JPH0285388A - Protonic conductive solid electrolyte sheet - Google Patents

Protonic conductive solid electrolyte sheet

Info

Publication number
JPH0285388A
JPH0285388A JP63236125A JP23612588A JPH0285388A JP H0285388 A JPH0285388 A JP H0285388A JP 63236125 A JP63236125 A JP 63236125A JP 23612588 A JP23612588 A JP 23612588A JP H0285388 A JPH0285388 A JP H0285388A
Authority
JP
Japan
Prior art keywords
solid electrolyte
openings
electrolyte sheet
solvent
antimonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63236125A
Other languages
Japanese (ja)
Inventor
Takeo Hara
武生 原
Tadashi Yasuda
直史 安田
Masaki Nagata
正樹 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP63236125A priority Critical patent/JPH0285388A/en
Publication of JPH0285388A publication Critical patent/JPH0285388A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a protonic conductive solid electrolyte sheet having superior workability, uniformity and flexibility with superior productivity by kneading a specified percentage of antimonic acid-based solid electrolyte powder with a high molecular elastic body dissolved in a solvent, filling this kneaded material into the openings in an electrically nonconductive meshy body and drying the material. CONSTITUTION:55-95vol.% antimonic acid-based solid electrolyte powder prepd. by mixing Sb2O5 of 100-200 mesh with Sb2O3 of 100-200 mesh in 7:3-10:0 ratio is well kneaded with a soln. prepd. by dissolving a high molecular elastic body such as PVA or polyacrylamide in a solvent such as water, methanol or ethanol. This kneaded material is filled into the openings in an electrically nonconductive meshy body having 35-65% openings, e.g., a woven or nonwoven fabric made of an insulating material such as cellulose, nylon or glass and the filled material is dried to evaporate and remove the solvent. An antimonic acid-based solid electrolyte sheet used as a gas sensor, a humidity sensor, etc., can be produced with superior productivity.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はプロトン導電性固体電解質シートに関し、さら
に詳しくはガスセンサー、湿度センサー水素分離膜、エ
レクトロクロミックデイスプレィ等に好適に利用される
アンチモン酸系固体電解質粉を含有するプロトン導電性
固体電解質シートに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a proton conductive solid electrolyte sheet, and more specifically to an antimonic acid sheet suitable for use in gas sensors, humidity sensors, hydrogen separation membranes, electrochromic displays, etc. The present invention relates to a proton conductive solid electrolyte sheet containing solid electrolyte powder.

[従来の技術] 近年、アンチモン酸系固体電解質からなる固体電気化学
素子を用いたエレクトロクロミック表示体および各種セ
ンサーが実用化されている。しかし、前記固体電気化学
素子は機械的衝撃に対して脆いため、薄型化および大面
積化が困難であり、また生産性、均−性等に劣る問題が
ある。
[Prior Art] In recent years, electrochromic displays and various sensors using solid electrochemical elements made of antimonic acid-based solid electrolytes have been put into practical use. However, since the solid electrochemical element is fragile to mechanical shock, it is difficult to make it thinner and have a larger area, and there are also problems of poor productivity, uniformity, etc.

[発明が解決しようとする課題] 本発明の目的は前記従来技術の問題点を解決し、薄型化
および大面積化を図ることができ、また取扱いが容易で
、固体電気化学素子組立ての際の加工性、生産性、均一
性および可撓性に優れたプロトン導電性固体電解質シー
トを提供するものである。
[Problems to be Solved by the Invention] The purpose of the present invention is to solve the problems of the prior art described above, to achieve a thinner and larger area, to be easy to handle, and to be easy to use when assembling a solid-state electrochemical element. The present invention provides a proton conductive solid electrolyte sheet with excellent processability, productivity, uniformity, and flexibility.

[課題を解決するための手段] 本発明のプロトン導電性固体電解質シートは、アンチモ
ン酸系固体電解質粉を体積分率が55〜95%となるよ
うに、高分子弾性体中に分散させた混合物を非導電性網
状体の開口部に充填することを特徴とする。
[Means for Solving the Problems] The proton conductive solid electrolyte sheet of the present invention is a mixture in which antimonic acid-based solid electrolyte powder is dispersed in an elastomer polymer at a volume fraction of 55 to 95%. It is characterized by filling the openings of the non-conductive mesh body.

