JPH0285714A - Encoder with reference position detecting system - Google Patents

Encoder with reference position detecting system

Info

Publication number
JPH0285714A
JPH0285714A JP23796688A JP23796688A JPH0285714A JP H0285714 A JPH0285714 A JP H0285714A JP 23796688 A JP23796688 A JP 23796688A JP 23796688 A JP23796688 A JP 23796688A JP H0285714 A JPH0285714 A JP H0285714A
Authority
JP
Japan
Prior art keywords
light
reference position
rays
reflected
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23796688A
Other languages
Japanese (ja)
Inventor
Akira Ishizuka
公 石塚
Tetsuji Nishimura
西村 哲治
Masaaki Tsukiji
築地 正彰
Satoru Ishii
哲 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP23796688A priority Critical patent/JPH0285714A/en
Publication of JPH0285714A publication Critical patent/JPH0285714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)

Abstract

PURPOSE:To efficiently lead a luminous flux from a reference position detecting section to two photodetectors separated remotely by setting each element of a reference position detecting system by using a light transmission means and optical fiber. CONSTITUTION:A luminous flux emitted from a laser 1 is made incident on a deflection beam splitter 3 and divided into two linearly polarized rays of light of a reflected and transmissive luminous fluxes having nearly same light quantities after the luminous flux is changed into parallel rays of light by means of a collimator lens 2. The reflected luminous flux is changed to circularly polarized rays of light through a 1/4 wave plate 4 and made incident on the position M1 of a radiated grating 7 on a disk 6 after passing through a prism 16. Then the diffracted rays of light of the grating 7 are reflected 8 and again made incident on the nearly same position M1 on the grating 7 after the rays of light are transmitted through the same optical path in the opposite direction. Thereafter, the rays of light of specific number of order re-diffracted by the grating 7 are made incident on the splitter 3 as linearly polarized rays of light which are different in the polarized direction from that of the incident time through the wave plate 4 by 90 deg.. Thus the luminous flux from a reference position detecting section 22 can be transmitted efficiently to photodetectors 14 and 15.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は移動物体の移動状態な光電的に測定する際に好
適な基準位置検出系を有したエンコーダに関し、例えば
移動物体に取付けた回折格子に光束、特に可干渉性光束
を入射させ該回折格子からの回折光を互いに干渉させて
干渉縞を形成し、干渉縞の明暗の縞を計数することによ
って移動物体の移動状態を測定する際の基準位置信号を
効果的に、かつ高精度に得るようにした基準位置検出系
を存したエンコーダに関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an encoder having a reference position detection system suitable for photoelectrically measuring the moving state of a moving object. A light flux, especially a coherent light flux, is incident on the diffraction grating, and the diffracted light from the diffraction grating is made to interfere with each other to form interference fringes, and the movement state of a moving object is measured by counting the bright and dark fringes of the interference fringes. The present invention relates to an encoder that includes a reference position detection system that effectively and accurately obtains a reference position signal.

(従来の技術) 従来よりサブミクロンの単位で測定することのできる測
定器としては、レーザー等の可干渉性光束を用い移動物
体に設けた回折格子からの回折光より干渉縞を形成させ
、該干渉縞を利用したり又矩形スリットから得られる基
準位置信号を利用したリニアエンコーダやロータリーエ
ンコータが良く知られている。
(Prior art) Conventionally, measuring instruments capable of measuring in submicron units use a coherent light beam such as a laser to form interference fringes from diffracted light from a diffraction grating provided on a moving object. Linear encoders and rotary encoders that utilize interference fringes or reference position signals obtained from rectangular slits are well known.

これらのエンコーダにおいて小型化、高分解能化に伴い
回折格子からの干渉縞の読み取りと共に移動物体の変位
状悪を測定する際に用いる基準位置信号(原点信号)が
高い繰り返し精度で得られることが要求されている。
As these encoders become smaller and have higher resolution, it is necessary to obtain a reference position signal (origin signal) with high repeatability, which is used to read the interference fringes from the diffraction grating and measure the displacement of a moving object. has been done.

例えば、インクリナンタルタイプのロータリーエンコー
ダは周期的な放射格子と共に、1回転中に1箇所基準位
置を示す基準信号を発生するよなパターンか設けられて
いる。
For example, an incremental type rotary encoder is provided with a periodic radiation grating and a pattern that generates a reference signal indicating a reference position at one point during one rotation.

このときの基準信号のパターンは反射部や不透過部等か
ら成り、該パターンをパターン検出系を用いて該パター
ンの有無(又は遠近)により行っている。
The pattern of the reference signal at this time consists of reflective parts, non-transparent parts, etc., and the pattern is determined using a pattern detection system based on the presence or absence (or distance) of the pattern.

