JPH0284526A - Production of high-strength carbon fiber - Google Patents

Production of high-strength carbon fiber

Info

Publication number
JPH0284526A
JPH0284526A JP20388988A JP20388988A JPH0284526A JP H0284526 A JPH0284526 A JP H0284526A JP 20388988 A JP20388988 A JP 20388988A JP 20388988 A JP20388988 A JP 20388988A JP H0284526 A JPH0284526 A JP H0284526A
Authority
JP
Japan
Prior art keywords
strength
carbon fiber
fiber
treatment
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20388988A
Other languages
Japanese (ja)
Inventor
Jiro Takada
二郎 高田
Keizo Hosoi
細井 啓造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP20388988A priority Critical patent/JPH0284526A/en
Publication of JPH0284526A publication Critical patent/JPH0284526A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To readily obtain carbon fiber of high-strength and high-adhesiveness with low cost and safety by anodizing carbon fiber obtained by baking acrylic fiber having specific lightness difference in an aqueous solution of electrolyte containing nitrate ion. CONSTITUTION:An acrylic fiber having >=60 lightness difference by iodine- adsorbing method (preferably containing 90-97wt.% acrylonitrile) is baked (preferably made to flame-resistant in oxidative atmosphere at 200-400 deg.C and carbonized in inert atmosphere at 1200-1400 deg.C) and resultant carbon fiber is anodized (preferably with 30-400coulomb/g at 30-80 deg.C for 0.1-3 min) in an aqueous solution containing nitrate ion (preferably 1-10 N concentration of nitric acid), then heat-treated (preferably in reducing atmosphere at 300-700 deg.C) to afford a carbon fiber of high-strength.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高強度炭素繊維の製造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing high-strength carbon fiber.

更に詳しくは高強度、かつ高接着性の物性を有する炭素
繊維強化複合材料を与える炭素繊維の製造法に関するも
のである。
More specifically, the present invention relates to a method for producing carbon fibers that provides a carbon fiber reinforced composite material having high strength and high adhesive properties.

(従来の技術) 従来、炭素繊維は、その優れた比強度及び比弾性率の為
、複合材料の強化材として使用され、その用途として、
航空宇宙分野を始めとし、自動車、スポーツ用品等広範
囲である。また、航空機、宇宙分野においては、炭素繊
維のより高強度化が要求されている。
(Prior Art) Conventionally, carbon fiber has been used as a reinforcing material for composite materials due to its excellent specific strength and specific modulus, and its uses include:
It covers a wide range of fields, including aerospace, automobiles, and sporting goods. Furthermore, in the aircraft and space fields, carbon fibers are required to have even higher strength.

かかる高強度化の要求に対し、種々の技術が提案されて
いるが、その大部分は炭素繊維の原料として主に供され
ているアクリル系繊維の製造法の改良、あるいは耐炎化
、炭素化工程の条件の最適化に係わるものであった。一
方、焼成後の炭素繊維の表面改質処理による強度改良方
法が特開昭54−59497号公報に開示されて以来、
この技術領域に関する処理方法が多数提案されており、
例えば特開昭61−12916号公報には、炭素繊維の
高強度化の処理方法として、硝酸を必須成分とする無機
酸水溶液中で電解処理して、その繊維表面の結晶性を損
うことなく、エツチングし、次いで不活性雰囲気中で加
熱して該表面を不活性化することによって炭素繊維の製
造工程で形成された繊維表面の傷がエツチング除去され
機械的強度が向上するとされている。しかしながら、こ
の処理方法により溝足し得る強度向上を達成する為には
、′4屏処理としては過酷な条件を採用せざるをえず、
工業的にはコスト面、作業安全性面において問題がある
Various technologies have been proposed to meet this demand for higher strength, but most of them involve improving the manufacturing method of acrylic fibers, which are mainly used as raw materials for carbon fibers, or improving flame resistance and carbonization processes. This was related to the optimization of the conditions. On the other hand, since a method for improving the strength of carbon fibers by surface modification treatment after firing was disclosed in JP-A-54-59497,
Many processing methods have been proposed in this technical area.
For example, JP-A-61-12916 describes a method for increasing the strength of carbon fibers by electrolytically treating them in an aqueous inorganic acid solution containing nitric acid as an essential component, without impairing the crystallinity of the fiber surface. It is said that by etching and then heating in an inert atmosphere to inactivate the surface, scratches on the fiber surface formed during the carbon fiber manufacturing process are etched away and the mechanical strength is improved. However, in order to achieve the strength improvement that can be achieved with this treatment method, harsh conditions must be adopted for the 4-fold treatment.
Industrially, there are problems in terms of cost and work safety.