本発明に用いられるアンチモン酸系固体電解質粉(以下
、単に「固体電解質粉」と称する)としては、5b2o
5.5b2o5と5b2o3との混合物等が挙げられ、
その割合は、好ましくは重量比で5b20s/5b20
3=4/6〜1010、より好ましくは7/3〜101
0である。前記混合割合の範囲外では、充分なイオン導
電率を得るのが困難である。
The antimonic acid-based solid electrolyte powder (hereinafter simply referred to as "solid electrolyte powder") used in the present invention includes 5b2o
Examples include a mixture of 5.5b2o5 and 5b2o3,
The ratio is preferably 5b20s/5b20 in weight ratio.
3=4/6~1010, more preferably 7/3~101
It is 0. Outside the above mixing ratio range, it is difficult to obtain sufficient ionic conductivity.

これらの固体電解質粉の形状および粒径は特に限定され
るものではないが、高分子弾性体との混合のし易さ等の
点から、100〜200メツシユ(タイラー標準篩)を
通過するものが好ましい。
The shape and particle size of these solid electrolyte powders are not particularly limited, but from the viewpoint of ease of mixing with the polymeric elastomer, those that pass through a 100 to 200 mesh (Tyler standard sieve) are preferred. preferable.

本発明に用いられる高分子弾性体としては、例えば1,
4−ポリブタジェン、天然ゴム、ポリイソプレン、SB
R,NBR,EPDMSEPM。
Examples of the elastic polymer used in the present invention include 1,
4-Polybutadiene, natural rubber, polyisoprene, SB
R, NBR, EPDMSEPM.

ウレタンゴム、ポリエステル系ゴム、クロロプレンゴム
、エピクロルヒドリンゴム、シリコーンゴム、スチレン
−ブタジェン−スチレンブロック共重合体(SBS)、
スチレン−イソプレン−スチレンブロック共重合体(S
 I S) 、スチレン−エチレン−ブチレン−スチレ
ンブロック共重合体(SEBS)、ブチルゴム、ホスフ
ァゼンゴム、ポリエチレン、ポリプロピレン、ポリエチ
レンオキシド、ポリプロピレンオキシド、ポリスチレン
、塩化ビニル、エチレン−酢酸エチル共重合体、1゜2
−ポリブタジェン、エポキシ樹脂、フェノール樹脂、メ
タクリル酸メチル、ポリビニルアルコール、ポリアクリ
ルアミド、ポリ−N、N’  −ジメチルアクリルアミ
ド、ポリメタクリルアミド、ポリ−4−ビニルピリジン
、ポリ−トープロリン、ポリサルコシン、ポリビニルメ
チルエーテル、ポリビニル−2−メトキシエチルエーテ
ル、ポリビニルスルホン酸アミド、ポリマレイン酸無水
物、ポリN−ビニルピロリドンおよびこれらの混合物等
が挙げられる。
Urethane rubber, polyester rubber, chloroprene rubber, epichlorohydrin rubber, silicone rubber, styrene-butadiene-styrene block copolymer (SBS),
Styrene-isoprene-styrene block copolymer (S
IS), styrene-ethylene-butylene-styrene block copolymer (SEBS), butyl rubber, phosphazene rubber, polyethylene, polypropylene, polyethylene oxide, polypropylene oxide, polystyrene, vinyl chloride, ethylene-ethyl acetate copolymer, 1°2
-Polybutadiene, epoxy resin, phenolic resin, methyl methacrylate, polyvinyl alcohol, polyacrylamide, poly-N,N'-dimethylacrylamide, polymethacrylamide, poly-4-vinylpyridine, poly-toproline, polysarcosine, polyvinyl methyl ether , polyvinyl-2-methoxyethyl ether, polyvinylsulfonic acid amide, polymaleic anhydride, polyN-vinylpyrrolidone, and mixtures thereof.

これらのうち、特に高いイオン導電率を示す固体電解質
シートを得るためには、ポリビニルアルコール、ポリア
クリルアミド、ポリビニルメチルエーテル、ポリ−N−
ビニルピロリドン等の水溶性高分子もしくは水溶性高分
子の単量体を共重合した高分子またはこれらを混合した
高分子が好ましく、特に水により膨潤または水に溶解す
る高分子が好適である。ここで水による膨潤とは、体積
膨潤度(膨潤平衡にある膨潤層の体積/高分子の体積)
が2以上、より好ましくは5以上を意味する。
Among these, polyvinyl alcohol, polyacrylamide, polyvinyl methyl ether, poly-N-
Water-soluble polymers such as vinylpyrrolidone, polymers copolymerized with monomers of water-soluble polymers, or mixtures thereof are preferred, and polymers that swell with or dissolve in water are particularly preferred. Here, swelling due to water refers to volumetric swelling degree (volume of swollen layer at swelling equilibrium/volume of polymer)
means 2 or more, more preferably 5 or more.

