JPH0284934A - Chemical shift image preparing method by nuclear magnetic resonance image diagnostic device - Google Patents

Chemical shift image preparing method by nuclear magnetic resonance image diagnostic device

Info

Publication number
JPH0284934A
JPH0284934A JP63238382A JP23838288A JPH0284934A JP H0284934 A JPH0284934 A JP H0284934A JP 63238382 A JP63238382 A JP 63238382A JP 23838288 A JP23838288 A JP 23838288A JP H0284934 A JPH0284934 A JP H0284934A
Authority
JP
Japan
Prior art keywords
phase
image
area
jump
chemical shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63238382A
Other languages
Japanese (ja)
Other versions
JP2767258B2 (en
Inventor
Yuji Inoue
井上 勇二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP63238382A priority Critical patent/JP2767258B2/en
Publication of JPH0284934A publication Critical patent/JPH0284934A/en
Application granted granted Critical
Publication of JP2767258B2 publication Critical patent/JP2767258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To correct the discontinuation of phases and to prevent an error to be caused by phase jump by separating an image area into the suitable number of voxcels, detecting an area to have possibility to generate the phase discontinuation, executing phase shift to the whole areas and executing reverse phase shift to this detected area. CONSTITUTION:In a chemical shift image preparing method to obtain a chemical shift image, for which the phase error of a Dixon method to separate and display the images of water and fat is corrected, the image area is divided into 32X32 voxcels. When the image area is defined as (256)<2> pixels, the condition of 1 voxcel=64 pixels is obtained. This division is executed with a purpose to suppress the influence of noise, to decrease resolution so that the correction can not be missed by the slight change of the phase and to execute average operation. The voxcel to include the phase of the pixel Pij>alpha or Pij<-alpha by >=6 pixcels is extracted as a phase jump voxcel. In such a condition, alpha=160 deg.. The phase jump voxcels are linked and a phase jump area is limited. For this limitation, phase jump voxcels 22 in an image 21 are linked and a closed area 23 is provided in an outside rather than a linking line and defined as the phase jump area.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は水と脂肪の画像を分離して表示するディクソン
法の位相エラーを補正した化学シフトイメージを青る核
磁気共鳴画像診断装置による化学シフトイメージ作成方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention uses a nuclear magnetic resonance imaging diagnostic system to produce a chemical shift image corrected for the phase error of the Dixon method, which separates and displays images of water and fat. Regarding a shift image creation method.

(従来の技術) 核磁気共鳴画像診断装置!(以下MRIという)によっ
て行われるイメージングは主として水素原子核であるプ
ロトンを用いて行っている。併し、同じプロトンにおし
1ても、例えば水と脂肪のように異なる化合物中の水素
原子核では、共鳴周波数が敏感に化学構造に依存して変
化する。この共鳴周波数のずれをケミカルシフトという
(Conventional technology) Nuclear magnetic resonance imaging device! Imaging performed by MRI (hereinafter referred to as MRI) mainly uses protons, which are hydrogen nuclei. However, even if the same proton is present, the resonance frequency of hydrogen nuclei in different compounds, such as water and fat, changes sensitively depending on the chemical structure. This shift in resonance frequency is called chemical shift.

水と脂肪の場合のプロトンの共鳴周波数にはf=3.5
ppmの差がある。この差を利用して水と脂肪の分離像
を得る方法が幾つか提案されている。この中、比較的低
磁場のMRIではディクソン法が多く用いられている。
The resonant frequency of protons in the case of water and fat is f = 3.5
There is a difference in ppm. Several methods have been proposed that utilize this difference to obtain separated images of water and fat. Among these, the Dixon method is often used in MRI with a relatively low magnetic field.

ディクソン法を第2図を参照して説明する。第2図は3
軸に加える勾配磁場のパルスシーケンスの一部で、高周
波(以下RFという)軸と信号軸のみを示しである。
The Dixon method will be explained with reference to FIG. Figure 2 is 3
This is a part of the pulse sequence of the gradient magnetic field applied to the axis, and only the radio frequency (hereinafter referred to as RF) axis and the signal axis are shown.