さらに、特開昭63−85168号公報において、ヨー
ド吸着法により求められる明度差(△L)が30以下で
、いわゆる表面緻密性の高いアクリル系繊維を焼成して
得られる炭素#!維を上述の処理に用いると強度は向上
し易すいことが提示されている。
Furthermore, in JP-A No. 63-85168, carbon #! is obtained by firing acrylic fibers with a lightness difference (ΔL) of 30 or less determined by an iodine adsorption method and a high surface density! It has been proposed that when fibers are used in the above-mentioned treatment, the strength can be easily improved.

ここでは△Lが30以上のアクリル系繊維を焼成して得
られる炭素線維には、破断の原因となる欠陥が多量に形
成され高強度の炭素繊維を得ることが困難であると共K
、又該炭素繊維の電気化学的酸化処理においては、かか
る表面欠陥の存在により繊維の内部構造まで損傷されて
しまうために強度の向上幅が小さくかつ−たり、ある(
・は、むしろ強度は低下するとされている。
Here, the carbon fibers obtained by firing acrylic fibers with ΔL of 30 or more have a large number of defects that can cause breakage, making it difficult to obtain high-strength carbon fibers.
Furthermore, in the electrochemical oxidation treatment of carbon fibers, the presence of such surface defects damages the internal structure of the fibers, so the improvement in strength is small and sometimes (
・It is said that the strength actually decreases.

(発明が解決しようとする問題点) 本発明の目的は、かかる従来技術の問題点を解決するこ
と、すなわち上述の電気化学的酸化処理罠より得られる
ストランド強度の一層の向上と、従来提示されている処
理条件よりも、電解処理及び加熱処理において、低温、
短時間等のより緩慢な処理条件で容易に達成せしめ、工
業的にコスト面、安全性面から有利に実施できる製造法
を提供することにある。
(Problems to be Solved by the Invention) It is an object of the present invention to solve the problems of the prior art, that is, to further improve the strand strength obtained by the above-mentioned electrochemical oxidation trap, and to In electrolytic treatment and heat treatment, lower temperature,
It is an object of the present invention to provide a manufacturing method that can be easily achieved under slower processing conditions such as a short time, and can be implemented industrially advantageously in terms of cost and safety.

(問題点を解決するための手段) 本発明は、ヨード吸着法により測定される明度差(△L
)が60以上であるアクリル系繊維を、硝酸イオンを含
む電解質水溶液中で陽極酸化した後、加熱処理すること
を特徴とする高強度炭素繊維の製造法である。
(Means for solving the problems) The present invention provides a lightness difference (△L) measured by an iodine adsorption method.
) is 60 or more is a method for producing high-strength carbon fibers, which is characterized by anodizing acrylic fibers in an electrolyte aqueous solution containing nitrate ions and then heat-treating them.

ヨード吸着法による明度差(ΔL)は次の方法で求めた
ものである。
The difference in brightness (ΔL) determined by the iodine adsorption method was determined by the following method.