本発明に用いられる前記固体電解質粉と前記高分子弾性
体との混合物は、高分子弾性体中の固体電解質粉の体積
分率が55〜95%、好ましくは75〜92%のもので
ある。固体電解質粉の体積分率が55%未満の場合は、
イオン導電率がI×10 ’ S am−’以下となり
実用に適さず、また体積分率が95%を超える場合は、
シート化して得られる固体電解質シートが脆くなり、固
体電解質粉が脱落し易くなる。
The mixture of the solid electrolyte powder and the elastic polymer used in the present invention has a volume fraction of the solid electrolyte powder in the elastic polymer of 55 to 95%, preferably 75 to 92%. If the volume fraction of solid electrolyte powder is less than 55%,
If the ionic conductivity is less than I×10' S am-' and it is not suitable for practical use, and if the volume fraction exceeds 95%,
The solid electrolyte sheet obtained by sheeting becomes brittle, and the solid electrolyte powder easily falls off.

固体電解質粉を高分子弾性体中に分散させて前記混合物
を得る方法としては、例えば高分子弾性体を溶剤に溶解
させた高分子弾性体溶液と固体電解質粉をボールミル等
で混練する方法が挙げられる。この方法は、混練時の発
熱が少なく、固体電解質粉の変質および分解が起こり難
い。
Examples of methods for obtaining the mixture by dispersing the solid electrolyte powder in the elastomer polymer include a method of kneading the elastomer polymer solution in which the elastomer polymer is dissolved in a solvent and the solid electrolyte powder in a ball mill or the like. It will be done. This method generates less heat during kneading, and the solid electrolyte powder is less likely to undergo deterioration or decomposition.

この場合、用いられる溶剤としては、例えば水、メタノ
ール、エタノール、イソプロピルアルコール、アセトン
、N、N−ジメチルホルムアミド、ジメチルスルホキシ
ド等の極性溶剤ならびにn −ヘキサン、n−へブタン
、n−オクタン、シクロヘキサン、ベンゼン、トルエン
、キシレン、酢酸エチル、トリクレン等の飽和炭化水素
系溶剤、芳香族炭化水素系溶剤、ハロゲン化炭化水素系
溶剤またはエステル系溶剤が挙げられる。
In this case, the solvents used include polar solvents such as water, methanol, ethanol, isopropyl alcohol, acetone, N,N-dimethylformamide, dimethyl sulfoxide, and n-hexane, n-hebutane, n-octane, cyclohexane, Examples include saturated hydrocarbon solvents such as benzene, toluene, xylene, ethyl acetate, and trichlene, aromatic hydrocarbon solvents, halogenated hydrocarbon solvents, and ester solvents.

本発明に用いられる非導電性網状体としては、例えばセ
ルロース、ナイロン6、ナイロン66、ポリプロピレン
、ポリエチレン、ゼオライト、ガラス等の絶縁性材料等
からなる織布または不織布を挙げることができる。これ
らの網状体の開口率は35〜65%の範囲が適当である
。開口率は網状体単位面積当たりの総開口部面積の割合
で定義される。開口率が35%未満では固体電解質シー
トの導電率が小さくなり、また開口率が65%を超える
と固体電解質シートとしての強度の維持効果が得られず
好ましくない。また、これらの網状体の比表面積は50
〜1000rrf/gの範囲が適当である。なお、不織
布の場合の目付けは5〜50g1dの範囲が適当である
。網状体の厚みは、網状体自身の強度およびシートの薄
型化を考慮して10〜150μmの範囲が好ましく、ユ
開ロ部当たりの平均面積は1.6X10−3〜9X10
−2mj、および隣接する開口部間の幅は20〜120
μmが好ましい。
Examples of the non-conductive network used in the present invention include woven or non-woven fabrics made of insulating materials such as cellulose, nylon 6, nylon 66, polypropylene, polyethylene, zeolite, and glass. The aperture ratio of these net-like bodies is suitably in the range of 35 to 65%. The aperture ratio is defined as the ratio of the total aperture area per unit area of the reticular body. If the aperture ratio is less than 35%, the conductivity of the solid electrolyte sheet will be low, and if the aperture ratio exceeds 65%, the effect of maintaining the strength of the solid electrolyte sheet will not be obtained, which is not preferable. In addition, the specific surface area of these networks is 50
A range of 1000rrf/g is suitable. In addition, the basis weight in the case of a nonwoven fabric is suitably in the range of 5 to 50 g1d. The thickness of the net-like body is preferably in the range of 10 to 150 μm in consideration of the strength of the net-like body itself and the thinning of the sheet, and the average area per opening part is 1.6 x 10 -3 to 9 x 10
-2mj, and the width between adjacent openings is 20-120
μm is preferred.