図において、(イ)図は励起パルス1と反転パルス2の
時間間隔をTa=TE/2に選んだスキャ、ン1の図で
ある。ここで、TEは励起パルス1とSE信号3の間の
時間間隔である。この時、水と脂肪のそれぞれのプロト
ン成分の磁化ベクトルは第3図(イ)に示すように同位
相になる。(ロ)図は励起パルス1と反転パルス2どの
時間間隔TBをTo = (TE/2)−εとした時の
スキャン2の図である。この時水と脂肪の化学シフト(
3,5ppm)に応じた位相差が水と脂肪の化学ベクト
ルに与えられれ、第3図(ロ)に示すように逆位相にな
る。図において、4は水、5は脂肪の磁化ベクトルであ
る。
In the figure, (a) is a diagram of scan 1 in which the time interval between excitation pulse 1 and inversion pulse 2 is selected to be Ta=TE/2. Here, TE is the time interval between excitation pulse 1 and SE signal 3. At this time, the magnetization vectors of the proton components of water and fat are in phase, as shown in Figure 3 (a). (b) The figure is a diagram of scan 2 when the time interval TB between the excitation pulse 1 and the inversion pulse 2 is set as To = (TE/2)-ε. At this time, the chemical shift of water and fat (
A phase difference corresponding to 3.5 ppm) is given to the chemical vectors of water and fat, resulting in opposite phases as shown in FIG. 3 (b). In the figure, 4 is the magnetization vector of water and 5 is the magnetization vector of fat.

このディクソン法においては静りl場の不均一が存在す
るとその不均一に応じた位相エラーが生じ、このため正
しい分離像が得られないという欠点をもつ。
This Dixon method has the disadvantage that if there is non-uniformity in the static field, a phase error will occur corresponding to the non-uniformity, and therefore a correct separated image cannot be obtained.

上記の静V!iS不均一によるエラーを補正する方法に
ディクソン法を改善した第4図の方法がある。
Shizuka V above! A method of correcting errors due to iS non-uniformity is the method shown in FIG. 4, which is an improved version of the Dixon method.

(イ)図は反転パルス2を励起パルス1印加後Ta=T
E/2で印加したスキャン1の図、(ロ)図は励起パル
ス2をTa=(TE/2>−εで印加したスキャン2の
図、(〕旬図は励起パルス2をTo = (TE/2)
+εで印加したスキャン3の図である。図において、第
3図と同等の部分には同じ符号を用いである。第4図の
ようなスキャンを行った場合の水と脂肪の位相関係は第
5図のようになる。(イ)図はTB=TE/2にしたス
キャン1の場合の図で、水と脂肪とは同相である。
(A) The figure shows Ta=T after applying inversion pulse 2 and excitation pulse 1.
Figure (B) is a diagram of scan 1 applied at E/2, (B) is a diagram of scan 2 where excitation pulse 2 was applied at Ta = (TE/2>-ε, /2)
FIG. 3 is a diagram of scan 3 applied with +ε. In the figure, the same reference numerals are used for parts equivalent to those in FIG. 3. When a scan as shown in FIG. 4 is performed, the phase relationship between water and fat is as shown in FIG. 5. (A) The figure shows the case of scan 1 with TB=TE/2, and water and fat are in the same phase.

(口〉図はTB= (TE/2)−εにしたスキャン2
の場合の図で、水と脂肪とは逆相であるが、静磁場の不
均一のために位相が“+θ”だけずれている。(ハ)図
はTB= (TE/2)+εにしたスキャン3の場合の
図で、水と脂肪とは同じく逆相であるが、スキャン3で
は静磁場不均一のため位相が“−θ”だけずれている。
(mouth) The figure shows scan 2 with TB = (TE/2) - ε
In the figure, water and fat are in opposite phases, but the phase is shifted by "+θ" due to the non-uniformity of the static magnetic field. (C) The figure shows the case of scan 3 where TB = (TE/2) + ε. Water and fat are also in opposite phases, but in scan 3, the phase is "-θ" due to the non-uniformity of the static magnetic field. It's off by just that.

