JPH0284002A - Travel controller for electric rolling stock - Google Patents

Travel controller for electric rolling stock

Info

Publication number
JPH0284002A
JPH0284002A JP63232855A JP23285588A JPH0284002A JP H0284002 A JPH0284002 A JP H0284002A JP 63232855 A JP63232855 A JP 63232855A JP 23285588 A JP23285588 A JP 23285588A JP H0284002 A JPH0284002 A JP H0284002A
Authority
JP
Japan
Prior art keywords
circuit
plugging
control circuit
time function
chopper control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63232855A
Other languages
Japanese (ja)
Inventor
Takehiro Miyata
武弘 宮田
Kensho Makino
憲昭 牧野
Ikuya Toya
郁也 刀谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yusoki Co Ltd
Original Assignee
Nippon Yusoki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yusoki Co Ltd filed Critical Nippon Yusoki Co Ltd
Priority to JP63232855A priority Critical patent/JPH0284002A/en
Publication of JPH0284002A publication Critical patent/JPH0284002A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PURPOSE:To prevent slip of driving wheel at start by providing a plugging detecting means in a chopper control circuit and separating a time function circuit from the chopper control circuit upon detection of plugging. CONSTITUTION:Plugging operation carried out under a condition where a switch 4 is turned ON and a chopper control circuit 5 is connected with a time function circuit 2 and a multiplier 12 is detected through a plugging detector 7 which produces a plugging detection signal for switching an analog switch 3. Consequently, control current corresponding to the operating amount of an accelerator lever 1 does not pass through the time function circuit 2 but through the multiplier 12, during plugging operation, and the control current is multiplied by 0.7 in this case then it is fed to the chopper control circuit 5. Consequently, proper plugging brake can be achieved with about 70% control current when compared with conventional plugging operation. By such arrangement, slip of driving wheel can be prevented at start.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷蔵、冷凍倉庫と・いったいわゆる摩擦係数
が低い路面環境において使用される電気車の走行制御装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a running control device for an electric vehicle used in a road environment with a so-called low coefficient of friction, such as in a refrigerated or frozen warehouse.

(従来の技術) 従来の技術にあっては、電気車(例えばバッテリーフォ
ークリフト)が冷蔵、冷凍倉庫といった路面の摩擦係数
が低い場所を走行する際には、第6図に示すように走行
操作装置を最大に操作した場合、ころがり抵抗τ、・が
通常の路面のころがり抵抗τ、に比べて非常に小さいた
め、電動機発生トルクτ、と路面のころがり抵抗τ、・
との差が極めて大きくなるため起動時において駆動輪が
スリップするという現象が起こり、この現象に対処する
ため下記(1)、(2)に示す方法が用いられていた。
(Prior art) In the conventional technology, when an electric vehicle (for example, a battery forklift truck) travels in a place where the friction coefficient of the road surface is low, such as a refrigerated or frozen warehouse, the travel operation device is operated as shown in Fig. 6. When operated to the maximum, the rolling resistance τ, · is very small compared to the rolling resistance τ of the normal road surface, so the electric motor generated torque τ, and the rolling resistance τ, ·
As the difference between the two becomes extremely large, a phenomenon occurs in which the drive wheels slip at the time of startup.To deal with this phenomenon, the following methods (1) and (2) have been used.

(11走行操作装置(例えばアクセルレバ−)をゆっく
りと操作し、駆動輪の起動時における駆動トルクを低く
押えていた。
(11) The travel control device (e.g. accelerator lever) was operated slowly to keep the drive torque low when starting the drive wheels.

(2)駆動輪を制御する電流の制限値を低(設定し、最
大駆動トルクを低く押えていた。
(2) The limit value of the current that controls the drive wheels was set low, and the maximum drive torque was kept low.

(発明が解決しようとする諜H) 上述した従来の技術(11,(21においてはそれぞれ
次のような課題があった。
(Intelligence to be Solved by the Invention) The above-mentioned conventional techniques (11 and (21) each had the following problems.

(1)においては電気車を起動させるごとに、走行操作
装置をゆっくり操作するのが非常に煩わしく、ついうっ
かりして走行操作装置を勢いよく操作してしまうことが
多々あり、駆動輪がスリップを発生させ電気車の起動を
妨げていたので、電気車が荷役作業車である場合には作
業時間を無駄に消費してしまうといった課題を有してい
た。
In (1), it is extremely troublesome to operate the drive control device slowly every time the electric vehicle is started, and it is common to accidentally operate the drive control device forcefully, causing the drive wheels to slip. This has caused a problem in that working time is wasted when the electric vehicle is a cargo handling vehicle, since this prevents the electric vehicle from starting up.