本発明の固体電解質シートは、例えば前記のようにして
得られる溶剤を含有する混合物(以下、「スラリ」とい
う)を非導電性網状体の開口部に充填し、乾燥して得ら
れる。
The solid electrolyte sheet of the present invention can be obtained, for example, by filling the openings of a non-conductive network with the solvent-containing mixture (hereinafter referred to as "slurry") obtained as described above, and drying the mixture.

前記スラリを前記網状体の開口部に充填する方法として
は、例えばスラリ中に網状体を浸漬し、該網状体にスラ
リを充分付着させた後、硬質ゴム、プラスチック、金属
等からなるブレード、ロール等により開口部に充填する
とともに、過剰に付着しているスラリを除去する方法が
挙げられる。この際のスラリ中の固形分濃度は、好まし
くは20〜80重量%である。
As a method for filling the openings of the net-like body with the slurry, for example, the net-like body is immersed in the slurry, and after the slurry has sufficiently adhered to the net-like body, a blade or roll made of hard rubber, plastic, metal, etc. An example of this method is to fill the openings with slurry, etc., and remove excess slurry. The solid content concentration in the slurry at this time is preferably 20 to 80% by weight.

このようにして前記網状体の開口部に充填されたスラリ
は、例えば20〜60℃で、好ましくは不活性ガス雰囲
気中で乾燥され、本発明のプロトン導電性固体電解質シ
ートとされる。
The slurry filled in the openings of the network is dried, for example, at 20 to 60° C., preferably in an inert gas atmosphere, to form the proton conductive solid electrolyte sheet of the present invention.

該固体電解質シートは、固体電池に用いた場合の電極層
との密着性および導電率を向上させるため、該網状体の
上下両方または一方に各5〜25μmの該混合物層を有
することが好ましい。
The solid electrolyte sheet preferably has a mixture layer of 5 to 25 μm on both or one side of the net-like body in order to improve the adhesion with the electrode layer and conductivity when used in a solid battery.

上記方法によれば、網状体を母材とするために極めて厚
み精度の優れた固体電解質シートを得ることができ、ま
たこれらは可撓性に優れ、連続的に製造することができ
るため、大面積の固体電解質シートを容易に得ることが
できる。
According to the above method, it is possible to obtain solid electrolyte sheets with extremely high thickness accuracy because the mesh is used as the base material, and because these sheets have excellent flexibility and can be manufactured continuously, large-scale production is possible. A solid electrolyte sheet with a large area can be easily obtained.

このようにして得られる本発明の固体電解質シートの厚
みは、10〜250μmが好ましい。該シートの厚みが
10μm未満では、裂は易く強度が保てなくなる。また
、厚みが250μmを超えると、イオン導電率がI X
 10’ S cm−’以下となり易い。
The thickness of the solid electrolyte sheet of the present invention obtained in this way is preferably 10 to 250 μm. If the thickness of the sheet is less than 10 μm, it will easily tear and will not maintain its strength. Moreover, when the thickness exceeds 250 μm, the ionic conductivity becomes I
It is likely to be less than 10' S cm-'.

本発明の固体電解質シートには、固体電池に用いた場合
の電極層との接着強度を増すために、混合物中に、例え
ば変性ロジン、ロジン誘導体、テルペン樹脂、クマロン
−インデン樹脂、フェノール変性クマロン−インデン樹
脂等のロジン系粘着付与剤、芳香族系粘着付与剤または
テルペン系粘着付与剤を含有させることもできる。
The solid electrolyte sheet of the present invention contains, for example, a modified rosin, a rosin derivative, a terpene resin, a coumaron-indene resin, a phenol-modified coumaron-indene resin, etc. A rosin-based tackifier such as an indene resin, an aromatic tackifier, or a terpene-based tackifier can also be included.