今スキャン1゜2.3における画像データをSz 、8
2 、Ssとし、水の振幅をW、脂肪の振幅をF9位相
オフセットをαとすると、画像データ81 、 S2 
、 Ssは次式のようになる。
The image data at scan 1°2.3 is now Sz, 8
2, Ss, water amplitude is W, fat amplitude is F9, phase offset is α, image data 81, S2
, Ss is as shown in the following equation.

Sl= (W+F)6 eXp(j(Z)・・・(1) 82 = (W−F)  ・eXD (j θ)exp
  (jα) ・・・(2) Ss  =  (W−f)−eXp (−j θ) ・
exp  (J α) ・・・(3) となる。これらの式から静磁場不均一による位相エラー
〇を求める。
Sl= (W+F)6 eXp(j(Z)...(1) 82 = (W-F) ・eXD (j θ)exp
(jα) ... (2) Ss = (W-f)-eXp (-j θ) ・
exp (J α) (3). From these equations, calculate the phase error 〇 due to static magnetic field inhomogeneity.

(3)式を(2)式で除して Ss/52=exo(−j2θ) このようにして静磁場不均一エラーを締出することがで
きる。
Equation (3) is divided by Equation (2) to obtain Ss/52=exo(-j2θ) In this way, the static magnetic field non-uniformity error can be eliminated.

この改良ディクソン法では上記のようにして静磁場不均
一エラーを求めることができるが、磁場の不均一のΔE
が水と脂肪の化学シフトの3.5ppmを超えると、水
成分と脂肪成分の分離が逆になってしまう。第6図は静
磁場不均一の大きさによって異なる補正値のtjB様を
示す図である。(イ)図は2θくπの場合の図で、補正
値はX軸の正側の×1の位置に来る。(ロ)図は2θ〉
πの図で、補正値はX軸の負側の×2の位置に来る。従
って前記の改良ディクソン法で補正をしようとする場合
に不均一の測定範囲は第4図のεの吊によって決まり、
位相がπを超えると超えた領域では測定が正しく行えな
い。このように20〉πになった場合は位相飛びを生じ
、第7図のように、Xεθの関係は不連続になる。図に
おいて、a点は位相I!10がπを超す点で、位相線1
0は位相1111に位相飛びを起こす。
With this improved Dickson method, the static magnetic field inhomogeneity error can be determined as described above, but the ΔE of the magnetic field inhomogeneity
If it exceeds the chemical shift of water and fat by 3.5 ppm, the separation of water and fat components will be reversed. FIG. 6 is a diagram showing how the correction value tjB differs depending on the magnitude of static magnetic field inhomogeneity. (A) The figure is for the case of 2θ minus π, and the correction value is at the x1 position on the positive side of the X axis. (b) The figure is 2θ>
In the π diagram, the correction value is at the x2 position on the negative side of the X axis. Therefore, when trying to correct using the modified Dixon method, the measurement range of non-uniformity is determined by the hanging of ε in Figure 4,
If the phase exceeds π, measurements cannot be performed correctly in the region beyond. In this way, when 20>π, a phase jump occurs and the relationship between Xεθ becomes discontinuous as shown in FIG. In the figure, point a is in phase I! At the point where 10 exceeds π, the phase line 1
0 causes a phase jump in phase 1111.

このように位相飛びを起こした場合の補正の手段として
は、位相1i111の示す各点の位相に2πを加えて補
正する。2次元の場合も同様にX方向。
As a means of correction when a phase jump occurs in this way, correction is made by adding 2π to the phase of each point indicated by the phase 1i111. Similarly in the case of 2D, the X direction.

y方向に各々1次元軸上に位相をサーチし、不連続があ
れば、それ以降に2πを加えるか、減するかの何れかの
操作をして補正する。
The phase is searched on each one-dimensional axis in the y direction, and if there is any discontinuity, it is corrected by either adding or subtracting 2π.

(発明が解決しようとする課題) ところで、このように位相の不連続点を見付け、不連続
がある場合に2πを加減する方法では次のような欠点が
ある。
(Problems to be Solved by the Invention) However, this method of finding discontinuous points in phase and adding or subtracting 2π when there is discontinuity has the following drawbacks.