(2)においては摩擦係数の低い路面においては効果的
で、起動時における駆動輪のスリップを防止することが
可能となるが、−船路面すなわち摩擦係数が通常の値を
示す路面を走行する場合は、最大駆動トルクが低く押え
られているため、起動時の加速に明らかなトルク不足で
あり加速特性が低下するという課題があった。
In (2), it is effective on road surfaces with a low coefficient of friction and can prevent the drive wheels from slipping during startup, but - when driving on a ship road surface, a road surface with a normal coefficient of friction. Since the maximum drive torque is kept low, there is a problem that there is a clear lack of torque for acceleration at startup and the acceleration characteristics deteriorate.

(課題を解決するための手段) 本発明の電気車の走行制御装置(以下本発明という。)
においては、上述の!!!!題を解決するために走行操
作装置とチョッパ制御回路との間に、走行操作装置の起
動からの時間をカウントする手段と、上記走行操作装置
の操作量に基づいた制御電流値に時間の経過に伴なって
変化する時間関数F(0を乗ずる手段とを具えた時間関
数回路を設け、上記チョッパ制御回路と時間関数回路と
を手動スイッチにより切り烈し可能に接続すると共に、
上記手動スイッチの操作により任意の乗算値を乗ずる乗
算回路を設けた構成とし、さらに上記チョッパ制御回路
にプラギングを検出する手段を設け、プラギング検出時
には時間関数回路をチョッパ制御回路とを切り離す手段
を設けた構成とした。
(Means for Solving the Problems) Electric vehicle running control device of the present invention (hereinafter referred to as the present invention)
In the above! ! ! ! In order to solve this problem, a means is provided between the travel operation device and the chopper control circuit to count the time since the start of the travel operation device, and a control current value is set based on the operation amount of the travel operation device as time passes. A time function circuit including a time function F (means for multiplying by 0) that changes accordingly is provided, and the chopper control circuit and the time function circuit are connected to each other by a manual switch, and
The configuration includes a multiplication circuit that multiplies an arbitrary multiplication value by operating the manual switch, and further includes means for detecting plugging in the chopper control circuit, and means for separating the time function circuit from the chopper control circuit when plugging is detected. The configuration was as follows.

(作    用) 本発明の詳細な説明すると、まず切換スイッチをONに
すると、アナログスイッチの32がONとなりSlがO
FFになるように構成されており、すなわち時間関数回
路が乗算回路を介してチョッパ制御回路と接続される。
(Function) To explain the present invention in detail, first, when the changeover switch is turned ON, the analog switch 32 is turned ON and Sl is turned OFF.
It is configured to be an FF, that is, the time function circuit is connected to the chopper control circuit via the multiplication circuit.

この状態で電気車を起動させるために走行操作装置を前
進もしくは後進へ操作したとき、その操作量に基づいた
制御電流値が決まり、上記制御電流値は時間の経過に伴
なって変化する時間関数F (t)を乗された後、乗算
回路によって乗算値を乗ぜられる。この乗算回路は上記
切換スイッチの操作と連動して作動し、切換スイッチO
Nで乗算値0.7を選び、切換スイッチOFFでは乗算
値1.0を選んで制御電流値に乗ずるように設定されて
いる。任意の乗算値を乗ぜられた制it流値は、チョッ
パ制御回路を通り駆動輪を駆動させる電動機を制御する
。また、摩擦係数が通常値を示す路面〜すなわち通常の
路面を走行する際は、切換スイッチをOFFすることに
より時間関数回路とチョッパ制御回路とを切り離すこと
となり、上記切換スイッチのOFFに連動して作動する
乗算回路は乗算値1.0を選び制御電流値に乗ずる。乗
算値1.0を乗ぜられた制御電流値は、チヨ・ツバ制御
回路へと流れ通常時の起動加速走行が可能となる。
When the travel control device is operated to move forward or backward in order to start the electric vehicle in this state, the control current value is determined based on the amount of operation, and the control current value is a time function that changes with the passage of time. After being multiplied by F (t), it is multiplied by a multiplication value by a multiplication circuit. This multiplier circuit operates in conjunction with the operation of the changeover switch, and
The setting is such that a multiplication value of 0.7 is selected with N, and a multiplication value of 1.0 is selected with the changeover switch OFF to be multiplied by the control current value. The control flow value multiplied by an arbitrary multiplier passes through a chopper control circuit to control the electric motor that drives the drive wheels. Furthermore, when driving on a road surface where the coefficient of friction is a normal value, i.e., a normal road surface, the time function circuit and the chopper control circuit are separated by turning off the changeover switch. The activated multiplier circuit selects a multiplier value of 1.0 and multiplies the control current value. The control current value multiplied by the multiplication value of 1.0 flows to the tip/tsuba control circuit and enables normal start-up acceleration running.