[実 施 例] 以下、本発明を実施例により説明するが、本発明はこれ
らに限定されるものではない。なお、実施例中、部とあ
るのは重量部を意味する。
[Examples] The present invention will be explained below using Examples, but the present invention is not limited thereto. In addition, in the examples, parts mean parts by weight.

実施例1 sb2o5・4H20(高純度化学社製)を乳ばちを用
いて粉砕した後、タイラー標準ふるいを用いて粒径20
0メツシユ以下の粉末を得、室温および減圧下で12時
間乾燥した。
Example 1 After pulverizing sb2o5/4H20 (manufactured by Kojundo Kagaku Co., Ltd.) using a pestle, the particle size was 20 using a Tyler standard sieve.
A powder of less than 0 mesh was obtained and dried at room temperature and under reduced pressure for 12 hours.

次に高分子弾性体として、スチレン−ブタジェン−スチ
レンブロック共重合体(比重:0.96、日本合成ゴム
社製、TR−2000)2.7部をトルエンに溶解させ
、高分子弾性体溶液を得た。
Next, as a polymeric elastomer, 2.7 parts of styrene-butadiene-styrene block copolymer (specific gravity: 0.96, manufactured by Japan Synthetic Rubber Co., Ltd., TR-2000) was dissolved in toluene, and the polymeric elastomer solution was dissolved. Obtained.

この高分子弾性体溶液に、上記で得られた5b205・
4H20の粉末(比重: 3.8) 97. 3部を加
えてボールミルにて2時間混練し、固形分濃度が40重
量%のスラリを調製した。
The 5b205 obtained above was added to this polymer elastomer solution.
4H20 powder (specific gravity: 3.8) 97. 3 parts were added and kneaded in a ball mill for 2 hours to prepare a slurry with a solid content concentration of 40% by weight.

次に織布として厚み50μm、l開口部光たりの平均面
積5.5X10−3−および隣接する開口部間の幅50
μmのナイロン製織布を用い、この織布を上記スラリ中
に浸漬させ、織布表面に混合物を充分に付着させた後、
フッ素ゴム製のブレードでこの織布を挟み、充分な挟持
力を加えつつスラリを織布の開口部に充填した。得られ
たシートを窒素気流中で充分に乾燥させ、トルエンを除
去し、高分子弾性体中の固体電解質粉の体積分率が90
%で、厚み70μmのプロトン導電性固体電解質シート
を得た。
Next, as a woven fabric, the thickness is 50 μm, the average area per opening is 5.5×10−3−, and the width between adjacent openings is 50 μm.
Using a μm nylon woven fabric, the woven fabric is immersed in the slurry and the mixture is sufficiently adhered to the surface of the woven fabric.
The woven fabric was sandwiched between fluororubber blades and the slurry was filled into the openings of the woven fabric while applying sufficient clamping force. The obtained sheet was thoroughly dried in a nitrogen stream to remove toluene, and the volume fraction of solid electrolyte powder in the polymeric elastomer was 90%.
%, a proton conductive solid electrolyte sheet with a thickness of 70 μm was obtained.

得られた固体電解質シートの両面に白金黒粉末を電極と
してラバープレスにより所定の圧力にてプレスし、電気
特性測定用シートを得た。このシートの片側に水素、他
方に水素と窒素の混合比がH2/N2 = 1/ 10
 (モル比)となるように混合したガスを流通させるこ
とにより、水素分圧比の異なる水素濃淡電池を得、この
とき発生する起電力をエレクトロメーターで測定してプ
ロトン輸率を求めた。
Both sides of the obtained solid electrolyte sheet were pressed with a rubber press at a predetermined pressure using platinum black powder as electrodes to obtain a sheet for measuring electrical properties. Hydrogen is on one side of this sheet, and the mixture ratio of hydrogen and nitrogen is H2/N2 = 1/10 on the other side.
Hydrogen concentration cells with different hydrogen partial pressure ratios were obtained by flowing gases mixed so as to have the following molar ratios, and the electromotive force generated at this time was measured with an electrometer to determine the proton transfer number.

また、前記のようにして得られた電気特性測定用シート
を相対湿度70%に調整した窒素雰囲気中(300K)
に12時間放置した後、直流電圧を印加してインピーダ
ンスメーターを用いてイオン導電率を測定した。結果を
第1表に示した。
In addition, the sheet for measuring electrical properties obtained as described above was placed in a nitrogen atmosphere (300K) with a relative humidity of 70%.
After leaving it for 12 hours, a DC voltage was applied and the ionic conductivity was measured using an impedance meter. The results are shown in Table 1.