本出願人は先に特開昭62−200223号公報におい
て、回転ディスクの直径が20mm、1回転当りのパル
ス数(正弦波周波数)stoo。
The present applicant previously disclosed in Japanese Patent Application Laid-Open No. 62-200223 a rotating disk having a diameter of 20 mm and a number of pulses per rotation (sine wave frequency) stoo.

(格子本数20250本)程度のロータリーエンコータ
を提案した。同広報においては第7図に示すように基準
位置信号を例えば、矩形状反射スリット75を被測定物
体である回転ディスク74−Fに設け、そこに矩形状又
は長楕円状断面を有する光束71を照射し、そこからの
反射光束をシリンドリカルレンズ73とハーフミラ−7
2を介し検出タイミングか異なるように位置をずらした
2つの受光素子86.87によって検知している。
We proposed a rotary encoder with approximately 20,250 grids. In the same bulletin, as shown in FIG. 7, a reference position signal is generated by, for example, providing a rectangular reflective slit 75 on a rotating disk 74-F, which is the object to be measured, and a light beam 71 having a rectangular or long elliptical cross section. The reflected light beam is sent to a cylindrical lens 73 and a half mirror 7.
Detection is performed by two light receiving elements 86 and 87 whose positions are shifted so that the detection timing is different.

そして同公報では両受光素子86.87からの出力信号
を比較器78で比較することによって原理的に矩形状反
射スリットの幅よりも高分解能に基準位置を求めること
のできるロータリーエンコータを提案している。
The same publication proposes a rotary encoder that can theoretically determine a reference position with a higher resolution than the width of a rectangular reflection slit by comparing the output signals from both light receiving elements 86 and 87 with a comparator 78. ing.

一方エンコーダにおいては受光素子86.81をエンコ
ータ装置内に設置できないような場合がある。例えば、
強電界や強磁界ノイズかエンコータ付近で発生している
電気溶接等の現場や高温下等においては被検移動物体に
設けたパターンに基づく光束を光ファイバー等を用いて
外部に導光しノイズや温度等の問題のない環境下で受光
素°子に導光する必要がある。
On the other hand, in an encoder, there are cases where the light receiving elements 86, 81 cannot be installed inside the encoder device. for example,
At sites such as electric welding where strong electric field or strong magnetic field noise is generated near the encoder or under high temperature conditions, a light beam based on a pattern provided on the moving object to be inspected is guided to the outside using an optical fiber etc. to eliminate noise and temperature. It is necessary to guide light to the light-receiving element under an environment free from such problems.

しかしながら、例えば第8図に示すように単に光ファイ
バーの入射面に集光用の光学部材81゜82(例えば屈
折率分布型ロッドレンズ等)を取り付けると光束の量が
最も集中する領域が光学部材81.82の境界部に相当
してしまう。
However, as shown in FIG. 8, for example, if a condensing optical member 81° 82 (for example, a gradient index rod lens, etc.) is simply attached to the entrance surface of the optical fiber, the area where the amount of luminous flux is most concentrated will be the optical member 81. This corresponds to the boundary of .82.

この為多くの光量が光学部材81.82から外れてしま
い受光素子のS/N比が低下し、検出精度が悪化すると
いう問題点があった。
For this reason, there was a problem that a large amount of light was removed from the optical members 81 and 82, resulting in a decrease in the S/N ratio of the light receiving element and a deterioration in detection accuracy.

(発明か解決しようとする問題点) 本発明は、被検移動物体の移動状態を測定する際に移物
体に関する基準位置信号を、光束の存効利用を図りつつ
、高精度に検出することを可能とした簡易な構成の基準
位置検出系を有したエンコーダの提供を目的とする。
(Problems to be Solved by the Invention) The present invention aims to detect a reference position signal related to a moving object with high precision while effectively utilizing a luminous flux when measuring the moving state of a moving object to be tested. The object of the present invention is to provide an encoder having a reference position detection system with a simple configuration.