アクリル系繊維的IJ9を綿状にほぐし、ソックスレー
抽出器を用いてHEK(メチルエチルケトン)を溶媒と
して油脂分を抽出除去した後、70℃で約2時間乾燥す
る。その後、処理された繊維0.5gを精秤し、2oo
mtの共栓付三角フラスコに入れ、これにヨード溶液(
I、:sl、9.2,4−ジクロロフェノール:10.
S+、酢酸:90g、およびヨウ化カリウム:100.
li+を秤量し、11のメスフラスコに移して、水で溶
かして定容とする)100Mを加えて、6010.5℃
で50分間撮とうしながら処理を行う。試料を30分間
水洗した後、遠心脱水を行ない、70℃で4時間乾燥す
る。
The acrylic fiber IJ9 is loosened into a cotton-like shape, and the oil and fat components are extracted and removed using a Soxhlet extractor using HEK (methyl ethyl ketone) as a solvent, and then dried at 70° C. for about 2 hours. After that, 0.5 g of the treated fiber was accurately weighed, and 2 oo
Pour into a mt Erlenmeyer flask with a stopper, and add iodine solution (
I,:sl,9.2,4-dichlorophenol:10.
S+, acetic acid: 90g, and potassium iodide: 100.
Weigh li+, transfer it to volumetric flask No. 11, dissolve it with water to make a constant volume), add 100M, and boil at 6010.5°C.
Processing is performed while taking pictures for 50 minutes. After washing the sample with water for 30 minutes, it is centrifugally dehydrated and dried at 70°C for 4 hours.

その後、試料を開繊した後、色差計で明度(L値)を測
定する(Ll)。一方処理を施さない試料を開繊し、同
様に明度(L値)を測定する( LO>。しかる後、L
、−L、より明度差ΔLを求める。なお、L、 、 L
oはミノルタ製、色彩色差計CR−100を用いて測定
した。
Thereafter, after opening the sample, the lightness (L value) is measured using a color difference meter (Ll). On the other hand, open the untreated sample and measure the brightness (L value) in the same way (LO>. After that, L
, -L, and find the brightness difference ΔL. In addition, L, , L
o was measured using a color difference meter CR-100 manufactured by Minolta.

次に樹脂含浸ストランド強度は、JIS  fζ−76
06に規定されている試験法に従って測定した。
Next, the resin-impregnated strand strength is determined by JIS fζ-76.
It was measured according to the test method specified in 06.

測定に供する樹脂処方はビスフェノールA型エポキシ樹
脂”エピコート”828(油化シェル社製);ioo重
量部、無水メチルナジク酸;9゜N置部、ベンジルジメ
チルアミン; 2− s N ’it ?J5 Mよび
メチルエチルケトン;21ii部よりなる。
The resin formulation used for the measurement was bisphenol A epoxy resin "Epikoat" 828 (manufactured by Yuka Shell Co., Ltd.); ioo parts by weight, methyl nadic anhydride; 9°N parts, benzyldimethylamine; 2-s N'it? J5 Consisting of M and 21ii parts of methyl ethyl ketone.

また樹脂を含浸した炭素繊維ストランドの硬化は150
℃で30分間加熱することによって行なう。
Furthermore, the curing of carbon fiber strands impregnated with resin is 150
This is done by heating for 30 minutes at °C.

本発明でいうアクリル系繊維は、明度差(△L)が、6
0以上であることが重要である。かかるアクリル系繊維
を焼成して得られる炭素繊維に、上述の電気化学的酸化
処理及び加熱処理を施すと、従来提案されている処理条
件に比べ、電解処理では低濃度電解質、低温度、再加熱
処理においては、低温度短時間等のより緩慢な処理条件
において、従来提示されている強度向上幅と同程度の向
上幅を容易に得ることができる。本発明の方法によれば
、上述の比較的緩慢な条件で実施可能である為、工業的
にコスト面及び作業安全性面において有利である。
The acrylic fiber referred to in the present invention has a lightness difference (△L) of 6
It is important that the value is 0 or more. When carbon fibers obtained by firing such acrylic fibers are subjected to the above-mentioned electrochemical oxidation treatment and heat treatment, the electrolytic treatment requires a lower concentration of electrolyte, lower temperature, and reheating, compared to the treatment conditions previously proposed. In the treatment, under slower treatment conditions such as low temperature and short time, it is possible to easily obtain an improvement in strength comparable to that conventionally proposed. According to the method of the present invention, it can be carried out under the above-mentioned relatively mild conditions, so it is industrially advantageous in terms of cost and work safety.

