gratings are scored and ±1st order (m=1) diffracted light is used, 64,800 sine wave signals can be obtained in one rotation. This corresponds to 20 angular seconds per period of the sine wave signal. Also, a polarizing plate 6. .. Since the polarization direction of light receiving element 7.62 is relatively shifted by 45 degrees, the polarization direction of light receiving element 7. .. 72, a sine wave signal having a phase difference of 90° is obtained as the diffraction grating 4 rotates, and the direction of rotation can also be determined.

第6図に示す第6実施例は第5図の第5実施例において
レーザー1と受光素子7..72との配置関係を交換し
たものである。即ち、レーザー1からの可干渉性の光束
をコリメーターレンズ2によってほぼ平行な光束とし、
非偏光ビームスプリッタ−57で光束を2分割し、反射
鏡53゜54で反射させた後、174波長板3..32
で右回り(あるいは左回り)円偏光及び左回り(あるい
は右回り)円偏光として、円筒状の回折格子4に入射さ
せる。この際、回折格子4で発生する±m次の反射回折
光が、回折格子4からほぼ垂直に反射するように入射さ
せている。
The sixth embodiment shown in FIG. 6 is the same as the fifth embodiment shown in FIG. .. The arrangement relationship with 72 has been exchanged. That is, the coherent light beam from the laser 1 is made into a substantially parallel light beam by the collimator lens 2,
The light beam is split into two by a non-polarizing beam splitter 57, reflected by reflecting mirrors 53 and 54, and then passed through a 174-wave plate 3. .. 32
The light is incident on the cylindrical diffraction grating 4 as right-handed (or counter-clockwise) circularly polarized light and left-handed (or right-handed) circularly polarized light. At this time, the ±m-order reflected diffraction light generated by the diffraction grating 4 is made incident so as to be reflected from the diffraction grating 4 almost perpendicularly.

即ち、回折格子4の格子ピッチをP、可干渉性光束の波
長をλ、mを整数とし、回折格子4への入射角度をθ、
としたとき θIIl弁5in−’(mλ/P) となるように入射させている。
That is, the grating pitch of the diffraction grating 4 is P, the wavelength of the coherent light beam is λ, m is an integer, and the angle of incidence on the diffraction grating 4 is θ,
When θIIl valve is 5 in-' (mλ/P), the light is incident on the valve.

回折格子4からほぼ垂直に反射した±m次の回折光は互
いに重なり合う。ここでは右回り及び左回り円偏光が重
なり合う結果、直線偏光となるが、その偏光方位は回折
格子4の回転に伴って回転し、偏光板6..62によっ
て明暗の変化となる。
The ±m-order diffracted lights reflected almost perpendicularly from the diffraction grating 4 overlap each other. Here, the right-handed and left-handed circularly polarized light overlap, resulting in linearly polarized light, but the polarization direction rotates with the rotation of the diffraction grating 4, and the polarizing plate 6. .. 62 results in a change in brightness and darkness.

第7図に示す第7実施例において109は端面結像型の
屈折率分布型の光学部材で、一方の端に反射膜10が施
されている。光学部材109と反射膜10より集光系2
0を構成している。9.は偏光ビームスプリッタ−であ
る。本実施例においては、円筒状の回折格子4に第6図
の実施例と同様に2つの光束を±mm次回先光回折角±
θ、で入射させ、はぼ垂直に重なり合った±mm次回先
光、集光系20の光学部材109に入射させている。光
学部材109の焦点面近傍には反射膜10か施されてい
るので、入射した光束は第8図に示すように反射膜10
で反射した後、元の光路を戻り光学部材109から射出
し、再度回折格子4に入射する。
In the seventh embodiment shown in FIG. 7, reference numeral 109 is an end-face imaging type refractive index distribution type optical member, and a reflective film 10 is provided on one end. Condensing system 2 from optical member 109 and reflective film 10
It constitutes 0. 9. is a polarizing beam splitter. In this embodiment, two light beams are applied to the cylindrical diffraction grating 4 at a diffraction angle of ±mm as in the embodiment shown in FIG.
The beams are made incident at an angle of θ, and the beams are made to be incident on the optical member 109 of the condensing system 20 with ±mm beams superimposed perpendicularly on each other. Since a reflective film 10 is provided near the focal plane of the optical member 109, the incident light beam is reflected by the reflective film 10 as shown in FIG.
After being reflected, the light returns along the original optical path, exits from the optical member 109, and enters the diffraction grating 4 again.