さらに、切換スイッチがONの状態で上記チョッパ制御
回路と時間関数回路が接続されている場合において、プ
ラギング操作(前進から後進、もしくは後進から前進へ
瞬時に走行操作装置を操作することにより制動効果を得
ることをいう。)を行なった際には、チョッパ制御回路
内に設けられたプラギングを検出する手段がプラギング
動作を検知し、時間関数回路とチョッパ制御回路とを切
り離す手段へ信号が出力され時間関数回路とチョッパ制
御回路とは切り則されて、走行操作装置の操作量に基づ
いた制御電流値は時間関数回路を通らずに乗算回路を通
ってチョッパ制御回路へと送られる。
Furthermore, when the chopper control circuit and the time function circuit are connected with the changeover switch in the ON state, the braking effect can be increased by plugging operation (instantly operating the travel control device from forward to reverse or from reverse to forward). ), the means for detecting plugging provided in the chopper control circuit detects the plugging operation, and a signal is output to the means for separating the time function circuit and the chopper control circuit. The function circuit and the chopper control circuit are separated, and the control current value based on the operation amount of the traveling operation device is sent to the chopper control circuit through the multiplication circuit without passing through the time function circuit.

(実  施  例) 次に本発明の実施例を図面に従って以下説明する。第1
図は走行操作装置としてアクセルレバ−1の操作量に基
づいて、電気車に搭載した電動機11を回転制御するチ
ョッパ制御回路5と、本発明による時間関数回路2、ア
ナログスイッチ3、切換スイッチ4、プラギング検出器
7及び乗算回路12を備えた制御回路の電気ブロック回
路図を示す。
(Example) Next, an example of the present invention will be described below with reference to the drawings. 1st
The figure shows a chopper control circuit 5 that controls the rotation of an electric motor 11 mounted on an electric vehicle based on the operation amount of an accelerator lever 1 as a traveling operation device, a time function circuit 2 according to the present invention, an analog switch 3, a changeover switch 4, 1 shows an electrical block circuit diagram of a control circuit with a plugging detector 7 and a multiplication circuit 12; FIG.

アクセルレバ−1の操作量に基づいた制御電流値は時間
関数回路2、アナログスイッチ3、乗算回路12、チョ
ッパ制御回路5を介して電動vaitを回転制御する。
A control current value based on the operation amount of the accelerator lever 1 controls the rotation of the electric vait via a time function circuit 2, an analog switch 3, a multiplication circuit 12, and a chopper control circuit 5.

ここで、チョッパ制御回路5は比較増幅器9、デユーテ
ィ指令回路8、チョッパ回路6、プラギング検出器7及
び電流検出器10とから構成されており、比較増幅器9
によってアクセルレバ−1の操作量に基づく制御電流値
と、電流検出器10により検出された電動機11の電流
値とを比較し、デユーティ指令回路8へ出力され、比較
増幅器9の出力によりチョッパデユーティが決定される
Here, the chopper control circuit 5 is composed of a comparison amplifier 9, a duty command circuit 8, a chopper circuit 6, a plugging detector 7, and a current detector 10.
The control current value based on the operating amount of the accelerator lever 1 is compared with the current value of the motor 11 detected by the current detector 10, and the result is output to the duty command circuit 8, and the chopper duty is determined by the output of the comparator amplifier 9. is determined.