明度差(ΔL)が60以上であるアクリル系繊維より得
られる炭素fR維は、表面に脆弱な層を有している事が
特徴であり、かかる炭素繊維を電気化学的酸化処理する
と表面脆弱層と共に表面欠陥が除去され、その結果スト
ランド強度が向上するものであるが、この表面脆弱層は
、その内部構造カ高い結晶性を有しているのに対し、ア
モルファス構造を形成している為、より緩慢な処理条件
で容易にエンチング除去が可能であり、また、緩慢な処
理条件の為、繊維内部の結晶構造に新たな欠陥を生成す
る様なダメージを与えろことなく、効率的に強度向上効
果を得ろことが出来ろものと考えられる。
Carbon fR fibers obtained from acrylic fibers with a lightness difference (ΔL) of 60 or more are characterized by having a fragile layer on the surface, and when such carbon fibers are subjected to electrochemical oxidation treatment, the surface fragile layer is formed. At the same time, surface defects are removed, and as a result, the strand strength is improved. However, while the internal structure of this fragile surface layer has high crystallinity, it forms an amorphous structure. Etching can be easily removed under slower processing conditions, and because of the slower processing conditions, it effectively improves strength without causing damage such as creating new defects in the crystal structure inside the fiber. It is considered possible to obtain this.

一方、明度差(ΔL)が60以下のアクリル系繊維より
得られる炭素繊維は、表面の結晶性も高い為、上述の処
理に際しては、より過酷な条件を必要とするものである
On the other hand, carbon fibers obtained from acrylic fibers with a lightness difference (ΔL) of 60 or less have high surface crystallinity, and therefore require harsher conditions during the above-mentioned treatment.

以下に本発明で用いる明度差(△L)が60以上である
アクリル系繊維の製造法について説明する。
A method for producing acrylic fibers having a lightness difference (ΔL) of 60 or more used in the present invention will be described below.

アクリル系繊維は主成分のアクリロニトリルの含有量が
90〜97重量%、好ましくは92〜96、i量%の範
囲であることが必要であり、共重合不飽和単量体成分と
しては、アクリル酸、メタクリル酸、アクリル酸メチル
、メタクリル酸メチル、酢酸ビニル、イタコン酸等のビ
ニル系不飽和化合物を用いることができる。
The content of acrylonitrile as the main component of the acrylic fiber must be in the range of 90 to 97% by weight, preferably 92 to 96% by weight, and the copolymerized unsaturated monomer component must include acrylic acid Vinyl unsaturated compounds such as , methacrylic acid, methyl acrylate, methyl methacrylate, vinyl acetate, and itaconic acid can be used.

このアクリロニトリル共重合体は、一般に常用されるに
液、懸濁、塊状重合法により得ろことが出来る。さらに
紡糸に際しては、ジメチルスルホキサイド、ジメチルホ
ルムアばド、硝酸、ロダン塩水溶液、塩化亜鉛水溶液を
溶媒とし、湿式、乾式あるいは乾・湿式法によりアクリ
ル系繊維を得ることができる。ここで紡糸法に硝酸水溶
液を溶媒とする湿式あるいは乾・湿式法を用いる場合、
アクリロニトリル重合体は、アクリロニトリル含有量を
上述の範囲に設定し、共重合成分の一つにアクリル酸メ
チルを含有することにより、紡糸延伸性を向上させ得る
ものであり、かかる高い延伸余裕率の為単糸切れ、いわ
ゆる毛羽の発生を殆んど伴なうことなくより高配向を付
与する事が可能となり、その結果、該繊維を焼成すると
高い強度を有する炭素繊維が得られるのである。
This acrylonitrile copolymer can be obtained by commonly used liquid, suspension, or bulk polymerization methods. Furthermore, during spinning, acrylic fibers can be obtained by wet, dry, or dry/wet methods using dimethyl sulfoxide, dimethyl formamide, nitric acid, a rhodan salt aqueous solution, or a zinc chloride aqueous solution as a solvent. When using a wet spinning method or a dry/wet spinning method using an aqueous nitric acid solution as a solvent,
The acrylonitrile polymer can improve its spinning drawability by setting the acrylonitrile content within the above-mentioned range and containing methyl acrylate as one of the copolymerization components. It is possible to impart a higher degree of orientation with almost no occurrence of single filament breakage or so-called fluff, and as a result, when the fiber is fired, a carbon fiber with high strength can be obtained.