実施例2 高分子弾性体として、ポリビニルアルコール(比重:1
.26、日本合成化学工業社製、ゴーセノールNH20
)3.6部をイオン交換水に溶解させた高分子弾性体溶
液を用い、これに実施例1と同様にして得た粒径200
メツシユ以下の5b2o5・4H20からなる固体電解
質粉(比重: 3.8)96.4部を加えて、ボールミ
ルにて2時間混練し、固形分濃度が40重量%のスラリ
を調製した。
Example 2 Polyvinyl alcohol (specific gravity: 1
.. 26, Gohsenol NH20, manufactured by Nippon Gosei Kagaku Kogyo Co., Ltd.
) 3.6 parts dissolved in ion-exchanged water, a polymer elastomer solution with a particle diameter of 200
96.4 parts of solid electrolyte powder (specific gravity: 3.8) consisting of 5b2o5.4H20 having a mesh size or less was added and kneaded in a ball mill for 2 hours to prepare a slurry having a solid content concentration of 40% by weight.

次に実施例1と同様にしてナイロン製織布の開口部に充
填し、体積分率が90%、厚みが75μmのプロトン導
電性固体電解質シートを得た。
Next, the openings of a nylon woven fabric were filled in the same manner as in Example 1 to obtain a proton conductive solid electrolyte sheet having a volume fraction of 90% and a thickness of 75 μm.

得られた固体電解質シートを実施例1と同様にして試験
を行ない、その結果を第1表に示した。
The obtained solid electrolyte sheet was tested in the same manner as in Example 1, and the results are shown in Table 1.

実施例3 sb2os・4H20(高純度化学社製)と5b203
 (メルク社製)を重量比で9=1の割合となるように
秤量し、乳ばちを用いて混合し、粉砕した後、タイラー
標準ふるいを用いて粒径200メツシユ以下の混合体粉
末を得、室温および減圧下で12時間乾燥した。
Example 3 sb2os・4H20 (manufactured by Kojundo Kagaku Co., Ltd.) and 5b203
(manufactured by Merck & Co.) were weighed so that the weight ratio was 9=1, mixed using a mortar, and ground. After that, a mixed powder with a particle size of 200 mesh or less was prepared using a Tyler standard sieve. The resulting product was dried at room temperature and under reduced pressure for 12 hours.

次に高分子弾性体として、ポリビニルメチルエーテル3
0重量%水溶液(東京化成工業型)8部にイオン交換水
を添加した高分子弾性体溶液を得た。この高分子弾性体
溶液に、上記で得られた5b2o5・4H20と5b2
o3との混合体粉末よりなる固体電解質粉(比重=3.
9)92部を加えてボールミルにて2時間混練し、固形
分濃度が40重量%のスラリを調製した。
Next, as a polymer elastic body, polyvinyl methyl ether 3
A polymer elastomer solution was obtained by adding ion-exchanged water to 8 parts of a 0% by weight aqueous solution (Tokyo Kasei Kogyo type). Add the 5b2o5・4H20 obtained above and 5b2 to this polymer elastomer solution.
Solid electrolyte powder (specific gravity = 3.
9) 92 parts were added and kneaded in a ball mill for 2 hours to prepare a slurry with a solid content concentration of 40% by weight.

次に実施例1と同様にしてナイロン製織布の開口部に充
填し、体積分率が90%、厚みが80μmのプロトン導
電性固体電解質シートを得た。
Next, the openings of a nylon woven fabric were filled in the same manner as in Example 1 to obtain a proton conductive solid electrolyte sheet having a volume fraction of 90% and a thickness of 80 μm.

得られた固体電解質シートを実施例1と同様にして試験
を行ない、その結果を第1表に示した。
The obtained solid electrolyte sheet was tested in the same manner as in Example 1, and the results are shown in Table 1.