(問題点を解決するための手段) 光束を被検移動物体に連結したスケール板上に設けた矩
形状のパターンに入射させ、該パターンからの反射光束
又は透過光束を該被検移動物体の移動方向に対して位置
をずらした2つの受光素子で受光し、該2つの受光素子
からの出力信号を利用して該被検移動物体に関する基準
位置信号を得る際、該パターンからの反射光束又は透過
光束を光ファイバーを介して該2つの受光素子に導光し
たことである。特に本発明においては前記パターンから
の反射光束又は透過光束を波面分割手段又は2つの領域
の進行方向を互いに異なる方向に導光する導光手段を介
した後前配光ファインダーに導光したことを特徴として
いる。
(Means for solving the problem) A light beam is made incident on a rectangular pattern provided on a scale plate connected to a moving object to be inspected, and the reflected or transmitted light beam from the pattern is used to move the moving object to be inspected. When receiving light with two light-receiving elements whose positions are shifted with respect to the direction, and obtaining a reference position signal regarding the test moving object using the output signals from the two light-receiving elements, the reflected light flux or the transmitted light from the pattern The light flux is guided to the two light receiving elements via an optical fiber. In particular, in the present invention, the reflected or transmitted light beam from the pattern is guided to the rear and front light distributing finders via a wavefront splitting means or a light guiding means that guides the traveling directions of the two regions in different directions. It is a feature.

(実施例) 第1図は本発明をロータリーエンコーダに適用したとき
の一実施例の光学系の概略図である。
(Embodiment) FIG. 1 is a schematic diagram of an optical system of an embodiment when the present invention is applied to a rotary encoder.

本実施例ではレーザー1より放射された光束をコリメー
ターレンズ2によって平行光束とし偏光ビームスプリッ
タ−3に入射させ、略等光景の反射光束と透過光束の2
つの直線偏光の光束に分割している。このうち反射した
光束は174波長板4を経て、円偏光とし、2つの反射
面を有するプリズム16を介した後、被測定回転物体と
連結した円板6上の放射状の回折格子が設けられている
放射格子7の位置M1に入射させている。そし°(牧射
格子7に入射し回折した透過回折光のうち特定次数の回
折光を反射手段8により反射させ、同一光路を逆行させ
放射格子7上の略同−位置Mlに再入射させている。そ
して放射格子7により再回折された特定次数の回折光を
174波長板4を介して入射したときと90度偏光方位
の異なる直線偏光とし偏光ビームスプリッタ−3に入射
させている。
In this embodiment, the luminous flux emitted from the laser 1 is made into a parallel luminous flux by the collimator lens 2 and is incident on the polarizing beam splitter 3.
It is split into two linearly polarized beams. The reflected light flux passes through a 174-wavelength plate 4, becomes circularly polarized light, passes through a prism 16 having two reflecting surfaces, and then is provided with a radial diffraction grating on a disc 6 connected to the rotating object to be measured. The beam is incident on position M1 of the radiation grating 7. (The diffracted light of a specific order among the transmitted diffracted light incident on the radiation grating 7 and diffracted is reflected by the reflecting means 8, and the same optical path is reversed to make it re-enter the radiation grating 7 at approximately the same position Ml. Then, the diffracted light of a specific order re-diffracted by the radiation grating 7 is converted into linearly polarized light having a polarization direction 90 degrees different from that when it is incident through the 174-wave plate 4, and is made incident on the polarizing beam splitter 3.

本実施例では偏光ビームスプリッタ−3から反射手段8
に至る特定次数の回折光の往復光路を同一としている。
In this embodiment, from the polarizing beam splitter 3 to the reflecting means 8
The round trip optical path of the diffracted light of a specific order is the same.

第2図は第1図で示した反射手段の一実施例の説明図で
ある。
FIG. 2 is an explanatory diagram of one embodiment of the reflecting means shown in FIG. 1.

同図においては反射鏡40を集光レンズ41の略焦点面
上に配置し、集光レンズ41に平行に入射してきた特定
次数の回折光のみをマスク42の開口部43を通過させ
反射鏡40で反射させた後、元の光路を逆戻りするよう
にしている、そして、その他の次数の回折光をマスク4
2によう遮光している。
In the figure, a reflecting mirror 40 is arranged approximately on the focal plane of a condensing lens 41, and only the diffracted light of a specific order that is incident parallel to the condensing lens 41 passes through an opening 43 of a mask 42, and the reflecting mirror 40 After being reflected by a mask 4, the diffracted light of other orders is
2. It is shielded from light.