次に該アクリル系繊維の焼成方法及び得られた炭素繊維
表面改質処理方法について説明する。上記の方法で得ら
れたアクリル系繊維を酸化性雰囲気中で200〜400
’Cの温度領域で耐炎化し、しかる後不活性雰囲気中で
最高処理温度1200〜1400℃の温度で炭素化する
ことにより炭素繊維を得る。
Next, a method for firing the acrylic fiber and a method for surface modification of the obtained carbon fiber will be explained. The acrylic fiber obtained by the above method was heated to 200 to 400
Carbon fibers are obtained by flame-proofing in a temperature range of 'C and then carbonizing in an inert atmosphere at a maximum treatment temperature of 1200 to 1400C.

かかる炭素繊維を、硝酸イオンを含む電解質水解液中で
陽極酸化する。好ましい処理条件としては、硝酸濃度が
1〜10規定、電解温度は30〜80℃、電解処理電気
量は30〜400りa−ン/I、処理時間は0.1〜3
分である。
Such carbon fibers are anodized in an electrolyte aqueous solution containing nitrate ions. Preferred treatment conditions include a nitric acid concentration of 1 to 10 normal, an electrolysis temperature of 30 to 80°C, an electrolytic treatment amount of electricity of 30 to 400 rn/I, and a treatment time of 0.1 to 3.
It's a minute.

上記電解酸化後、水洗、乾燥を施した後、不活性もしく
は還元性雰囲気中、300〜700℃の温度で加熱処理
する。なお温度が500’C以下の場合には雰囲気ガス
として酸化性ガス、例えば公党を使用することも可能で
ある。
After the above-mentioned electrolytic oxidation, the product is washed with water, dried, and then heat-treated at a temperature of 300 to 700°C in an inert or reducing atmosphere. In addition, when the temperature is 500'C or less, it is also possible to use an oxidizing gas, for example, Kotoba, as the atmospheric gas.

(実施例) 以下、実施例により本発明をさらに具体的に説明する。(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 アクリロニトリル(AN)94.0重世%、アクリル酸
メチル(AM)4.5重量%、メタクリル酸(MAA)
1.5重量%からなるアクリロニトリル系共重合体を6
9%硝能に溶解し、重合体濃度が13.2%の紡糸原液
を調整し、該紡糸原液を紡糸口金から33.0重量%、
−3℃の硝酸水溶液中に吐出した後、40′M量%、3
7.5°Cの硝酸含有延伸浴中で延伸及び水洗を施し、
さらに延伸浴に導き、全体で14倍の延伸を施した。し
かる後、乾燥しアクリル系繊維を得た。
Example 1 Acrylonitrile (AN) 94.0% by weight, methyl acrylate (AM) 4.5% by weight, methacrylic acid (MAA)
6. Acrylonitrile copolymer consisting of 1.5% by weight
A spinning stock solution having a polymer concentration of 13.2% was prepared by dissolving the solution in 9% nitric acid, and the spinning stock solution was mixed with 33.0% by weight from a spinneret.
After discharging into a nitric acid aqueous solution at -3℃, 40'M amount%, 3
Stretched in a nitric acid-containing stretching bath at 7.5°C and washed with water,
Furthermore, it was introduced into a stretching bath and stretched 14 times in total. Thereafter, it was dried to obtain acrylic fibers.