そして回折格子4で再度回折されたm次の反射回折光は
元の光路を戻り、反射g53,5<で反射し、1/4波
長板3..32を透過し偏光ビームスプリッタ−9,に
再入射する。このとき再回折光は1/4波長板31.3
□を往復しているので、偏光ビームスプリッタ−9,で
最初反射した光束は再入射するときは偏光ビームスプリ
ッタ−91に対して偏光方位が90度異なフているため
透過するようになる。逆に偏光ビームスプリッタ−91
で最初透過した光束は再入射したとき反射されるように
なる。こうして偏光ビームスプリッタ−91で2つの回
折光を重なり合わせ1/4波長板33を介した後、円偏
光とし、ビームスプリッタ−5で2つの光束に分割し各
々偏光板6..6□を介した後、直線偏光とし受光素子
70,7□に各々入射させている。
Then, the m-th order reflected diffracted light that is diffracted again by the diffraction grating 4 returns to the original optical path, is reflected by the reflection g53,5<, and is reflected by the quarter-wave plate 3. .. 32 and enters the polarizing beam splitter 9 again. At this time, the re-diffracted light is 1/4 wavelength plate 31.3
Since the light beam goes back and forth between the polarizing beam splitter 9 and the polarizing beam splitter 9, when it re-enters the polarizing beam splitter 91, the polarization direction is 90 degrees different from that of the polarizing beam splitter 91, so that it is transmitted. Conversely, polarizing beam splitter-91
The light beam that first passes through the beam will be reflected when it re-enters the beam. In this way, the two diffracted lights are superimposed by the polarizing beam splitter 91, passed through the 1/4 wavelength plate 33, and then made into circularly polarized light. .. After passing through 6□, the light is converted into linearly polarized light and incident on light receiving elements 70 and 7□, respectively.

本実施例に3いて±m次の回折光の位相は回折格子か1
格子ピツチ移動すると2mπだけ変化する。従って受光
素子7..72からは正と負のm次の回折を2回ずつ受
けた光束の干渉を受光しているため、回折格子が格子の
1ピッチ分移動すると4m個の正弦波信号が得られる。
In this example, the phase of the ±m-order diffracted light is determined by the diffraction grating or 1
When the lattice pitch is moved, it changes by 2mπ. Therefore, the light receiving element 7. .. 72 receives interference of light beams that have undergone positive and negative m-order diffraction twice, so when the diffraction grating moves by one pitch of the grating, 4m sine wave signals are obtained.

つまり、本実施例においては第5図乃至第6図の実施例
の2倍の分解能が得られることになる。
In other words, in this embodiment, a resolution twice as high as that in the embodiments shown in FIGS. 5 and 6 can be obtained.

本実施例における集光系20は焦点面近傍に反射面を配
置しているために、例えばレーザー光の発振波長の変化
に伴う回折角が微小変化して集光レンズへの入射角が多
少変化しても、はぼ同じ光路を戻すことができる。これ
により2つの正と負の回折光を重なり合わせ受光素子7
..72の出力信号のS/N比の低下を防止している。
Since the condensing system 20 in this embodiment has a reflective surface disposed near the focal plane, the angle of diffraction changes slightly due to a change in the oscillation wavelength of the laser beam, for example, and the angle of incidence on the condensing lens changes somewhat. However, even if the optical path is the same, it is possible to return the optical path in exactly the same way. This causes the two positive and negative diffracted lights to overlap and pass through the light receiving element 7.
.. .. This prevents the S/N ratio of the output signal of 72 from decreasing.

尚、本実施例では小型化のため光学部材109として屈
折率分布型レンズを用いているが第9図のように集光レ
ンズ12と反射′m13の組み合わせでもよい。
In this embodiment, a gradient index lens is used as the optical member 109 for downsizing, but a combination of a condenser lens 12 and a reflector 'm13 as shown in FIG. 9 may be used.