第1表 [発明の効果コ 本発明のアンチモン酸系プロトン導電性固体電解質シー
トは、加工性、生産性、均一性および可撓性に優れ、薄
型化および大面積化が可能であり、また導電率が高く、
プロトン輸率が大きいため、例えばガスセンサー、湿度
センサー、水素分離膜、エレクトロクロミックデイスプ
レィ等の固体電気化学素子材料として有用である。
Table 1 [Effects of the Invention The antimonic acid-based proton conductive solid electrolyte sheet of the present invention has excellent processability, productivity, uniformity, and flexibility, can be made thinner and larger in area, and is conductive. The rate is high;
Because of its large proton transfer number, it is useful as a material for solid electrochemical devices such as gas sensors, humidity sensors, hydrogen separation membranes, and electrochromic displays.

特許出願人  日本合成ゴム株式会社Patent applicant: Japan Synthetic Rubber Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] アンチモン酸系固体電解質粉を体積分率が55〜95%
となるように高分子弾性体中に分散させた混合物を非導
電性網状体の開口部に充填することを特徴とするプロト
ン導電性固体電解質シート。
Antimonic acid-based solid electrolyte powder with a volume fraction of 55 to 95%
A proton conductive solid electrolyte sheet, characterized in that the openings of a non-conductive network are filled with a mixture dispersed in an elastomer polymer so as to satisfy the following.
JP63236125A 1988-09-20 1988-09-20 Protonic conductive solid electrolyte sheet Pending JPH0285388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63236125A JPH0285388A (en) 1988-09-20 1988-09-20 Protonic conductive solid electrolyte sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63236125A JPH0285388A (en) 1988-09-20 1988-09-20 Protonic conductive solid electrolyte sheet

Publications (1)

Publication Number Publication Date
JPH0285388A true JPH0285388A (en) 1990-03-26

Family

ID=16996124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63236125A Pending JPH0285388A (en) 1988-09-20 1988-09-20 Protonic conductive solid electrolyte sheet

Country Status (1)

Country Link
JP (1) JPH0285388A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7884995B2 (en) * 2007-06-27 2011-02-08 Gentex Corporation Electrochromic device having an improved fill port plug

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7884995B2 (en) * 2007-06-27 2011-02-08 Gentex Corporation Electrochromic device having an improved fill port plug

Similar Documents

Publication Publication Date Title
JP3655443B2 (en) Lithium battery
Clemente et al. Solid-state, polymer-based, redox capacitors
Stephan et al. Ionic conductivity and diffusion coefficient studies of PVdF–HFP polymer electrolytes prepared using phase inversion technique
Carretta et al. Ionomeric membranes based on partially sulfonated poly (styrene): synthesis, proton conduction and methanol permeation
Wu et al. PVdF-HFP/metal oxide nanocomposites: the matrices for high-conducting, low-leakage porous polymer electrolytes
US8507146B2 (en) Diaphragm for solid polymer fuel cell and membrane-electrode assembly
Pan et al. A dense transparent polymeric single ion conductor for lithium ion batteries with remarkable long-term stability
JP3029115B2 (en) Conductive sheet
TWI254331B (en) Coating liquid for electrode formation, electrode, electrochemical element and process for producing thereof
TW200839233A (en) Hydrogen gas sensor
CN101847522A (en) Double layer capacitor
CN107531588A (en) Rigid benzene-naphthalene diimide triangular structure
Zhang et al. High‐Performance, Highly Stretchable, Flexible Moist‐Electric Generators via Molecular Engineering of Hydrogels
KR970004136B1 (en) Solid electrolyte sheet and process for producing the same
CN108306015A (en) Ternary active material, positive electrode, positive plate and preparation method thereof, lithium ion battery and preparation method thereof
Tuli et al. Effect of morphology on anion conductive properties in self-assembled polystyrene-based copolymer membranes
Liu et al. The design and synthesis of a long-side-chain-type anion exchange membrane with a hydrophilic spacer for alkaline fuel cells
CN108110234A (en) A kind of conducting polymer hydrogel and preparation method and application
CN104393218A (en) Polymer electrolyte membrane and preparation method thereof
Shang et al. High adhesion hydrogel electrolytes enhanced by multifunctional group polymer enable high performance of flexible zinc-air batteries in wide temperature range
JPH0285388A (en) Protonic conductive solid electrolyte sheet
Liu et al. Facile preparation of polyaniline nanosheets via chemical oxidative polymerization in saturated NaCl aqueous solution for supercapacitors
Wang et al. In situ gelation of aqueous sulfuric acid solution for fuel cells
US20220044879A1 (en) Large-Area Continuous Flexible Free-Standing Electrode And Preparation Method And Use Thereof
JPH02152166A (en) Ion semiconductor material and applied article thereof