1、ノイズの影響を受は易い。1点でもノイズがあると
、ノイズに影響されて正確な補正ができない。
1. Easily affected by noise. If there is noise at even one point, it will be affected by the noise and accurate correction will not be possible.

2.2次元の場合X方向からサーチ覆るか、y方向から
サーチするかで補正が左右されていることがある。
2. In the case of two dimensions, correction may depend on whether the search is performed from the X direction or from the Y direction.

3、位相不連続線が第8図に示すように入り組んでいる
とa点とb点で2度位相補正してしまうようなことが起
こる。
3. If the phase discontinuity line is complicated as shown in FIG. 8, the phase may be corrected twice at point a and point b.

本発明は上記の点に鑑みてなされたもので、その目的は
、MRIの位相分布において、±πの位相飛びを生じて
いる可能性がある場合に、この位相不連続を補正し、位
相飛びに起因するエラーを生じないMRIによる化学シ
フトイメージ作成方法を実現することにある。
The present invention has been made in view of the above points, and its purpose is to correct this phase discontinuity when there is a possibility that a phase jump of ±π has occurred in the phase distribution of MRI, and to correct the phase jump. An object of the present invention is to realize a method for creating a chemical shift image using MRI that does not cause errors caused by.

(課題を解決するための手段) 前記の課題を解決する本発明は、水と脂肪の画像を分離
して表示するディクソン法の位相エラーを補正した化学
シフトイメージを得る核磁気共鳴画像診断装置による化
学シフトイメージ作成方法において、イメージエリアを
適当数のボクセルに分離する方法と、このボクセル単位
に位相不連続を生じている可能性のある領域を検出する
方法と、前記領域全体に位相シフトを施す方法と、前記
位相シフトを行った領域に対し逆の位相シフトを施す方
法とを備えることを特徴とするものである。
(Means for Solving the Problems) The present invention for solving the above problems uses a nuclear magnetic resonance imaging diagnostic apparatus that obtains chemical shift images corrected for phase errors of the Dixon method, which separates and displays images of water and fat. A chemical shift image creation method includes a method of separating an image area into an appropriate number of voxels, a method of detecting a region where phase discontinuity may occur in each voxel, and a method of applying a phase shift to the entire region. The present invention is characterized by comprising a method and a method of applying a reverse phase shift to the region subjected to the phase shift.

(作用) 画像再、構成された画像データから静磁場不均一による
位相エラーを算出し、複数のピクセルからなるボクセル
を作り、ボクセル単位に位相飛びを見付け、位相シフト
を行う。位相シフトを行った領域のシフト方向を計算し
て求め、結果に基づさ必要に応じて逆の位相シフトを施
し、位相飛びを含む不均一エラー補正を行う。
(Operation) Calculate the phase error due to static magnetic field inhomogeneity from the image data that has been reconstructed and configured, create voxels consisting of multiple pixels, find phase jumps in voxel units, and perform phase shifts. The shift direction of the area to which the phase shift has been performed is calculated and determined, and based on the result, a reverse phase shift is applied as necessary to correct non-uniform errors including phase jumps.

(実施例) 以下、図面を参照して本発明の実施例を詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の方法を実施する手順のフローチャート
である。フローチャートに従って化学シフトイメージ作
成方法を説明する。
FIG. 1 is a flowchart of the procedure for carrying out the method of the invention. The chemical shift image creation method will be explained according to the flowchart.

