JPH0284605A - Photodetector - Google Patents

Photodetector

Info

Publication number
JPH0284605A
JPH0284605A JP1023221A JP2322189A JPH0284605A JP H0284605 A JPH0284605 A JP H0284605A JP 1023221 A JP1023221 A JP 1023221A JP 2322189 A JP2322189 A JP 2322189A JP H0284605 A JPH0284605 A JP H0284605A
Authority
JP
Japan
Prior art keywords
light
mirror
optical
hole
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1023221A
Other languages
Japanese (ja)
Other versions
JP2780300B2 (en
Inventor
Ryoichi Sugawara
良一 菅原
Toshiki Ito
俊樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP1023221A priority Critical patent/JP2780300B2/en
Publication of JPH0284605A publication Critical patent/JPH0284605A/en
Application granted granted Critical
Publication of JP2780300B2 publication Critical patent/JP2780300B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To enhance the utilization rate of the light from a light source by reflecting the radial light emitted from a photoconductor in the mirror part of a holed mirror and making this reflected light incident to a light receiving element by an optical system. CONSTITUTION:The incident diffracted light is reflected by the mirror part 53 and is made incident to the mirror 102 of a reflector 100; thereafter, the light progresses along an optical axis 72a and is condensed to the center of the light receiving face of the light receiving element 70. The light receiving element 70, therefore, provides the effect of detecting the light by conduction of a photodiode arising from the photodetection of the element. The beam light from the light emitting element 30 is hardly lost at the time of the passage through the central hole 52 of the holed mirror 50, the reflection by the holed mirror 50 and the reflection by the mirror 102. The holed mirror 50, a planoconvex lens 40 and the mirror 102 are disposed into the optical route between the light emitting element 30, the optical fiber 90 and the light receiving element 70 in this way, by which the utilization rate of the beam light from the light emitting element 30 is improved.

Description

【発明の詳細な説明】 1産業上の利用分野] 本発明は光検出装置に係り、特に、光フアイバ光導波路
等の光導波体を採用するに適した光検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION 1. Field of Industrial Application] The present invention relates to a photodetection device, and particularly to a photodetection device suitable for employing an optical waveguide such as an optical fiber optical waveguide.

〔従来技術〕[Prior art]

従来、この種の光検出装置においては、例えば、レーザ
光源と光ファイバとの間にビームスプリッタを配設して
、レーザ光源からのレーザ光をビームスプリッタを通し
前記光ファイバに入射させ、この光ファイバから出射し
た後被検出体により反射される反射レーザ光を再び前記
光ファイバに入射させ、その後同光ファイバから出射す
るレーザ光をビームスプリッタにより反射させて光検出
器゛に入射させるようにしたものがある(1986年オ
ーム社発行による大越孝敬編著「光フアイバセンサ」第
139頁参照)。
Conventionally, in this type of photodetection device, for example, a beam splitter is disposed between a laser light source and an optical fiber, and the laser light from the laser light source is incident on the optical fiber through the beam splitter. The reflected laser light that is reflected by the object to be detected after being emitted from the fiber is made to enter the optical fiber again, and then the laser light that is emitted from the same optical fiber is reflected by a beam splitter and made to enter the photodetector. (Refer to p. 139 of "Optical Fiber Sensors" edited by Takataka Okoshi and published by Ohmsha, 1986).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、このような構成においては、単一の光ファイバ
が採用されているため被検出体の検出に対する自由度が
高いという利点は有するものの、ビームスプリッタを採
用しているなめ、レーザ光源からのレーザ光の光検出器
に到達するまでの光利用率が低いという不具合がある。
However, although this type of configuration has the advantage of having a high degree of freedom in detecting the object to be detected because it uses a single optical fiber, it also uses a beam splitter, so the laser beam from the laser light source is There is a problem in that the light utilization rate until the light reaches the photodetector is low.

因みに、ビームスプリッタの採用による場合、例えば理
想的な場合(ビームスプリッタでの表面反射や内部吸収
がない場合)でも光利用率は25%である。
Incidentally, when a beam splitter is used, the light utilization rate is 25% even in an ideal case (when there is no surface reflection or internal absorption at the beam splitter).

そこで、本発明は、このようなことに対処すべく、穴付
ミラーを有効に活用することにより光利用率を高めるよ
うにした光検出装置を提供しようとするものである。
Therefore, in order to cope with this problem, the present invention aims to provide a photodetecting device that increases the light utilization rate by effectively utilizing a mirror with a hole.

〔課題を解決するための手段〕[Means to solve the problem]

かかる課題の解決にあたり、本発明の構成は、光源と、
受光素子とを備え、かつ前記光源から前記光を被検出体
に入射させ、この被検出体からの反射光を放射状の光と
して出射する光導波体と、前記光源と前記光導波体との
間に配設されて前記光源から前記光導波体への前記光を
通過させる穴、及び前記光導波体からの放射状の光を受
けて反射するミラー部を設けてなる穴付ミラーを有して
、前記ミラー部からの反射光を収束させて前記受光素子
に入射させる光学系とを具備するようにしたことにある
In solving this problem, the configuration of the present invention includes a light source,
between the light source and the optical waveguide, the optical waveguide comprising a light-receiving element, the light from the light source entering the object to be detected, and the reflected light from the object to be detected being emitted as radial light; a mirror with a hole, the mirror having a hole disposed in the hole for passing the light from the light source to the optical waveguide, and a mirror portion for receiving and reflecting radial light from the optical waveguide; The present invention further includes an optical system that converges the reflected light from the mirror portion and makes it incident on the light receiving element.

〔作用効果〕[Effect]

このように構成した本発明においては、光学系において
穴付ミラーを採用することにより、光源からの光を穴付
ミラーの穴を通しそのまま光導波体に入射させ、この光
導波体から出射する放射状の光を穴付ミラーのミラー部
により反射させて、この反射光を光学系により受光素子
に入射させるようにしたので、光源からの光を、光学系
における損失を伴うことなく受光素子に入射させること
ができる。その結果、この種光検出装置の光源からの光
の光利用率を大幅に高め得る。
In the present invention configured as described above, by employing a mirror with a hole in the optical system, the light from the light source is directly incident on the optical waveguide through the hole of the mirror with a hole, and the radial light emitted from the optical waveguide is The light of be able to. As a result, the light utilization efficiency of the light from the light source of this type of photodetection device can be significantly increased.

また、前記穴付ミラーのミラー部の球心を前記光導波体
の出射軸からずれて位置させるとともに、同ミラー部を
前記出射軸に対し傾斜して位置させるようにすれば、前
記光導波体がら前記ミラー部への入射光量を、前記穴付
ミラーの寸法形状を最小限に抑制しつつ十分に確保でき
るので、光の利用率を更に高め得る。
Further, if the spherical center of the mirror portion of the mirror with a hole is positioned offset from the output axis of the optical waveguide, and the mirror portion is positioned at an angle with respect to the output axis, the optical waveguide can be However, a sufficient amount of light incident on the mirror portion can be ensured while minimizing the size and shape of the mirror with holes, so that the light utilization rate can be further increased.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面により説明すると、第1
図は本発明に係る光検出装置の一例を示している。この
光検出装置は、一対のハウジング部材10a、10bか
らなるハウジング10を備えており、ハウジング部材1
0aは、その開口部をハウジング部材10bの開口部に
接着剤により接着してハウジング部材10bに同軸的に
組付けられている。ハウジング部材10aの底壁には、
一対の保持穴11.12がハウジング部材10aの軸に
平行な軸を有するように上下に穿設されており、保持穴
11には、円筒状ホルダー20が、その外端段部21を
保持穴11の外端つば部11aに係止させてネジ20.
aにより取付けられている。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
The figure shows an example of a photodetection device according to the present invention. This photodetecting device includes a housing 10 consisting of a pair of housing members 10a and 10b.
0a is coaxially assembled to the housing member 10b by bonding its opening to the opening of the housing member 10b with an adhesive. On the bottom wall of the housing member 10a,
A pair of holding holes 11 and 12 are bored vertically so as to have axes parallel to the axis of the housing member 10a. 11 and screw 20.
It is attached by a.

ホルダー20に穿設した段付穴22の大径部22a内に
は、発光素子30が補助板13を通し組付けられており
、この発光素子30は、その内蔵の発光ダイオードから
導通により生じる光をビーム光として発光面31を通し
光軸31aに沿い出射する。段付穴22の中径部22b
には、平凸レンズ40が組付けられており、この平凸レ
ンズ40は、発光素子30からのビーム光を平行光と1
7で光軸31aに沿い段付穴22の小径部22c内に出
射する。また、ホルダー20において光軸31aに対し
所定鋭角θにて形成した環状内端面23には、穴付ミラ
ー5oがその背面51にて接着剤により接着されており
、この穴付ミラー5oはその中央穴52を通し平凸レン
ズ4oがらの平行光を光軸31aに沿いハウジング部材
10b側へ通過させる。
A light emitting element 30 is assembled into the large diameter part 22a of the stepped hole 22 bored in the holder 20 through the auxiliary plate 13, and this light emitting element 30 emits light generated by conduction from the built-in light emitting diode. is emitted as a beam of light through the light emitting surface 31 along the optical axis 31a. Medium diameter portion 22b of stepped hole 22
A plano-convex lens 40 is assembled in the , and this plano-convex lens 40 combines the beam light from the light emitting element 30 with parallel light.
7, the light is emitted into the small diameter portion 22c of the stepped hole 22 along the optical axis 31a. Further, on the annular inner end surface 23 formed at a predetermined acute angle θ with respect to the optical axis 31a in the holder 20, a holed mirror 5o is bonded with adhesive at its back surface 51, and this holed mirror 5o is attached at the center thereof. The parallel light from the plano-convex lens 4o is passed through the hole 52 along the optical axis 31a toward the housing member 10b.

かかる場合、中央穴52の軸は光軸31aに対し所定鋭
角θだけ下方へ傾斜しており、中央穴52の内径は平凸
レンズ4oがらの平行光のすべてを光軸31aに沿い中
央穴52を通過させるように定められている。また、穴
付ミラー5oのミラー部53は、所定曲率半径をもつ凹
面鏡でもって形成されており、このミラー部53の球心
は光軸31a上に位置している。なお、補助板13は各
ネジ13a、13aによるハウジング部材10aの底壁
に取付けられている。ハウジング部材10aの保持穴1
2には、円筒状ホルダー60が、その内端部61を保持
穴12の内端つば部12aに係止させて、ネジ62によ
り組付けられており、このホルダー60内には、受光素
子70が接着剤により接着されている。しかして、この
受光素子70は、その内蔵のホトダイオードにより、光
軸72aに沿い後述のように進む光を受光面72を通し
受光する。
In this case, the axis of the central hole 52 is inclined downward by a predetermined acute angle θ with respect to the optical axis 31a, and the inner diameter of the central hole 52 allows all of the parallel light from the plano-convex lens 4o to pass through the central hole 52 along the optical axis 31a. It is determined that it will pass. Further, the mirror portion 53 of the mirror with a hole 5o is formed of a concave mirror having a predetermined radius of curvature, and the spherical center of this mirror portion 53 is located on the optical axis 31a. Note that the auxiliary plate 13 is attached to the bottom wall of the housing member 10a by screws 13a, 13a. Holding hole 1 of housing member 10a
2, a cylindrical holder 60 is assembled with screws 62 with its inner end 61 locked to the inner end flange 12a of the holding hole 12, and a light receiving element 70 is installed in the holder 60. are attached with adhesive. The light-receiving element 70 receives, through the light-receiving surface 72, light traveling along the optical axis 72a as will be described later, using its built-in photodiode.

ハウジング部材10bの底壁には、一対の保持穴14.
15が各保持穴11.12とそれぞれ同軸的に穿設され
ており、保持穴14内には、ホルダー80が、段付円筒
部80aを嵌装するとともにフランジ部80bをハウジ
ング10bの底壁に当接させて、各ネジ81.82によ
り組付けられている0段付円筒部80a内には、光ファ
イバ90が、その内端部90aにて、光軸31aと同軸
的に組付けられており、この光ファイバ90は、内端部
90aにて、穴付ミラー50の中央穴52からの平行光
を、光軸31aに沿い入射されて伝搬させるとともに、
その外端部(図示しない)から被検出体に入射させる。
A pair of retaining holes 14. are provided in the bottom wall of the housing member 10b.
15 is coaxially bored with each of the holding holes 11 and 12, and a holder 80 is fitted with a stepped cylindrical portion 80a and a flange portion 80b attached to the bottom wall of the housing 10b. An optical fiber 90 is installed coaxially with the optical axis 31a at its inner end 90a in the zero-stage cylindrical part 80a which is abutted and assembled by screws 81 and 82. The optical fiber 90 allows the parallel light from the center hole 52 of the holed mirror 50 to enter and propagate along the optical axis 31a at the inner end 90a.
The light is made incident on the object to be detected from its outer end (not shown).

また、この光ファイバ90は、その外端部にて前記被検
出体からの反射光を入射されて伝搬させるとともに内端
部90aから回折光として穴付ミラー50のミラー部5
3に入射させる。かかる場合、光ファイバ90の内端部
90aの開口端面91の開口数NAは、ミラー部53へ
の入射回折光の十分な開きを確保できるように選ばれて
いる0本実施例においては、発光素子30からのビーム
光の受光素子70に導びかれる割合(以下、光利用率と
いう)を高くするために、入射回折光の開きによりミラ
ー部53上に特定される平面の断面積をSaとし、穴付
ミラー50の中央穴52を通る平行光の断面積をsbと
したとき、Saがsbに比べて十分に大きくなるように
なっている。なお、前記光利用率は、(S a −S 
b ) / S aにより表わされる。
Further, this optical fiber 90 receives reflected light from the object to be detected at its outer end and propagates it, and diffracts the light from its inner end 90a to the mirror section 50 of the mirror with hole 50.
3. In this case, the numerical aperture NA of the aperture end surface 91 of the inner end 90a of the optical fiber 90 is selected to ensure a sufficient opening of the diffracted light incident on the mirror section 53. In order to increase the proportion of the beam light from the element 30 guided to the light receiving element 70 (hereinafter referred to as light utilization rate), the cross-sectional area of the plane specified on the mirror part 53 by the spread of the incident diffracted light is set as Sa. When the cross-sectional area of parallel light passing through the central hole 52 of the mirror 50 with a hole is sb, Sa is made to be sufficiently larger than sb. Note that the light utilization rate is (S a −S
b) / S a.

ハウジング部材10bの保持穴15内には、反射体10
0がその円筒基部101にて同軸的にネジ103により
組付けられている。また、反射体100はミラー102
を有しており、このミラー102は円筒基部101の傾
斜状内端面に接着されている。かかる場合、ミラー10
2の軸の光軸72aに対する傾斜角は、ミラー部53か
らの反射回折光をミラー102により集光して光軸72
aに沿い受光素子70に向は反射するように定められて
いる。
A reflector 10 is provided in the holding hole 15 of the housing member 10b.
0 is coaxially assembled at its cylindrical base 101 with screws 103. Further, the reflector 100 is a mirror 102
The mirror 102 is bonded to the inclined inner end surface of the cylindrical base 101. In such a case, mirror 10
The angle of inclination of the second axis with respect to the optical axis 72a is such that the reflected and diffracted light from the mirror section 53 is focused by the mirror 102 and the optical axis 72a is
The light is directed toward the light receiving element 70 along the direction a so as to be reflected.

以上のように構成した本実施例において、発光素子30
からビーム光が生じると、このビーム光が平凸レンズ4
0を通り平行光となり穴付ミラー50の中央穴52を通
り光ファイバ90の内端部90a内に入射する。かかる
場合、中央穴52の軸が光軸31aに対し下方へ傾斜し
ても、中央穴52の内径が上述のごとく適切に定めであ
るので、平凸レンズ40からの平行光の殆どが中央穴5
2を通過する。上述のように光フアイバ90内に入射し
た平行光は、同光フアイバ90内に沿い伝搬しその外端
部から出射して前記被検出体に入射する。
In this embodiment configured as described above, the light emitting element 30
When a light beam is generated from the plane, this light beam passes through the plano-convex lens 4
0, the light becomes parallel light, passes through the center hole 52 of the mirror with a hole 50, and enters the inner end 90a of the optical fiber 90. In such a case, even if the axis of the central hole 52 is inclined downward with respect to the optical axis 31a, most of the parallel light from the plano-convex lens 40 will be directed to the central hole 5 because the inner diameter of the central hole 52 is appropriately determined as described above.
Pass 2. The parallel light that has entered the optical fiber 90 as described above propagates along the optical fiber 90, exits from its outer end, and enters the object to be detected.

このように入射した光が前記被検出体により反射されて
再び光フアイバ90内にその外端部から入射すると、こ
の入射光が光フアイバ90内に沿い伝搬して内端部90
aから回折光となって出射し穴付ミラー50のミラー部
53に入射する。かかる場合、光ファイバ90の内端部
91の開口数NAが上述のごとく適切に定められている
ので、前記回折光は十分な広がりをもって穴付ミラー5
0のミラー部53に入射する。
When the incident light is reflected by the object to be detected and enters the optical fiber 90 again from its outer end, the incident light propagates along the inside of the optical fiber 90 and enters the inner end 90.
The diffracted light is output from a and enters the mirror portion 53 of the mirror 50 with holes. In this case, since the numerical aperture NA of the inner end 91 of the optical fiber 90 is appropriately determined as described above, the diffracted light passes through the holed mirror 5 with a sufficient spread.
The light is incident on the mirror section 53 of 0.

上述のように入射した回折光は、ミラー部53により反
射され、反射体100のミラー102に入射した後反射
されて光軸72aに沿い進行し受光素子70の受光面中
央に集光する。このため、受光素子70がその受光に伴
うホトダイオードの導通により光検出作用を果す。かか
る場合、発光素子30からのビーム光は、穴付ミラー5
0の中央穴52の通過時、穴付ミラー50による反射時
、及びミラー102による反射時に損失を伴うことは殆
どないので、発光素子30、光ファイバ90及び受光素
子70の間の光学的経路中に穴付ミラー50、平凸レン
ズ40及びミラー102を配置するだけで発光素子30
からのビーム光の光利用率を大幅に向上させ得る。また
、穴付ミラー50のミラー部53を凹面鏡としなので、
光学部品点数の減少に役立つ。また、各ネジ13a、2
0a。
The diffracted light incident as described above is reflected by the mirror portion 53, enters the mirror 102 of the reflector 100, is reflected, travels along the optical axis 72a, and is focused at the center of the light-receiving surface of the light-receiving element 70. Therefore, the light-receiving element 70 performs a light-detecting function by conducting the photodiode as the light-receiving element 70 receives light. In such a case, the beam light from the light emitting element 30 passes through the holed mirror 5.
Since there is almost no loss when passing through the center hole 52 of 0, when reflected by the mirror 50 with a hole, and when reflected by the mirror 102, the optical path between the light emitting element 30, the optical fiber 90, and the light receiving element 70 is The light emitting element 30 can be created by simply arranging the mirror 50 with a hole, the plano-convex lens 40, and the mirror 102.
It is possible to significantly improve the light utilization efficiency of the beam light from. In addition, since the mirror part 53 of the mirror with hole 50 is a concave mirror,
Helps reduce the number of optical parts. In addition, each screw 13a, 2
0a.

62.81.82等の螺合度合調整により各構成部品の
位置等の微調整が可能である。かかる場合、精密加工を
行なえば、これらネジに依らず、接着剤による固定でも
可能である。また、穴付ミラー50における所定鋭角θ
は60’〜80°程度にすることにより穴付ミラー50
の小型化が可能となるとともにミラー部53の球面収差
を抑制できる。
The position of each component can be finely adjusted by adjusting the degree of screwing such as 62, 81, 82, etc. In such a case, if precision machining is performed, it is possible to fix with adhesive instead of these screws. Further, the predetermined acute angle θ in the mirror with hole 50
By setting the angle to about 60' to 80°, the mirror with hole 50
It is possible to reduce the size of the mirror part 53, and to suppress spherical aberration of the mirror part 53.

なお、本発明の実施にあたっては、第2図に示すごとく
、平凸レンズ40に代えて、両凸レンズ40Aを採用し
、かつ穴付ミラー50の中央穴52を、光軸31aと同
軸方向に沿う中央穴52aとして形成して実施してもよ
い。
In carrying out the present invention, as shown in FIG. 2, a biconvex lens 40A is used instead of the plano-convex lens 40, and the center hole 52 of the mirror with hole 50 is located at the center along the same axis as the optical axis 31a. It may be formed and implemented as a hole 52a.

また、本発明の実施にあたっては、平凸レンズ40から
の光は、平行光に限らず、収束光であってもよい。
Further, in implementing the present invention, the light from the plano-convex lens 40 is not limited to parallel light, but may be convergent light.

また、本発明の実施にあたっては、第3図に示すごとく
、穴付ミラー50に代えて、板状ミラー部53aをもつ
穴付ミラー50A及び凸レンズ50Bを採用し、かつ受
光素子70とミラー102との間に凸レンズ100Aを
配置して実施してもよい。
Furthermore, in carrying out the present invention, as shown in FIG. 3, a holed mirror 50A having a plate-shaped mirror portion 53a and a convex lens 50B are used in place of the holed mirror 50, and the light receiving element 70 and the mirror 102 are connected to each other. A convex lens 100A may be placed between the two.

また、本発明の実施にあたっては、第1図の穴付ミラー
50に代えて、第4図に示すように配設した穴付ミラー
を50Cを採用して実施してもよい。穴付ミラー50C
は、第1図の穴付ミラー50とほぼ同様の構成をもつも
ので、この穴付ミラー50Cは、そのミラー部53cの
曲率中心C(ミラー部53の曲率中心に一致)を中心と
して、ミラー部53cの球心0を光軸31aよりも下方
に位置させるように回動した位置に維持されている。か
かる場合、ミラー部53cは、穴付ミラー50のミラー
部53と同一の曲率半径をもつ凹面鏡として形成されて
おり、このミラー部53cの球状表面はその光軸31a
との交点01を中心として、光ファイバ90の内端部9
0aから開口角θNA(開口数NAに対応)にて出射す
る回折光のすべてを対称的に受けるように必要最小限の
表面面積を有するようになっている。なお、穴付ミラー
50Cの中央穴52(穴付ミラー50の中央穴52と同
じ)は、球心0の交点0、からの下方へのずれに伴い下
方へ偏位している。
Further, in implementing the present invention, a mirror with holes 50C arranged as shown in FIG. 4 may be used instead of the mirror with holes 50 shown in FIG. 1. Mirror with hole 50C
has almost the same configuration as the mirror with holes 50 shown in FIG. It is maintained at a rotated position such that the spherical center 0 of the portion 53c is located below the optical axis 31a. In this case, the mirror portion 53c is formed as a concave mirror having the same radius of curvature as the mirror portion 53 of the mirror with a hole 50, and the spherical surface of the mirror portion 53c is aligned with the optical axis 31a.
The inner end 9 of the optical fiber 90 is centered at the intersection 01 with
It has the minimum necessary surface area so as to symmetrically receive all the diffracted light emitted from 0a at the aperture angle θNA (corresponding to the numerical aperture NA). Note that the center hole 52 of the holed mirror 50C (same as the center hole 52 of the holed mirror 50) is deviated downward as it deviates downward from the intersection 0 of the spherical center 0.

しかして、このように穴付ミラー50Cを配設すれば、
この穴付ミラー50Cが、その中央穴52を光軸31a
よりも下方へずらせた状態にて、光ファイバ90からの
全回折光を受ける。第5図に示すように、穴付ミラー5
0Cを球心0を光軸31aに一致させて配設した場合の
ように、穴付ミラー50Cの傾きのために光ファイバ9
0からの回折光の下方部分が穴付ミラー50Cに入射で
きなくなったり、或いは、光ファイバ90からの回折光
の中央部分く高強度をもつ)が穴付ミラー50Cの中央
穴52を通過してしまうというような不具合を招くこと
なく、穴付ミラー50Cの寸法形状を必要最小限に抑制
しつつそのミラー部53cでの反射光量の効率を最大限
に高め得る。
However, if the mirror with hole 50C is arranged like this,
This holed mirror 50C has its central hole 52 as the optical axis 31a.
All the diffracted light from the optical fiber 90 is received in a state where the optical fiber 90 is shifted downward. As shown in FIG.
As in the case where 0C is arranged with the spherical center 0 aligned with the optical axis 31a, the optical fiber 9
The lower part of the diffracted light from the optical fiber 90 cannot enter the mirror 50C with a hole, or the central part of the diffracted light from the optical fiber 90 (which has high intensity) passes through the center hole 52 of the mirror 50C with a hole. The efficiency of the amount of reflected light at the mirror portion 53c can be maximized while suppressing the dimensions and shape of the mirror with holes 50C to the necessary minimum without causing problems such as storage.

因みに、NA=0.57 (θNA”34.81°)と
し、交点01と光ファイバ90の開口端面91との間の
距離を6.5(mm)とし、穴付ミラー50Cの曲率半
径を5(mm)とし、かつ10.C0(第4図参照)を
4°としたとき、ミラー部53Cに対し交点0、を中心
として光ファイバ90からの回折光のすべてがミラー部
53cに入射することが確認できた。
Incidentally, NA = 0.57 (θNA" 34.81°), the distance between the intersection 01 and the opening end surface 91 of the optical fiber 90 is 6.5 (mm), and the radius of curvature of the mirror with hole 50C is 5. (mm) and 10.C0 (see Figure 4) is 4 degrees, all of the diffracted light from the optical fiber 90 enters the mirror portion 53c centered at the intersection 0 with respect to the mirror portion 53C. was confirmed.

また、本発明の実施にあたっては、第5図に示すような
穴付ミラー50Cを光ファイバ90の配置関係において
、第6図に示すように、穴付ミラー50Cをそのまま下
方へ平行移動させるとともに、発光素子30及び球面レ
ンズ40B (平凸レンズ40に相当)の光軸(光軸3
1aに一致)を=光ファイバ90の軸90bに対し例え
ば4°をなすように交叉させるように配置を変更しても
第4図に示す構成の場合と同様の効果を確保できる。
Further, in carrying out the present invention, the mirror 50C with a hole as shown in FIG. 5 is moved in parallel downward as shown in FIG. 6 in relation to the arrangement of the optical fiber 90, and at the same time, The optical axis (optical axis 3
Even if the arrangement is changed so that the optical fibers (coinciding with 1a) intersect at an angle of 4° with respect to the axis 90b of the optical fiber 90, the same effect as in the case of the configuration shown in FIG. 4 can be ensured.

なお、10、COは4″になる。Note that 10 and CO are 4''.

また、本発明の実施にあたっては、第3図における凸レ
ンズ40A、穴付ミラー50A、凸レンズ5OB、ミラ
ー102及び凸レンズ100Aのの光学系に代えて、第
7図に示すような光学系ブロック200を採用して実施
してもよい。かかる場合、光学系ブロック200は、光
学部材201と光学部材202とにより構成されており
、光学部材201はその接合面にて光学部材202の接
合面に接合されている。但し、両光学部材201゜20
2の各接合面中、光軸31aを含む部分には両光学部材
201,202の屈折率と同じ屈折率をもつ光学的透明
接着剤が膜状に塗布されており、また、前記各接合面の
残余の部分には、鏡面を形成する銀蒸着膜202aが形
成されている。また、各光学部材201,202は、例
えば、BK−7ガラスで形成されているので、光学部材
202において、臨界角δ(第7図参照) (波長入=
880nmでδ=41.5°)以上に平面202bを形
成すると、平面202bに銀蒸着膜等の反射膜を設ける
必要がない、なお、第7図において、光学部材201の
凸面201a、銀蒸着膜202a、光学部材202の凸
面202c、平面202b及び凸面202dが、第3図
における凸レンズ40Aの左側凸面、穴付ミラー50A
のミラー部53a、凸レンズ50Bの右側凸面、ミラー
102の反射面及び凸レンズ100Aの左側凸面にそれ
ぞれ相当する。
Furthermore, in implementing the present invention, an optical system block 200 as shown in FIG. 7 is adopted in place of the optical system of the convex lens 40A, mirror with hole 50A, convex lens 5OB, mirror 102, and convex lens 100A in FIG. It may also be carried out. In this case, the optical system block 200 is composed of an optical member 201 and an optical member 202, and the optical member 201 is joined to the joining surface of the optical member 202 at its joining surface. However, both optical members 201°20
A film of optically transparent adhesive having the same refractive index as that of both optical members 201 and 202 is coated on a portion of each bonding surface of 2 that includes the optical axis 31a. A silver vapor deposition film 202a forming a mirror surface is formed on the remaining portion. Moreover, since each optical member 201, 202 is formed of, for example, BK-7 glass, the critical angle δ (see FIG. 7) (wavelength input =
When the plane 202b is formed at an angle greater than δ=41.5° at 880 nm, there is no need to provide a reflective film such as a silver vapor deposited film on the plane 202b.In addition, in FIG. 202a, the convex surface 202c, the flat surface 202b, and the convex surface 202d of the optical member 202 are the left convex surface of the convex lens 40A in FIG. 3, and the mirror with hole 50A.
This corresponds to the mirror portion 53a, the right convex surface of the convex lens 50B, the reflective surface of the mirror 102, and the left convex surface of the convex lens 100A, respectively.

また、本発明の実施にあたっては、第7図における銀蒸
着膜202aに代えて、第8図に示すごとく、空気層を
有する切欠202Aを形成するようにしてもよい。かか
る場合、両光学部材201゜202の各接合面の中央部
間における透明接着剤による接着強度を補足すべく、各
切欠202Aの外縁部にスペーサ202Bを介装する。
Furthermore, in implementing the present invention, a notch 202A having an air layer may be formed as shown in FIG. 8 instead of the silver vapor deposited film 202a in FIG. 7. In such a case, a spacer 202B is interposed at the outer edge of each notch 202A in order to supplement the adhesive strength of the transparent adhesive between the centers of the joint surfaces of both optical members 201 and 202.

また、本発明の実施にあたっては、発光素子30として
、例えば半導体レーザを採用してもよく、また、受光素
子70として、例えばホトトランジスタを内蔵するもの
を採用してもよく、また、光ファイバ90に限らず、一
般に光導波路を光導波体として採用してもよい。
Further, in carrying out the present invention, a semiconductor laser, for example, may be used as the light emitting element 30, a device having a built-in phototransistor, for example, may be used as the light receiving element 70, and an optical fiber 90 may be used as the light receiving element 70. However, in general, an optical waveguide may be used as the optical waveguide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図は前記
実施例の第1の部分的変形例を示す要部断面図、第3図
は同第2の部分的変形例を示す要部断面図、第4図は同
第3の部分的変形例を示す要部断面図、第5図は第4図
の構成との比較のための説明図、第6図は前記実施例の
第4の部分的変形例を示す要部断面図、並びに第7図及
び第8図は前記実施例における各光学部材を単一の光学
系ブロックとした場合の要部断面をそれぞれ示す図であ
る。 符号の説明 30、、、発光素子、40.、、平凸レンズ、40A、
50B、100A、、、凸レンズ、50゜50A、50
C,、、穴付ミラー 52.52a。 中央穴、53.53a、53c、、、 Sニア−部、7
0.、、受光素子、90.、、光ファイバ102、、、
ミラー 200.、、光学系ブロック。 lυυA 第3図
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a sectional view of essential parts showing a first partial modification of the embodiment, and FIG. 3 is a sectional view showing a second partial modification of the embodiment. FIG. 4 is a cross-sectional view of the main part showing the third partial modification, FIG. 5 is an explanatory diagram for comparison with the configuration of FIG. 4, and FIG. 6 is the embodiment described above. A sectional view of a main part showing a fourth partial modification example, and FIGS. 7 and 8 are views showing a sectional view of a main part when each optical member in the above embodiment is made into a single optical system block. be. Explanation of symbols 30, . . . Light emitting element, 40. ,, plano-convex lens, 40A,
50B, 100A, , convex lens, 50° 50A, 50
C., mirror with hole 52.52a. Center hole, 53.53a, 53c, S near part, 7
0. , , light receiving element, 90. ,,optical fiber 102,,,
Mirror 200. ,,optics block. lυυA Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)光源と、受光素子とを備え、かつ前記光源から前
記光を被検出体に入射させ、この被検出体からの反射光
を放射状の光として出射する光導波体と、前記光源と前
記光導波体との間に配設されて前記光源から前記光導波
体への前記光を通過させる穴、及び前記光導波体からの
放射状の光を受けて反射するミラー部を設けてなる穴付
ミラーを有して、前記ミラー部からの反射光を収束させ
て前記受光素子に入射させる光学系とを具備するように
した光検出装置。
(1) An optical waveguide including a light source and a light receiving element, which allows the light from the light source to enter a detected object and emits reflected light from the detected object as radial light; A hole disposed between the light waveguide and the light waveguide to allow the light to pass from the light source to the light waveguide, and a mirror portion that receives and reflects the radial light from the light waveguide. A photodetecting device comprising: an optical system having a mirror to converge reflected light from the mirror section and to make the reflected light enter the light receiving element.
(2)前記穴付ミラーのミラー部が、その球心を前記光
導波体の出射軸からずれて位置させるとともに、同出射
軸に対し傾斜して位置するようにしたことを特徴とする
第1項に記載の光検出装置。
(2) A first feature in which the mirror portion of the mirror with a hole is positioned with its spherical center offset from the output axis of the optical waveguide and at an angle with respect to the output axis. The photodetection device described in section.
JP1023221A 1988-06-22 1989-02-01 Photodetector Expired - Lifetime JP2780300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1023221A JP2780300B2 (en) 1988-06-22 1989-02-01 Photodetector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-154058 1988-06-22
JP15405888 1988-06-22
JP1023221A JP2780300B2 (en) 1988-06-22 1989-02-01 Photodetector

Publications (2)

Publication Number Publication Date
JPH0284605A true JPH0284605A (en) 1990-03-26
JP2780300B2 JP2780300B2 (en) 1998-07-30

Family

ID=26360546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1023221A Expired - Lifetime JP2780300B2 (en) 1988-06-22 1989-02-01 Photodetector

Country Status (1)

Country Link
JP (1) JP2780300B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2673729A1 (en) * 1991-03-08 1992-09-11 Commissariat Energie Atomique DEVICE FOR INJECTING A LASER BEAM INTO AN OPTICAL FIBER AND FOR RECOVERING THE LIGHT FROM THIS FIBER.
EP0631163A1 (en) * 1993-05-17 1994-12-28 Siemens Aktiengesellschaft Bidirectional optical transceiver
JP2001188149A (en) * 1999-12-28 2001-07-10 Sharp Corp Bi-directional optical communicator and bi-directional optical communicating device
JP2008292641A (en) * 2007-05-23 2008-12-04 Hitachi Cable Ltd Optical communication module
JP2014206458A (en) * 2013-04-12 2014-10-30 パナソニック デバイスSunx株式会社 Reflection type photoelectric sensor
KR20160027747A (en) * 2014-09-02 2016-03-10 주식회사 엠피콤 Single Wavelength Bi-directional Optical Sub-Assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225907A (en) * 1988-03-07 1989-09-08 Oki Electric Ind Co Ltd Optical coupler module

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225907A (en) * 1988-03-07 1989-09-08 Oki Electric Ind Co Ltd Optical coupler module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2673729A1 (en) * 1991-03-08 1992-09-11 Commissariat Energie Atomique DEVICE FOR INJECTING A LASER BEAM INTO AN OPTICAL FIBER AND FOR RECOVERING THE LIGHT FROM THIS FIBER.
EP0631163A1 (en) * 1993-05-17 1994-12-28 Siemens Aktiengesellschaft Bidirectional optical transceiver
JP2001188149A (en) * 1999-12-28 2001-07-10 Sharp Corp Bi-directional optical communicator and bi-directional optical communicating device
JP2008292641A (en) * 2007-05-23 2008-12-04 Hitachi Cable Ltd Optical communication module
JP2014206458A (en) * 2013-04-12 2014-10-30 パナソニック デバイスSunx株式会社 Reflection type photoelectric sensor
KR20160027747A (en) * 2014-09-02 2016-03-10 주식회사 엠피콤 Single Wavelength Bi-directional Optical Sub-Assembly

Also Published As

Publication number Publication date
JP2780300B2 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
JPH0284605A (en) Photodetector
RU2176097C2 (en) Optical system forming beam ( variants ) and optical sensor
KR20010076355A (en) Optical element and optical pick-up
JPH04162222A (en) Optical pick-up head
US5768244A (en) Optical pickup system having an integrated twin focusing beam splitter
JPH07182666A (en) Light pickup system
JP2000298852A (en) Focus detecting device and optical head apparatus using the same
KR960025433A (en) Beam Orthogonal Prisms for Optical Disc Recording Devices
KR0134842B1 (en) Reproducing optical pick up
JP2707361B2 (en) Optical device for optical pickup
KR100443676B1 (en) Optical pickup using reflective focusing lens
JPS62197873U (en)
JPS6489042A (en) Focus error detector
US20020051420A1 (en) Optical pickup device and optical disk driver
KR19990030299U (en) Optical pickup
JPH07296410A (en) Optical head device on which laser beam is incident through optical fiber
JPS63164035A (en) Optical guide type optical pickup
JPH01292877A (en) Semiconductor laser and optical fiber coupling circuit
JP2002214519A (en) Focal detector and laser inspection and machining device
KR960042574A (en) Arrangement method and device of optical system for optical pickup
JPH0194540A (en) Optical pickup
JPS60177445A (en) Optical disk reproducing device
JP2004093861A (en) Optical coupling component
JPS573234A (en) Optical recorder and reproducer
JPH03249702A (en) Converging lens and optical coupling system for semiconductor laser