時間関数回路2は、アクセルレバ−1とチョッパ制御回
路5との間にアナログスイッチ3と乗算回路12を介し
て接続されており、上記アナログスイッチ3は切換スイ
ッチ4のON操作でStがON1切換スイッチ4のOF
F操作でStがONとなるように構成されている。すな
わち切換スイッチ4のOFF操作では時間関数回路2と
乗算回路12とを切り離すこととなり、アクセルレバー
エの操作量に基づいた制御電流値は時間関数回路2を通
らずに乗算回路12を通ってチョッパ制御回路5へと流
れる。ここで乗算回路12は、切換スイッチ4のON、
OFF操作に連動して作動し、切換スイッチ4がOFF
であれば乗算値1.0を選び、ONであれば乗算値0.
7を選んで制御電流値に乗ずるように構成されている。
The time function circuit 2 is connected between the accelerator lever 1 and the chopper control circuit 5 via an analog switch 3 and a multiplier circuit 12, and the analog switch 3 switches St to ON1 when the changeover switch 4 is turned on. Switch 4 OF
It is configured such that St is turned ON by F operation. In other words, when the changeover switch 4 is turned OFF, the time function circuit 2 and the multiplier circuit 12 are separated, and the control current value based on the operation amount of the accelerator lever is passed through the multiplier circuit 12 without passing through the time function circuit 2, and then sent to the chopper. The signal flows to the control circuit 5. Here, the multiplier circuit 12 turns on the changeover switch 4,
Operates in conjunction with the OFF operation, and selector switch 4 is OFF
If it is ON, select the multiplication value 1.0, and if it is ON, select the multiplication value 0.
7 is selected and multiplied by the control current value.

又、時間関数回路2は、アクセルレバ−Iの起動操作か
らの時間をカウントするタイマー(図示せず)と、アク
セルレバ−1の操作量に基づいた制御電流値に時間関数
F (t)を乗ずる回路とから構成されており第2図、
第3図及び第4図は切換スイッチ4のON状態、すなわ
ち乗算回路12の乗算値0.7の状態において、アクセ
ルレバ−1を最大に操作した場合の制御電流値に時間関
数F(1)を乗じて制御された電流値と時間の関係を表
すグラフである。破線は従来の制御電流値を表しており
、即ち第2図、第4図においてはアクセルレバ−1の起
動開始時は従来の制御電流値の約40%の電流値からス
タートしt秒間制御電流値はなめらかな上昇を示すよう
に時間関数F (t)を乗されており、を秒後の電流値
は乗算回路12の乗算値0.7によって従来の制御電流
値の約70%に一定させている。また、第3図において
はアクセルレバ−1の起動操作後を秒間、段階的に変化
するような時間関数F (t)を乗した例である。
Further, the time function circuit 2 includes a timer (not shown) that counts the time from the start operation of the accelerator lever I, and a time function F (t) to the control current value based on the operation amount of the accelerator lever I. It consists of a multiplication circuit as shown in Figure 2.
3 and 4 show that when the changeover switch 4 is in the ON state, that is, the multiplication value of the multiplier circuit 12 is 0.7, the control current value when the accelerator lever 1 is operated to the maximum is determined by the time function F(1). It is a graph showing the relationship between the current value and time controlled by multiplying by . The broken line represents the conventional control current value, that is, in FIGS. 2 and 4, when starting the accelerator lever 1, the current value starts from about 40% of the conventional control current value, and the control current increases for t seconds. The value is multiplied by a time function F (t) so as to show a smooth rise, and the current value after 2 seconds is kept constant at about 70% of the conventional control current value by the multiplication value 0.7 of the multiplier circuit 12. ing. Further, FIG. 3 shows an example in which a time function F (t) that changes stepwise is multiplied by seconds after the accelerator lever 1 is activated.

ここでの時間関数F (t)は経過時間ごとに定められ
ており、チョッパ制御回路5へ流すべき電流値を決定す
る関数(例えば−次関数、自乗関数等があり制御対象に
より自由に設定可能である。)であり、本発明で用いる
時間関数F (t)の値域はO<F (t)<1の範囲
である。
The time function F (t) here is determined for each elapsed time, and is a function that determines the current value to be passed to the chopper control circuit 5 (for example, there are negative functions, square functions, etc., and it can be freely set depending on the object to be controlled. ), and the range of the time function F (t) used in the present invention is O<F (t)<1.

切換スイッチ4のON状態でチョッパ制御回路5が時間
関数回路2、乗算回路12とに接続されている場合(乗
算回路12の乗算値0.7の場合)に、プラギング操作
が行われるとプラギング検出器7により、これを検知し
てプラギング検出信号が出力され、この信号を受けたア
ナログスイッチ3はS2を切り雌しSlを接続する。こ
の一連の動作によりプラギング操作時にはアクセルレバ
−1の操作量に基づいた制御電流値は時間関数回路2を
通らずに乗算回路12を通り、この場合の乗算値0゜7
のみを乗されてチョッパ制御回路5へ流される。
If a plugging operation is performed when the chopper control circuit 5 is connected to the time function circuit 2 and the multiplier circuit 12 with the changeover switch 4 in the ON state (when the multiplication value of the multiplier circuit 12 is 0.7), plugging is detected. The device 7 detects this and outputs a plugging detection signal, and upon receiving this signal, the analog switch 3 turns off S2 and connects S1. Due to this series of operations, during the plugging operation, the control current value based on the operation amount of the accelerator lever 1 passes through the multiplication circuit 12 without passing through the time function circuit 2, and the multiplication value in this case is 0°7.
The signal is multiplied only by the signal and sent to the chopper control circuit 5.

従って、通常時のプラギング制動に比して約70%の制
御電流値によって適度なプラギング制動が得られること
になる。
Therefore, appropriate plugging braking can be obtained with a control current value that is about 70% of that of normal plugging braking.

(効   果) 以上詳述したように、本発明によれば電気車の起動時に
おける走行操作装置の操作量に基づいた電動機の制?I
I電流値を従来の約40%の低い値(走行操作装置の最
大操作量時)からスタートさせ、その後なめらかに上昇
させて従来の約70%の値に一定することができるので
、第5図に示したように電動機の起動時の駆動トルクも
なめらかに上昇させることが可能となり、電気車の起動
時における起動トルクを押えることができるので摩擦係
数の低い路面で電気車を起動させる場合においても確実
にスリップを防止することができ、しかも、通常の路面
を走行する際には手動スイッチによって時間関数回路を
チョッパ制御回路から切り離すことができるので摩擦係
数の低い路面と通常の路面とを往復する場合でも瞬時に
両路面に対応する電動機の走行制御を行うことが可能と
なる。
(Effects) As detailed above, according to the present invention, the electric motor is controlled based on the amount of operation of the travel control device at the time of starting the electric vehicle. I
Since the I current value can be started from a low value of about 40% of the conventional value (at the maximum operation amount of the travel control device) and then smoothly increased to a constant value of about 70% of the conventional value, as shown in Figure 5. As shown in Figure 2, it is possible to smoothly increase the drive torque when starting the electric motor, and the starting torque when starting the electric car can be suppressed, so even when starting the electric car on a road surface with a low coefficient of friction. It is possible to reliably prevent slips, and when driving on a normal road surface, the time function circuit can be separated from the chopper control circuit by a manual switch, so it can go back and forth between a road surface with a low coefficient of friction and a normal road surface. Even in the event of a road failure, it is possible to instantaneously perform driving control of the electric motor that corresponds to both road surfaces.

さらに、プラギング操作時にはアナログスイッチにより
時間関数回路をチョッパ制御回路から切り離して、乗算
回路の乗算値でプラギング制動に必要な制御電流値に制
御を行う構成としているので、摩擦係数の低い路面に対
してもスリップしない制動力が得られる。従って、プラ
ギング制動時においてもスリップすることなく確実な制
動効果第5図は本発明による電動機の起動時のトルクと
時間との関係を表すグラフ、第6図は従来の電動機の起
動時のトルクと時間との関係を表すグラフである。
Furthermore, during plugging operation, the time function circuit is separated from the chopper control circuit using an analog switch, and the multiplication value of the multiplier circuit is used to control the control current value required for plugging braking. Provides braking force that prevents slippage. Therefore, even during plugging braking, a reliable braking effect without slipping is achieved. Figure 5 is a graph showing the relationship between the torque and time at the time of starting the electric motor according to the present invention, and Figure 6 is a graph showing the relationship between the torque and time at the time of starting the electric motor according to the present invention. It is a graph showing the relationship with time.