ステップ1 スキャンによって得られたデータはそれぞれ位相角θの
ずれを有する複素データなので複素画像再構成演算を行
う。((1)式、(2)式、(3)式) スキャン3のデータS3をスキャン2のデータS2で割
って位相エラーexp(−j2θ)を出力しく(4)式
)、不均一位相エラーによる位相分布図を作る。
Step 1 Since the data obtained by scanning is complex data having a phase angle θ shift, a complex image reconstruction calculation is performed. (Equation (1), Equation (2), Equation (3)) Divide the data S3 of scan 3 by the data S2 of scan 2 to output the phase error exp (-j2θ) (Equation (4)), and calculate the non-uniform phase error. Create a phase distribution map using

スラブ3 ノイズレベルはスキャン1の生データでワープ方向両端
の各3〜5ラインを1次元フーリエ変換した絶対値の平
均(mO)と分散(σ)から求める。一般にはノイズレ
ベルNは N=m、)+3,5σである。N以下の値を′0″とし
1、N以上の値を“1″とする。この処理は以後に行わ
れる位相処理においてノイズピクセルを省き、ノイズの
影響を抑えるために行う。
Slab 3 The noise level is determined from the average (mO) and variance (σ) of the absolute values obtained by one-dimensional Fourier transform of each 3 to 5 lines at both ends in the warp direction using the raw data of scan 1. Generally, the noise level N is N=m, )+3.5σ. A value of N or less is set to '0' and a value of N or more is set to '1'.This processing is performed to omit noise pixels in the phase processing to be performed later and to suppress the influence of noise.

ステップ4 イメージエリアを32X32ボクセルに分割する。イメ
ージエリアが(256>2ピクセルとして1ボクセル=
64ビクセルである。この分割はノイズの影響を抑える
と共、に位相の僅かな変化で補正を誤らない様に分解能
を下げて平均的操作を施す目的で行う。
Step 4 Divide the image area into 32x32 voxels. If the image area is (256>2 pixels, then 1 voxel =
It is 64 pixels. This division is performed for the purpose of suppressing the influence of noise and performing average operation by lowering the resolution so as not to erroneously correct correction due to a slight change in phase.

ステップ5 ピクセルの位相がPij>+α又は Pij<−αを6ピクセル以上含むボクセルを位相飛び
ボクセルとして描出する。α=160”程度とする。P
ijは座標(i、j)の点の位相を示す。
Step 5 Voxels whose pixel phases include Pij>+α or Pij<−α for 6 or more pixels are depicted as phase-jump voxels. α=about 160”.P
ij indicates the phase of the point at coordinates (i, j).

ステップ6 位相飛びボクセルがあるかどうかをチエツクし、ある場
合はステップ7に進む。
Step 6 Check whether there are phase jump voxels, and if so, proceed to step 7.

ステップ7 位相飛びボクセルを連結して位相飛び領域を限定する。Step 7 The phase jump region is limited by connecting the phase jump voxels.

この限定は第9図に示すようにイメージ21中の位相飛
びボクセル22を連結して、連結線より外側に閉領域2
3を設は位相飛び領域とする。
This limitation is achieved by connecting the phase jump voxels 22 in the image 21 as shown in FIG.
3 is set as the phase jump region.

ステップ8 位相飛び領域に指定した閉領域23内のボクセルに対し
、−律にπ(180’)の位相シフトを行う。
Step 8 A phase shift of π (180') is performed on the voxels within the closed region 23 designated as the phase jump region.

ステップ9 ステップ8で位相シフトを行った領域に対し、位相飛び
ボクセルが位相シフトを行ったことによって位相飛びを
新たに発生しないか検出を行う。
Step 9 Detect whether a new phase jump occurs due to the phase shift of the phase jump voxel in the region where the phase shift was performed in Step 8.

検出後ステップ6に戻る。After detection, return to step 6.

ステップ6 イメージエリア全域に亘って位相飛びボクセルの有無を
チエツクし、なくなればステップ10に進む。
Step 6: Check for the presence or absence of phase jump voxels over the entire image area, and if there are none, proceed to Step 10.

ステップ10 位相マツプの位相(2θ)を1/2にして、位相(θ)
を求めておく。
Step 10 Reduce the phase (2θ) of the phase map to 1/2, and change the phase (θ)
Let's find out.

ステップ11 ステップ8において位相シフトを行った領域の境界の位
相シフト領域内ボクセルVsと、正常領域内ボクセルV
Nにおいて、次の計郷を行い、位相シフト方向を決定す
る。
Step 11 Voxel Vs in the phase shift region at the boundary of the region subjected to phase shift in Step 8 and voxel V in the normal region
At N, the next calculation is performed to determine the phase shift direction.