ここで得られた繊維の単糸繊度は1.26デニルであり
、ヨード吸着法により求ぬた明度差(ΔL)は79であ
った。該アクリル系繊維を230〜260℃の空気中で
延伸を施しなから耐炎化処理し、しかる後に最高処理温
度が1400℃の窒素雰囲気中で炭素化し、炭素繊維を
得た。このようにして得られた炭Xu&維の強度は43
0 kg/mfであった。
The single fiber fineness of the fiber obtained here was 1.26 denyl, and the difference in lightness (ΔL) determined by the iodine adsorption method was 79. The acrylic fibers were stretched in air at 230 to 260°C and then flame-resistant treated, and then carbonized in a nitrogen atmosphere with a maximum treatment temperature of 1400°C to obtain carbon fibers. The strength of the charcoal Xu & fiber obtained in this way is 43
It was 0 kg/mf.

かかる炭素繊維を80℃、濃度5規定の硝酸水溶液中に
、糸速度o、3s m7分で走行させ1アンペアの電流
を通電し電解酸化を施した。ここで処理浴中の浸漬長は
0.5m、処理時間は1.4分であり、炭素繊維1y当
りの電気量は50クーロンであった。
The carbon fibers were run at 80° C. in a nitric acid aqueous solution with a concentration of 5N at a yarn speed of o, 3 s m for 7 minutes, and a current of 1 ampere was applied to electrolytically oxidize the fibers. Here, the immersion length in the treatment bath was 0.5 m, the treatment time was 1.4 minutes, and the amount of electricity per y of carbon fiber was 50 coulombs.

上述の電気化学的酸化処理を施した炭素IR維を水洗し
、150℃の空気中で乾燥した後、500℃の窒素雰囲
気中で約15秒間加熱処理した。この処理忙より得られ
た炭素繊維の強度は、500kg乃iであった。
The carbon IR fibers subjected to the electrochemical oxidation treatment described above were washed with water, dried in air at 150°C, and then heat-treated in a nitrogen atmosphere at 500°C for about 15 seconds. The strength of the carbon fiber obtained through this treatment was 500 kg.

実施例2〜10 実施例1で用いたと同じ炭素繊維を原料として表1に記
載する条件にて電気化学的酸化処理を施した。この様に
して得られた炭素繊維の強度を表1に示す。
Examples 2 to 10 The same carbon fibers used in Example 1 were used as raw materials and subjected to electrochemical oxidation treatment under the conditions listed in Table 1. Table 1 shows the strength of the carbon fibers obtained in this way.

比較例1.2 アクリロニトリル共重合体の共重合組成が、アクリロニ
トリル97.5重量%、アクリル酸メチル1.5重針%
、イタコンF1k(Ita) 1重量%である他は、実
施例1と同様の方法で得られたアクリル系繊維から製造
した炭素繊維に表1に記載する条件にて電気化学的酸化
処理を施した。この様にして得られた炭素繊維の強度を
表1に示す。
Comparative Example 1.2 The copolymerization composition of the acrylonitrile copolymer was 97.5% by weight of acrylonitrile and 1.5% by weight of methyl acrylate.
, Itacon F1k (Ita) 1% by weight. Carbon fibers produced from acrylic fibers obtained in the same manner as in Example 1 were subjected to electrochemical oxidation treatment under the conditions listed in Table 1. . Table 1 shows the strength of the carbon fibers obtained in this way.

(発明の効果) 本発明の製造法は、明度差60以上である表面層の緻密
性の低いアクリル系繊維を用いることにより緩慢な1!
解処理及び加熱処理条件において満足する炭素繊維の強
度を得ることが可能であり、工業的にコスト面、安全性
面において有利に実施出来る。
(Effects of the Invention) The manufacturing method of the present invention uses acrylic fibers with a low density surface layer that has a brightness difference of 60 or more, thereby producing a slow 1!
It is possible to obtain carbon fiber strength that satisfies the conditions of decomposition treatment and heat treatment, and it can be carried out industrially advantageously in terms of cost and safety.