(発明の効果) 本発明によれば被検回転物体に連結した円筒状の回折格
子からの特定次数の回折光を利用することにより、装置
全体の小型化及び薄型化を図った高蹟度のロータリーエ
ンコーダーを達成することができる。又回転中心に対し
て略点対称な2点からの回折光を干渉させ、該干渉光束
を検出するようにすれば被検回転物体への円筒状の回折
格子の取付偏心誤差を軽減させた高蹟度なロータリーエ
ンコーダーを達成することができる。更に互いに干渉さ
せる2つの光路が合致する位置に回折格子を配置するこ
とにより、回折格子の面鯖度の影響を排除することがで
き、回折格子の製造が容易となる等の特徴を有している
(Effects of the Invention) According to the present invention, by utilizing diffracted light of a specific order from a cylindrical diffraction grating connected to a rotating object to be inspected, a highly turbulent device is used which reduces the size and thickness of the entire device. Rotary encoder can be achieved. Furthermore, by interfering diffracted lights from two points that are approximately symmetrical about the center of rotation and detecting the interference light flux, it is possible to reduce the eccentricity error when attaching a cylindrical diffraction grating to a rotating object. An obscene rotary encoder can be achieved. Furthermore, by arranging the diffraction grating at a position where the two optical paths that are caused to interfere with each other match, it is possible to eliminate the influence of the surface roughness of the diffraction grating, making it easier to manufacture the diffraction grating. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第7図は順に本発明の第1〜第7実施例の要部
概略図、第8.第9図は第7図の一部分の説明図、第1
0図は従来の充電式ロータリーエンコーターの概略図で
ある。 図中、1はレーザー、2,2..22はコリメーターレ
ンズ、38,3□、33は1/4波長板、4は円筒状の
回折格子、5.52は非偏光ビームスプリッタ−153
,54は反射鏡、61゜6□は偏光板、7..72.7
3は受光素子、9、.92は偏光ビームスプリッタ−で
ある。 特許出願人  キャノン株式会社 第    1    図 Ml 第    2    図 第    4    図 第    5    図 M 第    6    図 第    7    図
1 to 7 are schematic diagrams of main parts of the first to seventh embodiments of the present invention, and FIG. Figure 9 is an explanatory diagram of a part of Figure 7,
FIG. 0 is a schematic diagram of a conventional rechargeable rotary encoder. In the figure, 1 is a laser, 2, 2. .. 22 is a collimator lens, 38, 3□, 33 is a quarter wavelength plate, 4 is a cylindrical diffraction grating, 5.52 is a non-polarizing beam splitter 153
, 54 is a reflecting mirror, 61°6□ is a polarizing plate, 7. .. 72.7
3 is a light receiving element; 9, . 92 is a polarizing beam splitter. Patent applicant: Canon Co., Ltd. Figure 1 Ml Figure 2 Figure 4 Figure 5 Figure M Figure 6 Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)可干渉性の光源からの光束を回転物体に連結した
円筒状物体の内周面又は外周面に設けた回折格子上の互
いに異なる位置に各々入射させ、該回折格子の異なる位
置から発生する特定次数の回折光を重ね合わせて干渉さ
せ、該干渉光束を受光手段により受光し、該受光手段か
らの出力信号を利用して該回転物体の回転状態を求めた
ことを特徴とするロータリーエンコーダー。
(1) Light beams from a coherent light source are incident on different positions on a diffraction grating provided on the inner or outer peripheral surface of a cylindrical object connected to a rotating object, and the light beams are generated from different positions on the diffraction grating. A rotary encoder characterized in that diffraction lights of a specific order are superimposed and interfered with each other, the interference light beam is received by a light receiving means, and the rotational state of the rotating object is determined using an output signal from the light receiving means. .
(2)可干渉性の光源からの第1と第2の光束を回転物
体に連結した円筒状物体の内周面又は外周面に設けた回
折格子の位置M1に入射させ、該位置M1から第1と第
2の光束により発生する回折光のうち特定次数の第1と
第2の回折光を該回折格子の回転中心に対して該位置M
1と略点対称の位置M2に同一光路を進行させて入射さ
せ、該位置M2で第1と第2の回折光により発生する特
定次数の回折光同志を互いに干渉させ、該干渉光束を受
光手段により受光し、該受光手段からの出力信号を利用
して該回転物体の回転状態を求めたことを特徴とするロ
ータリーエンコーダー。
(2) The first and second light beams from a coherent light source are made incident on a position M1 of a diffraction grating provided on the inner or outer circumferential surface of a cylindrical object connected to a rotating object. Among the diffracted lights generated by the first and second beams, the first and second diffracted lights of specific orders are placed at the position M with respect to the rotation center of the diffraction grating.
The same optical path is advanced to a position M2 which is approximately point symmetrical to 1, and the diffracted lights of a specific order generated by the first and second diffracted lights are made to interfere with each other at the position M2, and the interference light beam is received by a light receiving means. A rotary encoder, characterized in that the rotation state of the rotating object is determined using an output signal from the light receiving means.
JP23796888A 1988-09-22 1988-09-22 Rotary encoder Pending JPH0285716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23796888A JPH0285716A (en) 1988-09-22 1988-09-22 Rotary encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23796888A JPH0285716A (en) 1988-09-22 1988-09-22 Rotary encoder

Publications (1)

Publication Number Publication Date
JPH0285716A true JPH0285716A (en) 1990-03-27

Family

ID=17023136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23796888A Pending JPH0285716A (en) 1988-09-22 1988-09-22 Rotary encoder

Country Status (1)

Country Link
JP (1) JPH0285716A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130221A (en) * 1990-09-21 1992-05-01 Canon Inc Rotary encoder and apparatus using rotary encoder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130221A (en) * 1990-09-21 1992-05-01 Canon Inc Rotary encoder and apparatus using rotary encoder

Similar Documents

Publication Publication Date Title
US4868385A (en) Rotating state detection apparatus using a plurality of light beams
US4979826A (en) Displacement measuring apparatus
JP2586120B2 (en) encoder
JPS6391515A (en) Photoelectric angle gage
JPH073344B2 (en) Encoder
JP2629948B2 (en) encoder
JP3495783B2 (en) Encoder
JPH01284715A (en) Encoder
JPH0231111A (en) Rotary encoder
US5017777A (en) Diffracted beam encoder
JPH0285716A (en) Rotary encoder
JPH0462003B2 (en)
JP2683098B2 (en) encoder
JPH0462004B2 (en)
JPS62200226A (en) Rotary encoder
JPH02298804A (en) Interferometer
JP2629606B2 (en) encoder
JPH045142B2 (en)
JPS62204126A (en) Encoder
JPH07119623B2 (en) Displacement measuring device
JP3517506B2 (en) Optical displacement measuring device
JPS62163920A (en) Rotary encoder
JPS62163919A (en) Rotary encoder
JPS62200219A (en) Encoder
JPH07119625B2 (en) Displacement detection device