VsとVNの平均位相差Δα!、△α2を求める。Average phase difference Δα between Vs and VN! , Δα2.

1Δα11・・・VsXeXp(−jπ/2)のとき Δα21 ・=Vs X6Xp (j 7r/2)のと
き Δα1 (と1Δα21を比較し、平均位相差の小さい
方を採用する。
When 1Δα11...VsXeXp (-jπ/2), Δα21 ·=Vs

Δα11く1Δα2Iであれば 位相差PS=−π Δα11〉1Δα21であれば 位相差SP=+π ステップ12 (2ン式の82に不均一補正のexo(−j(1/2)
2θ)と、位相シフト補正のexp(−jPs)を乗じ
て補正を行う。
If Δα11〉1Δα2I, phase difference PS=-π If Δα11〉1Δα21, phase difference SP=+π Step 12 (Exo (-j (1/2)
2θ) and the phase shift correction exp(−jPs).

84 =82 ・eXp(J (IV2)2θ)・ex
p(−jPs) ・・・ (5) ステップ13 水と脂肪の分離像を求める。
84 =82 ・eXp(J (IV2)2θ)・ex
p(-jPs) (5) Step 13 Obtain a separated image of water and fat.

W−(1/2)(31+84 ) =W−exp (j (Z)=Wr+jWi・・・ (
6) F−(1/2>  (81S4  ) =F−exo  (jl−Fr+jFi・・・ (7) ここで、(5)式のexp(−jPs)は位相飛び補正
なので、(6)式、(7)式には現れない。
W-(1/2)(31+84) =W-exp (j (Z)=Wr+jWi... (
6) F-(1/2> (81S4) = F-exo (jl-Fr+jFi... (7) Here, since exp (-jPs) in equation (5) is phase jump correction, equation (6), It does not appear in equation (7).

ステップ14 (6)式からW=r+A■丁1” ・・・ (8) (7)式からF=CF1菖]コゴ ・・・(9) (8)式、(9)式により静磁場不均一エラー位相オフ
セットエラーを除去した水と脂肪のそれぞれの絶対値会
が得られる。
Step 14 From equation (6), W = r + A ■ 1”... (8) From equation (7), F = CF1] Kogo... (9) From equations (8) and (9), the static magnetic field is The respective absolute values of water and fat with the uniform error phase offset error removed are obtained.

以上説明したように本実施例の方法によれば、ボクセル
に分割して、平均化操作を施しているため、ノイズの影
響を受けにくい。又、位相シフト量の補正をステップ1
1とステップ12で行うため、誤って正常ボクセルに対
して位相飛び領域として扱った場合でも正常に戻されて
問題は生じない。従って位相飛び補正のエラーを起こす
おそれは少ない6以上のことから、従来の方法に比べて
より正確なエラーの少ない位相飛び補正ができる。
As explained above, according to the method of this embodiment, since the image is divided into voxels and the averaging operation is performed, it is less susceptible to the influence of noise. In addition, the phase shift amount is corrected in step 1.
Since steps 1 and 12 are performed, even if a normal voxel is mistakenly treated as a phase jump region, it will be returned to normal and no problem will occur. Therefore, since the possibility of causing errors in phase jump correction is less than 6, it is possible to perform phase jump correction more accurately and with fewer errors than conventional methods.

尚、本発明は上記の実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

位相飛びを最小限に抑えるために、位相マツプに対し画
像中心付近での位相をOとするように0次補正を先ず行
ってもよい。
In order to minimize phase jumps, zero-order correction may be first performed on the phase map so that the phase near the center of the image is set to O.

位相シフト量を±πで説明したが、他の位相量であって
も差支えない。
Although the phase shift amount is described as ±π, other phase amounts may be used.

均質ファントムを用いた不均一測定の際には、位相シフ
トの補正の代りに、対応する均一量の補正を行えばよい
When measuring nonuniformity using a homogeneous phantom, instead of correcting the phase shift, a corresponding uniform amount correction may be performed.