特許出臥 旭化成工業株式会社Patent issued: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] ヨード吸着法により測定される明度差(ΔL)が60以
上であるアクリル系繊維を焼成して得られる炭素繊維を
、硝酸イオンを含む電解質水溶液中で陽極酸化した後、
加熱処理することを特徴とする高強度炭素繊維の製造法
Carbon fibers obtained by firing acrylic fibers with a brightness difference (ΔL) of 60 or more measured by an iodine adsorption method are anodized in an electrolyte aqueous solution containing nitrate ions, and then
A method for producing high-strength carbon fiber characterized by heat treatment
JP20388988A 1988-08-18 1988-08-18 Production of high-strength carbon fiber Pending JPH0284526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20388988A JPH0284526A (en) 1988-08-18 1988-08-18 Production of high-strength carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20388988A JPH0284526A (en) 1988-08-18 1988-08-18 Production of high-strength carbon fiber

Publications (1)

Publication Number Publication Date
JPH0284526A true JPH0284526A (en) 1990-03-26

Family

ID=16481397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20388988A Pending JPH0284526A (en) 1988-08-18 1988-08-18 Production of high-strength carbon fiber

Country Status (1)

Country Link
JP (1) JPH0284526A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001057849A1 (en) * 2000-01-31 2001-08-09 Aiwa Co., Ltd. Information signal processing device, information signal processing method, audio device and receiver
WO2003008689A1 (en) * 2001-07-18 2003-01-30 Eos S.R.L. Flameproof yarns and fabrics, their preparation and use for the manufacturing of flameproof, heat resistant, and insulating products
JP2007224459A (en) * 2006-02-24 2007-09-06 Toray Ind Inc Method for producing surface-oxidized carbon fiber bundle
US8015648B2 (en) 2002-12-18 2011-09-13 Koninklijke Philips Electronics N.V. System for removably joining a driven member to a driven member with workpiece

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001057849A1 (en) * 2000-01-31 2001-08-09 Aiwa Co., Ltd. Information signal processing device, information signal processing method, audio device and receiver
WO2003008689A1 (en) * 2001-07-18 2003-01-30 Eos S.R.L. Flameproof yarns and fabrics, their preparation and use for the manufacturing of flameproof, heat resistant, and insulating products
US8015648B2 (en) 2002-12-18 2011-09-13 Koninklijke Philips Electronics N.V. System for removably joining a driven member to a driven member with workpiece
JP2007224459A (en) * 2006-02-24 2007-09-06 Toray Ind Inc Method for producing surface-oxidized carbon fiber bundle

Similar Documents

Publication Publication Date Title
EP1016740B1 (en) Acrylonitrile-based precursor fiber for carbon fiber, process for producing the same, and its use for forming a carbon fiber
US4349523A (en) Process for producing carbon fiber of improved oxidation resistance
JP2003073932A (en) Carbon fiber
JPH0284526A (en) Production of high-strength carbon fiber
JP2011213773A (en) Polyacrylonitrile-based polymer and carbon fiber
CN102953151A (en) Preparation method for polyacrylonitrile-based carbon fiber
US4197279A (en) Carbon fiber having improved thermal oxidation resistance and process for producing same
JP4953410B2 (en) Carbon fiber and method for producing the same
JPH01306619A (en) High-strength and high elastic modulus carbon fiber
JPH11124744A (en) Production of carbon fiber precursor fiber and carbon fiber
JP4870511B2 (en) High strength carbon fiber
JP2002317335A (en) Carbon fiber and method for producing the same
CA1083311A (en) Preparation of carbon fibres
CN102953154B (en) A kind of manufacture method of polyacrylonitrile-based carbon fibre
JPH0376869A (en) Method for treating surface of carbon fiber in vapor phase
JPH0931758A (en) Carbon fiber
KR870000534B1 (en) Carbon fiber and it's making method
KR0123937B1 (en) Manufacturing process of precursive fiber for carbon fiber
JPS6112916A (en) Super high-strength carbon fiber and its production
JPS6257723B2 (en)
KR0123942B1 (en) Manufacturing process of carbon fiber
JPH0415288B2 (en)
CN102953145B (en) The method preparing polyacrylonitrile base carbon fiber precursors
WO2021187160A1 (en) Carbon fiber, manufacturing method therefor, and carbon fiber composite material
CN102953155B (en) Polyacrylonitrile-based carbon fibre preparation method