第1図に戻り偏光ビームスプリッタ−3で分割された2
つの光束のうち透過した光束は174波長板5を介し円
偏光とし、円板6上の放射格子7上の位置M1と回転軸
50に対して略点対称の位置M2に入射させている。そ
して放射格子7に入射し回折した透過回折光のうち特定
字数の回折光を萌述の反射手段8と同様の反射手段9に
より同一光路を逆行させて、放射格子7の略凹−位置M
2に再入射させている。そして放射格子7より再回折さ
れた特定次数の回折光をI/4波長板5を介し入射した
ときとは90度偏光方位の異なる直線偏光とし偏光ど一
ムスプリッター3に入射させている。
Returning to Figure 1, the 2 beams split by the polarizing beam splitter 3
Of the two light beams, the transmitted light beam is converted into circularly polarized light through the 174-wavelength plate 5, and is made incident on a position M2 on the radiation grating 7 on the disk 6, which is approximately symmetrical with respect to the rotation axis 50 and the position M1. Then, out of the transmitted diffracted light that is incident on the radiation grating 7 and diffracted, a specific number of diffracted lights are caused to travel backward along the same optical path by a reflecting means 9 similar to the reflecting means 8 described in Moe's description, so that the diffracted light is caused to travel in the substantially concave position M of the radiation grating 7.
2 is re-injected. Then, the diffracted light of a specific order re-diffracted by the radiation grating 7 is converted into linearly polarized light with a polarization direction different by 90 degrees from that when it is incident through the I/4 wavelength plate 5, and is made incident on the polarization double splitter 3.

このとき、透過光束も前述の反射光束と同様に偏光ビー
ムスプリッタ−3から反射手段9に至る特定次数の回折
光の往復光路を同一としている。
At this time, the transmitted light beam also has the same round-trip optical path of the diffracted light of a specific order from the polarizing beam splitter 3 to the reflecting means 9, as in the case of the above-mentioned reflected light beam.

そして反射手段8を介し入射してきた回折光と重なり合
わせた後、174波長板10を介し円偏光とし、光分割
器11で2つの光束に分割し、各々の光束を互いの偏光
方位を45度傾けて配置した偏光板12.13を介し双
方の光束に90度の位相差を付けた直線偏光として各々
の受光手段14゜15に入射させている。そして受光手
段14゜15により形成された2光束の干渉縞の強度を
検出している。
After being superimposed with the diffracted light incident through the reflection means 8, it is made into circularly polarized light through the 174-wave plate 10, and split into two beams by the light splitter 11, with each beam having a polarization direction of 45 degrees. Through polarizing plates 12 and 13 arranged at an angle, both light beams are made to enter each light receiving means 14 and 15 as linearly polarized light with a phase difference of 90 degrees. The intensity of the interference fringes of the two beams formed by the light receiving means 14 and 15 is detected.

一方、本実施例ではレーザー1から直接導いた光束若し
く別個に設けた不図示の光源からの光束若しく放射格子
7の位置M、に入射し、回折した光束のうち反射手段8
に入射する特定次数の回折光、例えばm次の回折光以外
の回折光の中から特定次数の回折光、例えば−m次、m
+1次等の回折光束等から成る光束101を反射鏡18
とビームスプリッタ−19を介し、シリンドリカルレン
ズ21により長情円状となるようにして、円板(スケー
ル板)6上に設けた基準位置検出部22に入射させてい
る。
On the other hand, in this embodiment, among the light flux directly guided from the laser 1, the light flux from a separately provided light source (not shown), or the light flux incident on the position M of the radiation grating 7 and diffracted, the reflection means 8
Diffracted light of a specific order, for example -m order, m
A light beam 101 consisting of diffracted light beams of +1st order etc. is reflected by a reflecting mirror 18.
Through the beam splitter 19 and the cylindrical lens 21, the beam is made to form an elongated circle and is made incident on the reference position detection section 22 provided on the disk (scale plate) 6.

第3図(A)はこのときの基準位置検出部22を用いて
基準位置信号を得る際の要部概略図である。
FIG. 3(A) is a schematic diagram of a main part when obtaining a reference position signal using the reference position detection section 22 at this time.

基準位置検出部22例えば矩形スリットの反射面から成
っている。そして基準位置検出部22で反射した光束を
シリンドリカルレンズ21で集光し、ハーフミラ−19
を介して進行方向を互いに異なる方向に導光する2つの
領域を有する光路分割プリズムより成る導光手段31に
入射させている。
The reference position detection section 22 consists of a reflective surface of, for example, a rectangular slit. Then, the light beam reflected by the reference position detection section 22 is collected by the cylindrical lens 21, and the half mirror 19
The light is made incident on a light guide means 31 made of an optical path splitting prism having two regions that guide the light in mutually different directions.

そして導光手段31により入射してきた光束を各々異っ
た角度で集光用の光学部材32に入射させている。光学
部材32は入射角度に応じて光束を異なる2点32A、
32Bに集光している。
The incident light beams are made incident by the light guiding means 31 at different angles to the condensing optical member 32. The optical member 32 has two points 32A whose luminous flux differs depending on the incident angle,
The light is focused on 32B.

光学部材32としては例えば屈折率分布型ロッドレンズ
を用いればレンズ端面の異なる2点に集−光させること
ができる。
For example, if a gradient index rod lens is used as the optical member 32, the light can be focused on two different points on the end face of the lens.

本実施例ではこのときの集光点32A、32Bに2つの
光ファイバー33.34の入射面を配置することにより
光学部材32からの2つの光束を各々対応する2つの受
光素子24A、24Bに効率よく導光している。
In this embodiment, by arranging the incident surfaces of the two optical fibers 33 and 34 at the condensing points 32A and 32B at this time, the two light beams from the optical member 32 are efficiently directed to the two corresponding light receiving elements 24A and 24B. It is guiding light.

そしてこのときの2つの光束を2つの受光器24A、2
4Bを有する受光手段24により光電的に受光すること
により基準位置信号を得ている。
The two light beams at this time are transmitted to two light receivers 24A and 2.
A reference position signal is obtained by photoelectrically receiving light with the light receiving means 24 having 4B.

尚、受光手段24は一体化した2つの受光面を有する1
つの受光素子より構成しても良い。これにより本実施例
では円板6の回転状態を測定する際の基準信号、例えば
1回転毎に1つの基準信号を得ている。
The light receiving means 24 has two integrated light receiving surfaces.
It may also be composed of two light receiving elements. As a result, in this embodiment, a reference signal is obtained for measuring the rotational state of the disk 6, for example, one reference signal for each rotation.

このように照射断面が線状になる光束を用い、かつ反射
スリットも同様な線状形状とすることによりゴミやキズ
等の影響を軽減させている。
In this way, by using a light beam whose irradiation cross section is linear and by making the reflection slit also have a similar linear shape, the influence of dust, scratches, etc. is reduced.

第3図(B)は基準位置検出部22として幅Pの反射面
が幅Paの光束の集光領域にさしかかったときの様子を
模式的に示した説明図である。
FIG. 3(B) is an explanatory diagram schematically showing a situation when a reflective surface having a width P as the reference position detecting section 22 approaches a convergence area of a light beam having a width Pa.

本実施例ではレーザーからの光束をビームスプリッタ−
19により一部を反射し、シリンドリカルレンズ21に
より円板6上の基準位置検出部22か配置されている近
傍に線状に集光している。円板6の移動に伴い円板6が
ある位置まできたときに基準位置検出部22の反射面2
2aにより反射される。
In this example, the light beam from the laser is transferred to a beam splitter.
A part of the light is reflected by the cylindrical lens 21 and condensed into a line near the reference position detection section 22 on the disk 6. When the disk 6 reaches a certain position as the disk 6 moves, the reflective surface 2 of the reference position detection section 22
reflected by 2a.

このとき第3図(A)に示すように反射面22aが左方
から右方へ移動中なら最初に反射される光束はシリンド
リカルレンズ21を経て、ビームスプリッタ−19を経
て一方の受光器24Aに入射する。
At this time, if the reflecting surface 22a is moving from left to right as shown in FIG. incident.

更に反射面22aが右方に移動すると受光器24Bにも
入射してくる。この結果、受光器24Aと受光器24B
への入射光量か等しくなる瞬間が生じる。
When the reflecting surface 22a further moves to the right, the light also enters the light receiver 24B. As a result, the light receiver 24A and the light receiver 24B
There is a moment when the amount of incident light becomes equal.

本実施例では、このときの2つの受光器24A、24B
からの出力信号が等しくなる位置を;位置、即ち基準位
置としZ相信号を発生させている。
In this embodiment, two light receivers 24A and 24B are used at this time.
The position where the output signals from the two are equal is defined as a reference position, and a Z-phase signal is generated.

第4図(A)〜(E)は第3に示す実施例において反射
面22aと光束の集光領域幅Paとの相対的関係におけ
る2つの受光器24A、24Bに入射する光量の変化の
様子を示す説明図である。
FIGS. 4(A) to 4(E) show how the amount of light incident on the two light receivers 24A and 24B changes in the relative relationship between the reflecting surface 22a and the width Pa of the light beam converging area in the third embodiment. FIG.

同図(B)より明らかのようにPa=2Pとなるように
設定するのが2相信号を精度良く検出するのに好ましい
。同図(E)のPa≦Pでは零位置を精度良く検出する
のが困難となってくる。
As is clear from the figure (B), it is preferable to set Pa=2P in order to accurately detect a two-phase signal. When Pa≦P in the figure (E), it becomes difficult to accurately detect the zero position.

第5図(A)、(B)、(C)は各々本発明に係わる導
光手段31の他の一実施例の概略図である。このうち同
図(A)は入射光束101に対して片側のみ屈折作用を
存するプリズムより構成した場合、同図(B)は頂角が
同−又は異った2つのプリズムを互いに対抗させたカイ
ルプリズムより構成した場合、同図(C)は屈折率分布
型のロッドレンズの入射端面を屋根状に加工して構成し
たものである。
FIGS. 5A, 5B, and 5C are schematic diagrams of other embodiments of the light guiding means 31 according to the present invention. Of these, the figure (A) shows a case in which a prism has a refracting action on only one side for the incident light beam 101, and the figure (B) shows a case in which two prisms having the same or different apex angles are opposed to each other. In the case of a prism, the entrance end face of a gradient index rod lens is processed to have a roof shape, as shown in FIG. 3(C).

この他本実施例においては入射光束101を2つの領域
に分割して、各々互いに異った進行方向に屈折させるも
のであればどのような光学部材であっても適用可能であ
る。
In addition, in this embodiment, any optical member can be used as long as it divides the incident light beam 101 into two regions and refracts the two regions in mutually different traveling directions.

第6図(A)〜(E)は各々本発明における基準位置信
号を得る為の他の実施例の基準位置検出系の要部概略図
である。
FIGS. 6A to 6E are schematic diagrams of main parts of other embodiments of a reference position detection system for obtaining a reference position signal according to the present invention.

同図(A)は円板(スケール板)6上の基準位置検出部
22からの反射光束101をシリトリカルレンズ21で
集光し、ハーフミラ−19を介して導光手段としての波
面分割手段61に入射させている。
In the same figure (A), a reflected light beam 101 from a reference position detecting section 22 on a disk (scale plate) 6 is condensed by a silitorical lens 21, and is passed through a half mirror 19 to a wavefront dividing means 61 as a light guiding means. It is input to.

波面分割手段61は内部の入射光束が通過する領域の略
半分に相当する領域が反射面62となっている。そして
入射光束101を透過光束で反射光束の2つの光束に分
割し、各々の光束を集光レンズ63.64に入射させて
いる。
The wavefront splitting means 61 has a reflecting surface 62 in an area corresponding to approximately half of the area through which the incident light flux passes. The incident light beam 101 is divided into two light beams, a transmitted light beam and a reflected light beam, and each light beam is made to enter a condenser lens 63, 64.

集光レンズ63.64は光ファイバー33゜34の入射
面に各々光束を集光している。これにより光束を光ファ
イバー33.34を介して受光素子24A、24Bに効
率良く導光している。
The condensing lenses 63 and 64 condense the light beams onto the incident surfaces of the optical fibers 33 and 34, respectively. Thereby, the light flux is efficiently guided to the light receiving elements 24A and 24B via the optical fibers 33 and 34.

本実施例において集光レンズ63.64に入射する光束
は反射面62の境界によフて分割されており、光量の多
い境界付近の光束を効率良く集光レンズ 63.64に
導光するように集光レンズ63.64の光軸(中心軸)
を互いにずらして配置している。
In this embodiment, the light beam incident on the condenser lens 63.64 is divided by the boundary of the reflective surface 62, so that the light beam near the boundary where the amount of light is large is efficiently guided to the condenser lens 63.64. Optical axis (center axis) of condensing lens 63.64
are placed offset from each other.

第6図(B)〜(E)の各実施例は第6図(A)の実施
例に比べてハーフミラ−19から集光レンズ63.64
に至る光路中に配置した導光手段が異っているだけで、
その他の構成は全く同じである。
Each of the embodiments shown in FIGS. 6(B) to (E) is different from the embodiment shown in FIG.
The only difference is the light guiding means placed in the optical path leading to the
The other configurations are exactly the same.

′fJ6図(B)の実施例は導光手段65をハーフミラ
−而65aを有するプリズム65bと全反射而65cを
有するプルズム65dの2つのプリズムより構成してい
る。
In the embodiment shown in FIG. 6(B), the light guide means 65 is composed of two prisms: a prism 65b having a half mirror 65a and a prism 65d having a total reflection mirror 65c.

そしてハーフミラ−面65aにより光束101を反射光
束で透射光束の2つの光束に分割している。そして透過
光束を全反射面65cで反射させた後、片側の光束のみ
を集光レンズ63に入射させ、他の光束を遮光部材66
で遮光している。
The half mirror surface 65a divides the light beam 101 into two light beams: a reflected light beam and a transmitted light beam. After the transmitted light beam is reflected by the total reflection surface 65c, only one side of the light beam is incident on the condenser lens 63, and the other light beam is passed through the light shielding member 66.
It is blocked from light.

又ハーフミラ−面65aからの反射光束のうち片側の光
束のみを集光レンズ64に入射させ、他の光束を遮光部
材66で遮光している。これにより2つの受光素子24
A、24Bによる光束の検出タイミング時期を異ならし
めている。
Also, of the light beams reflected from the half mirror surface 65a, only one side of the light beams is allowed to enter the condenser lens 64, and the other light beams are blocked by a light shielding member 66. As a result, two light receiving elements 24
The detection timings of the luminous fluxes A and 24B are made different.

本実施例において両光束の遮光と透過の境界線は円板6
上の基準位置検出部22が光束照射領域の中央に位置し
たとき最大の光束が入射する位置となるように設定して
いる。
In this embodiment, the boundary line between blocking and transmitting both light beams is the disk 6.
It is set so that when the upper reference position detection section 22 is located at the center of the luminous flux irradiation area, it becomes the position where the maximum luminous flux is incident.

第6図(B)に示す実施例において遮断部材66の境界
が第6図(C)、(D)に示すように、互いに多めに遮
光する方向とその逆の方向にずれているように構成して
も良い。
In the embodiment shown in FIG. 6(B), the boundaries of the shielding members 66 are shifted from each other in the direction of shielding more light and the opposite direction, as shown in FIGS. 6(C) and (D). You may do so.

又第6図(E)に示すように集光レンズ63゜64の位
置を互いにずらすことにより遮光部材66を省略して構
成しても良い。
Alternatively, the light shielding member 66 may be omitted by shifting the positions of the condenser lenses 63 and 64 from each other as shown in FIG. 6(E).

尚以上の各本実施例はロータリーエンコーダについて示
したが、リニアエンコーダについても全く同様に本発明
を適用することができる。
Although each of the embodiments described above has been described with respect to a rotary encoder, the present invention can be applied to a linear encoder in exactly the same manner.

(発明の効果) 本発明によれば前述の如く導光手段と光ファイバーを用
いて基準位置検出系の各要素を設定することにより、基
準位置検出部からの光束を効率良く、遠く離れた2つの
受光素子に導光することができ、S/N比の低下を防止
し、高精度に移動物体の移動状態を検出することができ
る基準位置検出系を有したエンコーダを達成することが
できる。
(Effects of the Invention) According to the present invention, by setting each element of the reference position detection system using a light guide means and an optical fiber as described above, the light flux from the reference position detection unit can be efficiently transmitted to two far apart locations. It is possible to achieve an encoder having a reference position detection system that can guide light to a light receiving element, prevent a decrease in the S/N ratio, and detect the moving state of a moving object with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明をロータリエンコーダに適用したときの
一実施例の概略図、第2図、第3図、(A)、(B)は
各々第1図の一部分の説明図、第4図は第1図に示す基
準位置信号用の2つの受光素子24A、24Bから得ら
れる出力信号の説明図、第5図は(A)〜(C)は第3
図(A)の導光手段の他の実施例の概略図、第6図(A
)〜(E)は本発明に係る基準位置検出系の他の実施例
の概略図、第7、第8図は従来の基準位置検出系の概略
図である。 図中1はレーザー、2はコリメーターレンズ、3.19
はビームスプリッタ−14,5,10は174波長板、
6は円板、7は放射格子、8,9は反射手段、11は光
分割器、12.13は偏光板、14,15,24A、2
4Bは受光素子、21はシリンドリカルレンズ、22は
基準位置検出部、31,61.65は導光手段、32゜
63、’64は集光レンズ、33.34は光ファイバー
、66は遮光部材である。 特許出願人  キャノン株式会社 第   1   M 第  4  口 β (こ) 1 つ101 す、シ 第 6霞 (D) ([)
FIG. 1 is a schematic diagram of an embodiment when the present invention is applied to a rotary encoder, FIGS. 2, 3, (A), and (B) are explanatory diagrams of a portion of FIG. 1, and FIG. 4 is an explanatory diagram of the output signals obtained from the two light receiving elements 24A and 24B for the reference position signal shown in FIG. 1, and FIG.
A schematic diagram of another embodiment of the light guiding means in FIG. 6(A), FIG.
) to (E) are schematic diagrams of other embodiments of the reference position detection system according to the present invention, and FIGS. 7 and 8 are schematic diagrams of conventional reference position detection systems. In the figure, 1 is the laser, 2 is the collimator lens, 3.19
is a beam splitter 14, 5, 10 is a 174 wavelength plate,
6 is a disk, 7 is a radiation grating, 8 and 9 are reflecting means, 11 is a light splitter, 12.13 is a polarizing plate, 14, 15, 24A, 2
4B is a light receiving element, 21 is a cylindrical lens, 22 is a reference position detection unit, 31, 61.65 is a light guiding means, 32° 63, '64 is a condensing lens, 33.34 is an optical fiber, and 66 is a light shielding member. . Patent applicant: Canon Co., Ltd. No. 1 M No. 4 β (K) 1 101 Su, Shi No. 6 Kasumi (D) ([)

Claims (2)

【特許請求の範囲】[Claims] (1)光束を被検移動物体に連結したスケール板上に設
けた矩形状のパターンに入射させ、該パターンからの反
射光束又は透過光束を該被検移動物体の移動方向に対し
て位置をずらした2つの受光素子で受光し、該2つの受
光素子からの出力信号を利用して該被検移動物体に関す
る基準位置信号を得る際、該パターンからの反射光束又
は透過光束を光ファイバーを介して該2つの受光素子に
導光したことを特徴とする基準位置検出系を有したエン
コーダ。
(1) A light flux is made incident on a rectangular pattern provided on a scale plate connected to a moving object to be inspected, and the reflected or transmitted light flux from the pattern is shifted in position with respect to the moving direction of the moving object to be inspected. When receiving light with two light-receiving elements, and obtaining a reference position signal regarding the moving object to be detected using the output signals from the two light-receiving elements, the reflected light flux or transmitted light flux from the pattern is transmitted through an optical fiber. An encoder having a reference position detection system characterized in that light is guided to two light receiving elements.
(2)前記パターンからの反射光束又は透過光束を波面
分割手段又は該光束の2つの領域の進行方向を互いに異
なる方向に導光する導光手段を介した後、前記光ファイ
バーに導光したことを特徴とする請求項1記載の基準位
置検出系を有したエンコーダ。
(2) The reflected light flux or the transmitted light flux from the pattern is guided to the optical fiber after passing through a wavefront splitting means or a light guide means that guides the traveling directions of the two regions of the light flux in different directions. An encoder having a reference position detection system according to claim 1.
JP23796688A 1988-09-22 1988-09-22 Encoder with reference position detecting system Pending JPH0285714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23796688A JPH0285714A (en) 1988-09-22 1988-09-22 Encoder with reference position detecting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23796688A JPH0285714A (en) 1988-09-22 1988-09-22 Encoder with reference position detecting system

Publications (1)

Publication Number Publication Date
JPH0285714A true JPH0285714A (en) 1990-03-27

Family

ID=17023106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23796688A Pending JPH0285714A (en) 1988-09-22 1988-09-22 Encoder with reference position detecting system

Country Status (1)

Country Link
JP (1) JPH0285714A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177396A (en) * 2005-12-26 2007-07-12 Shin Nikkei Co Ltd Indoor side attachment for division mullions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177396A (en) * 2005-12-26 2007-07-12 Shin Nikkei Co Ltd Indoor side attachment for division mullions

Similar Documents

Publication Publication Date Title
US5059791A (en) Reference position detecting device utilizing a plurality of photo-detectors and an encoder using the device
US9766098B2 (en) Optical position measuring instrument
JP2586121B2 (en) Rotary encoder origin detection system
JPH073344B2 (en) Encoder
EP1435510A1 (en) Grating interference type optical encoder
JP2629948B2 (en) encoder
JPH0285715A (en) Encoder
KR950001277A (en) Measurement method and measuring device of variation
EP0248479A1 (en) Arrangement for optically measuring a distance between a surface and a reference plane
JP4077637B2 (en) Grating interference displacement measuring device
KR100509322B1 (en) Displacement information detector
JPH0718714B2 (en) encoder
JPH0652170B2 (en) Optical imaging type non-contact position measuring device
JPH0749940B2 (en) Angle measuring device
US5017777A (en) Diffracted beam encoder
JPH0285714A (en) Encoder with reference position detecting system
EP0486050B1 (en) Method and apparatus for measuring displacement
JP3980732B2 (en) Relative position detector
JPS62200223A (en) Encoder
JP2000266567A (en) Rotary encoder
JP3517506B2 (en) Optical displacement measuring device
JPS62204126A (en) Encoder
JP3392898B2 (en) Lattice interference displacement measuring device
JPH03115920A (en) Zero-point position detector
JPH0285718A (en) Encoder