(発明の効果) 以上詳細に説明したように本発明によれば、位相飛びを
起こしている可能性のある化学シフト像作成法において
。位相の不連続を補正し、位相飛びに由来するエラーを
生じなくすることができて、実用上の効果は大きい。
(Effects of the Invention) As described above in detail, the present invention is applicable to a chemical shift image creation method in which phase jump may occur. It is possible to correct phase discontinuity and eliminate errors caused by phase jumps, which has a great practical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の方法を実施する70−ヂャ
ート、第2図はディクソン法のパルスシーケンスの図、
第3図はディクソン法による水と脂肪の成分の磁化ベク
ルトの位相関係を示す図、第4図は改良ディクソン法の
RFパルスシーケンスの図、第5図は改良ディクソン法
において静磁場不均一によって生ずる水と脂肪の位相関
係の図、第6図は静磁場不均一の大きさによる補正値の
態様を示す図、第7図は位相飛びによって起こる不連続
先生の説明図、第8図は位相連続線が入り組んでいる場
合の図、第9図は位相飛び領域設定の図である。 1・・・励起パルス    2・・・反転パルス3・・
・SE信号     4・・・水5・・・脂肪    
   10.11・・・位相線12・・・位相不連続線
  21・−・イメージ22・・・位相飛びボクセル 23・・・閉領域
FIG. 1 is a 70-diagram for carrying out the method of one embodiment of the present invention; FIG. 2 is a diagram of the pulse sequence of the Dixon method;
Figure 3 is a diagram showing the phase relationship of magnetization vectors of water and fat components by the Dixon method, Figure 4 is a diagram of the RF pulse sequence of the improved Dixon method, and Figure 5 is a diagram showing the phase relationship of the magnetization vectors of water and fat components in the improved Dixon method. A diagram of the phase relationship between water and fat, Figure 6 is a diagram showing the correction value depending on the magnitude of static magnetic field inhomogeneity, Figure 7 is an explanation of discontinuity caused by phase jump, and Figure 8 is a diagram of phase continuity. FIG. 9, which is a diagram showing the case where the lines are complicated, is a diagram showing the setting of the phase jump region. 1...Excitation pulse 2...Inversion pulse 3...
・SE signal 4...Water 5...Fat
10.11... Phase line 12... Phase discontinuity line 21... Image 22... Phase jump voxel 23... Closed region

Claims (1)

【特許請求の範囲】[Claims] 水と脂肪の画像を分離して表示するディクソン法の位相
エラーを補正した化学シフトイメージを得る核磁気共鳴
画像診断装置による化学シフトイメージ作成方法におい
て、イメージエリアを適当数のボクセルに分離する方法
と、このボクセル単位に位相不連続を生じている可能性
のある領域を検出する方法と、前記領域全体に位相シフ
トを施す方法と、前記位相シフトを行った領域に対し逆
の位相シフトを施す方法とを備えることを特徴とする核
磁気共鳴画像診断装置による化学シフトイメージ作成方
法。
In a method for creating a chemical shift image using a nuclear magnetic resonance imaging diagnostic apparatus, which obtains a chemical shift image corrected for the phase error of the Dixon method that separates and displays images of water and fat, there is a method of separating the image area into an appropriate number of voxels. , a method of detecting an area where phase discontinuity may occur in this voxel unit, a method of applying a phase shift to the entire area, and a method of applying an opposite phase shift to the area where the phase shift has been performed. A method for creating a chemical shift image using a nuclear magnetic resonance imaging diagnostic apparatus, comprising:
JP63238382A 1988-09-22 1988-09-22 Nuclear magnetic resonance equipment Expired - Fee Related JP2767258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63238382A JP2767258B2 (en) 1988-09-22 1988-09-22 Nuclear magnetic resonance equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63238382A JP2767258B2 (en) 1988-09-22 1988-09-22 Nuclear magnetic resonance equipment

Publications (2)

Publication Number Publication Date
JPH0284934A true JPH0284934A (en) 1990-03-26
JP2767258B2 JP2767258B2 (en) 1998-06-18

Family

ID=17029358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63238382A Expired - Fee Related JP2767258B2 (en) 1988-09-22 1988-09-22 Nuclear magnetic resonance equipment