■・−・・・・アクセルレバ− 2・−・−・・時間関数回路 3−−−−アナログスイッチ 4−・・・・切換スイッチ 5−・−・チョッパ制御回路 6・・・−・・チョッパ回路 7・・・−・−・プラギング検出回路 8−・・・−・・デユーティ指令回路 9・・・・−・・比較増幅器 10−・−・・・電流検出器 11・−・−・・・電動機■・・・・・・Accelerator lever 2・−・−・・Time function circuit 3---Analog switch 4-・・・Selector switch 5--Chopper control circuit 6...--Chopper circuit 7...--Plugging detection circuit 8-...-...Duty command circuit 9...Comparison amplifier 10---- Current detector 11・---・Electric motor

Claims (1)

【特許請求の範囲】 1、電動機によりチョッパ制御回路を介して駆動輪が駆
動され、上記チョッパ制御回路は、走行操作装置の操作
量に基づいた電流もしくは電圧を出力するように構成さ
れた電気車において、上記走行操作装置とチョッパ制御
回路との間に、走行操作装置の起動からの時間をカウン
トする手段と、上記走行操作装置の操作量に基づいた制
御電流値に時間の経過に伴なって変化する時間関数F(
t)を乗ずる手段とを具えた時間関数回路を設けたこと
を特徴とする電気車の走行制御装置。 2、上記チョッパ制御回路と時間関数回路とを手動スイ
ッチにより切り離し可能に接続すると共に、上記手動ス
イッチの操作により任意の乗算値を乗ずる乗算回路を設
けたことを特徴とする請求項1記載の電気車の走行制御
装置。 3、上記チョッパ制御回路にプラギングを検出する手段
を設け、プラギング検出時には時間関数回路をチョッパ
制御回路から切り離す手段を設けたことを特徴とする請
求項2記載の電気車の走行制御装置。
[Scope of Claims] 1. An electric vehicle in which a drive wheel is driven by an electric motor via a chopper control circuit, and the chopper control circuit is configured to output current or voltage based on the operating amount of a travel operating device. , a means for counting time from activation of the traveling operation device is provided between the traveling operation device and the chopper control circuit, and a means for counting the time from the activation of the traveling operation device, and a means for changing the control current value based on the operation amount of the traveling operation device as time passes. The changing time function F(
1. A running control device for an electric vehicle, characterized in that a time function circuit is provided with means for multiplying by t). 2. The electric power supply according to claim 1, wherein the chopper control circuit and the time function circuit are connected in a separable manner by a manual switch, and further includes a multiplication circuit that multiplies an arbitrary multiplication value by operating the manual switch. Car travel control device. 3. The running control device for an electric vehicle according to claim 2, wherein the chopper control circuit is provided with means for detecting plugging, and means for separating the time function circuit from the chopper control circuit when plugging is detected.
JP63232855A 1988-09-17 1988-09-17 Travel controller for electric rolling stock Pending JPH0284002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63232855A JPH0284002A (en) 1988-09-17 1988-09-17 Travel controller for electric rolling stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63232855A JPH0284002A (en) 1988-09-17 1988-09-17 Travel controller for electric rolling stock

Publications (1)

Publication Number Publication Date
JPH0284002A true JPH0284002A (en) 1990-03-26

Family

ID=16945873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63232855A Pending JPH0284002A (en) 1988-09-17 1988-09-17 Travel controller for electric rolling stock

Country Status (1)

Country Link
JP (1) JPH0284002A (en)

Similar Documents

Publication Publication Date Title
US5764009A (en) Motor control device in electric motor-operated vehicle
US7362065B2 (en) Regenerative breaking system for electric vehicle
US5136219A (en) Electric-car controller
US7222684B2 (en) System, apparatus, and method for providing control of a toy vehicle
JPH11113108A (en) Electric vehicle
JP2005117718A (en) Method and device for controlling torque of vehicle driven by motor
JPH0284002A (en) Travel controller for electric rolling stock
JPH08175210A (en) Front-and-rear-wheel-drive vehicle
JP2819621B2 (en) Travel control device for electric vehicles
JP3754319B2 (en) Electric vehicle control method and apparatus
JPH0787622A (en) Running controller for battery vehicle
JP3418700B2 (en) Electric vehicle travel control device
JPH09284917A (en) Driving controller of electric vehicle
JPH089508A (en) Travel controller for battery-driven vehicle
JPH09182213A (en) Electric vehicle
JP2607405Y2 (en) Regenerative control device for electric vehicle
JP2513368B2 (en) Battery powered forklift electric power steering system
JP2512431B2 (en) DC motor regeneration / power running control device
JP2657174B2 (en) Travel control device for electric vehicles
JPH06101881B2 (en) Braking controller for electric vehicle
JP3651183B2 (en) Regenerative control device for DC motor for industrial vehicles
JPH04322104A (en) Controller for electric vehicle
JPH03226206A (en) Motor controller for motor vehicle
JPH0993726A (en) Method for controlling electric rolling stock
JPH06245330A (en) Running controller for battery driven industrial vehicle