Country Status (1)

Country Link
JP (1) JP2767258B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013693A1 (en) * 2000-08-11 2002-02-21 Hitachi Medical Corporation Magnetic resonance imaging device and method
WO2002053031A1 (en) * 2000-12-28 2002-07-11 Hitachi Medical Corporation Magnetic resonance imaging device and method
WO2002082994A1 (en) * 2001-04-11 2002-10-24 Hitachi Medical Corporation Magnetic resonance imaging apparatus and image processing method
CN108697366A (en) * 2015-12-30 2018-10-23 中国科学院深圳先进技术研究院 A kind of magnetic resonance chemical shift coded imaging method, apparatus and equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5979327B2 (en) * 2016-01-04 2016-08-24 株式会社日立製作所 Magnetic resonance imaging apparatus, operating method thereof, and time-series image creation program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013693A1 (en) * 2000-08-11 2002-02-21 Hitachi Medical Corporation Magnetic resonance imaging device and method
WO2002053031A1 (en) * 2000-12-28 2002-07-11 Hitachi Medical Corporation Magnetic resonance imaging device and method
WO2002082994A1 (en) * 2001-04-11 2002-10-24 Hitachi Medical Corporation Magnetic resonance imaging apparatus and image processing method
US8027713B2 (en) 2001-04-11 2011-09-27 Hitachi Medical Corporation Magnetic resonance imaging apparatus and image processing method
CN108697366A (en) * 2015-12-30 2018-10-23 中国科学院深圳先进技术研究院 A kind of magnetic resonance chemical shift coded imaging method, apparatus and equipment
US10782379B2 (en) 2015-12-30 2020-09-22 Shenzhen Institutes Of Advances Technology Chinese Academy Of Sciences Method, apparatus, and device for magnetic resonance chemical shift encoding imaging

Also Published As

Publication number Publication date
JP2767258B2 (en) 1998-06-18

Similar Documents

Publication Publication Date Title
Haselgrove et al. Correction for distortion of echo‐planar images used to calculate the apparent diffusion coefficient
JP3330007B2 (en) Nuclear resonance signal phase correction device
Block et al. Spiral imaging: a critical appraisal
CN108375746B (en) Phase reverse winding method and equipment
EP1310211B1 (en) Magnetic resonance imaging device and method
In et al. Highly accelerated PSF-mapping for EPI distortion correction with improved fidelity
KR100610990B1 (en) Mr imaging method and mri system
US6043651A (en) Method for the phase correction of nuclear magnetic resonance signals
US7336986B2 (en) Magnetic resonance imaging apparatus
JP2000051179A (en) Improved magnetic resonance imaging system and method to separate water from fat
JP2000300539A (en) Method for magnetic resonance imaging
JPH01303137A (en) Water and fat separating imaging method in mri
Dymerska et al. Correcting dynamic distortions in 7T echo planar imaging using a jittered echo time sequence
JP2017528276A (en) Dixon MR imaging with reduced blood flow artifacts
US11327134B2 (en) MRI apparatus, image processing apparatus, and image processing method
US4871967A (en) Spectral component separation in mr imaging
Mani et al. Comprehensive reconstruction of multi-shot multi-channel diffusion data using mussels
van Gorkum et al. Analysis and correction of off‐resonance artifacts in echo‐planar cardiac diffusion tensor imaging
JP3585139B2 (en) Flow velocity calculator in magnetic resonance diagnostic equipment
JPH0284934A (en) Chemical shift image preparing method by nuclear magnetic resonance image diagnostic device
US20100303320A1 (en) Systems, methods and machine readable programs for enhanced fat/water separation in magnetic resonance imaging
Chiou et al. A simple simultaneous geometric and intensity correction method for echo-planar imaging by EPI-based phase modulation
JP2641486B2 (en) NMR imaging equipment
US4902974A (en) Phase correcting method in a magnetic resonance imaging system and device for realizing the same
Maniega et al. A quantitative comparison of two methods to correct eddy current-induced distortions in DT-MRI

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees