JPH0283239A - Formation of dielectric thin film - Google Patents

Formation of dielectric thin film

Info

Publication number
JPH0283239A
JPH0283239A JP63232440A JP23244088A JPH0283239A JP H0283239 A JPH0283239 A JP H0283239A JP 63232440 A JP63232440 A JP 63232440A JP 23244088 A JP23244088 A JP 23244088A JP H0283239 A JPH0283239 A JP H0283239A
Authority
JP
Japan
Prior art keywords
thin film
glass substrate
followed
solution
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63232440A
Other languages
Japanese (ja)
Other versions
JPH0529617B2 (en
Inventor
Akio Saito
昭男 斉藤
Mitsuo Nakatani
中谷 光雄
Hiromitsu Kawamura
河村 啓溢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63232440A priority Critical patent/JPH0283239A/en
Publication of JPH0283239A publication Critical patent/JPH0283239A/en
Publication of JPH0529617B2 publication Critical patent/JPH0529617B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To form the title thin film in high throughput at low cost by coating a glass substrate with an organic solvent solution of an organometallic complex followed by irradiating the resultant coated surface with pulse rays. CONSTITUTION:About 7.5wt.% of an organometallic complex, e.g., a metal alkoxide (e.g., titanium isopropoxide) is dissolved in ethylene glycol monoethyl ether followed by addition of ca. 1wt.% of nitric acid into a coating solution 2. Thence, a glass substrate 1 is coated with this solution 2 at a spinner turns of revolution of ca. 500-3000rpm followed by irradiating, for several minutes, the resultant coated surface with rays a with a lamp made into pulses through a chopper to promote the hydrolysis of the coating solution 2, thus obtaining the objective dielectric thin film 3. In the pulse ray irradiation, it can be con firmed by e.g., a thermocouple that the glass substrate 1 has been kept at low temperatures. By the above forming method, lens products, filters, etc., can be manufactured at low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は誘電体薄膜の形成方法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a method of forming a dielectric thin film.

〔従来の技術〕[Conventional technology]

公知のようにレンズ製品、フィルタ等には誘電体多層膜
がその表面にコーティングされている。
As is well known, the surfaces of lens products, filters, etc. are coated with a dielectric multilayer film.

これら誘電体多層膜は真空蒸着法により形成されている
。真空蒸着法は10−6+tOrr程度の高真空で膜形
成を行なうため、スループット、コストの面で実用上大
きな問題を有していた。
These dielectric multilayer films are formed by vacuum evaporation. Since the vacuum evaporation method performs film formation in a high vacuum of about 10<-6 >tOrr, it has had practical problems in terms of throughput and cost.

この解決策として例えばアプライド、オプティックス第
24巻(1985年)2666頁から2673頁(Ap
plied 0ptics 、 24 、2666〜2
673(1985))で述べられているよう(:有機金
属化合物をスピンナ塗布し加熱して誘電体薄膜を形成す
る方法がある。ただしこの方法では上記論文にも記述さ
れているように加熱温度を500℃以上とする心安があ
り、高温にできない部分を含む製品には適用でさず、ま
た高温とするため製造コストを高める原因ともなる。
As a solution to this problem, for example, Applied Optics Vol. 24 (1985) pp. 2666 to 2673 (Ap.
plied 0ptics, 24, 2666-2
673 (1985)), there is a method of coating an organometallic compound with a spinner and heating it to form a dielectric thin film. However, in this method, the heating temperature must be adjusted as described in the above paper. It is safe to set the temperature to 500°C or higher, but it cannot be applied to products that include parts that cannot be heated to high temperatures, and the high temperature also increases manufacturing costs.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は高真空を必要としない利点を有するもの
の加熱温度を500℃以上の高温にしなければならない
という問題点があった。
Although the above-mentioned conventional technology has the advantage of not requiring a high vacuum, it has the problem that the heating temperature must be raised to a high temperature of 500° C. or higher.

本発明の目的は上記問題点を解決する方法を提供するこ
とにある。
An object of the present invention is to provide a method for solving the above problems.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、有機金層化合物を塗布した後、パルス光を
照射することd二より達成される。
The above object is achieved by applying pulsed light after applying the organic gold layer compound.

パルス光は波長150nm〜数μmのものを用いること
ができ、塗布層に選択的に吸収される1 50nm〜4
00nmの紫外光がより好適である0通常のランプをチ
ョッパを用いてパルス光としてもよいし、パルスレーザ
光により照射してもよい。
The pulsed light can have a wavelength of 150 nm to several μm, and is selectively absorbed by the coating layer.
Ultraviolet light of 00 nm is more preferable.0 It is also possible to use a chopper to generate pulsed light from a normal lamp, or to irradiate with pulsed laser light.

パルスの周期は1〜100Hzの範囲で用い基板の熱伝
導率等により最適なパルス周期は異なる。
The pulse period is in the range of 1 to 100 Hz, and the optimum pulse period varies depending on the thermal conductivity of the substrate, etc.

本発明の適用可能な有機金属化合物は特に限定されるも
のではないが、安全上金属アルコキシドが好適である。
The organic metal compound to which the present invention can be applied is not particularly limited, but metal alkoxides are preferred for safety reasons.

形成できる誘電体膜は5in2. TiO□。The dielectric film that can be formed is 5in2. TiO□.

Sn 02. At20. 、 Zr 02等多岐にわ
たる。
Sn 02. At20. , Zr 02, etc.

〔実施例〕〔Example〕

以下、本発明の実施例を図により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例1 金属アルコキシド(例えばチタンイソグロボキシドTI
 (01−C,H,)4) 7.5重量%程度をエチレ
ングリコールモノエチルエーテルC2H50CH2CH
20Hに溶解し、硝酸を1重量%程度添加し塗布液とす
る。第1図に示すようにガラス基板1上:ニスピンナ回
転数500〜3000 rpmで上記塗布液2を塗布す
る。ランプをチョッパによりパルス化した光aを数分間
照射し、塗布液2の加水分解反応を促進させ誘電体薄膜
6を得た。パルス光照射の際、ガラス基板1は低い温度
に保たれていたことを熱電対等によって確認した。
Example 1 Metal alkoxides (e.g. titanium isogloboxide TI
(01-C,H,)4) Approximately 7.5% by weight of ethylene glycol monoethyl ether C2H50CH2CH
20H and add about 1% by weight of nitric acid to prepare a coating solution. As shown in FIG. 1, the coating liquid 2 is applied onto a glass substrate 1 using a varnish spinner at a rotational speed of 500 to 3000 rpm. The lamp was irradiated with pulsed light a using a chopper for several minutes to accelerate the hydrolysis reaction of the coating liquid 2 and obtain the dielectric thin film 6. It was confirmed using a thermocouple or the like that the glass substrate 1 was kept at a low temperature during pulsed light irradiation.

実IM列2 実施例1と同様にして塗布液をガラス基板上に塗布した
後、KrF”lオシマレーザ光248nm (第1図の
a)をパルス周期100Hzで数十秒〜数分間照射した
。これにより誘電体薄膜6を得た。レーザ光照射の際、
ガラス基板1は低い温度に保たれていたことを熱電対等
によって確認した。
Actual IM row 2 After coating the coating solution on a glass substrate in the same manner as in Example 1, it was irradiated with KrF''l oscillator laser light of 248 nm (a in Figure 1) at a pulse frequency of 100 Hz for several tens of seconds to several minutes. A dielectric thin film 6 was obtained.During laser light irradiation,
It was confirmed using a thermocouple or the like that the glass substrate 1 was kept at a low temperature.

また、レーザの周期を10 Hz 〜100 Hzまで
10Hzおきに設定して同様の検討を行ないほぼ同等の
結果を得た。
In addition, similar studies were conducted with the laser cycle set every 10 Hz from 10 Hz to 100 Hz, and almost the same results were obtained.

さらに、ArF’エキシマレーザ光192nm 、 X
eatエキシマレーザ光508nm、XeFエキシマレ
ーザ光551nm等を用いて同様の検討を行ないほぼ同
等の結果を得た。
Furthermore, ArF' excimer laser light 192 nm,
Similar studies were conducted using EAT excimer laser light of 508 nm, XeF excimer laser light of 551 nm, etc., and almost the same results were obtained.

実施例3 第2図に示すようにガラス基板1上にシリコンテトラエ
トオツド51(oc2H5)4とチタンイソプロボキ7
ドTt (oi−C5H,)4の混合物(浴媒はエチレ
ングリコールモノエチルエーテル、硝酸を1重址%添加
する)をスピンナにより塗布する。う/グをチ冒ツバに
よりパルス化した光あるいはエキシマレーザ光aを照射
し、S i O2+ T x O2層4を形成する。こ
の層の屈折率は1.70〜1.80とすることができた
。さらに、チタンテトライングロボキシドを用いて同様
の処理を行ないTiO□層5を形成した。この層の屈折
率は2.2〜2.0とすることができた。さらに、シリ
コンテトラエトキシドを用いて同様の処理を行ない81
02層6を形成した。この層の屈折率は1.40〜1.
50であった。
Example 3 As shown in FIG.
A mixture of Tt (oi-C5H,)4 (bath medium is ethylene glycol monoethyl ether, with 1% nitric acid added) is applied using a spinner. A SiO2+TxO2 layer 4 is formed by irradiating the glass with pulsed light or excimer laser light a using a blower. The refractive index of this layer could be 1.70-1.80. Further, a similar process was performed using titanium tetraline globoxide to form a TiO□ layer 5. The refractive index of this layer could be between 2.2 and 2.0. Furthermore, similar treatment was performed using silicon tetraethoxide.81
02 layer 6 was formed. The refractive index of this layer is 1.40-1.
It was 50.

以上のようにして形成した5層膜の各層の屈折率、膜厚
を以下のように調整した。 SiO2+TiO2層、屈
折率1.74.膜J1620X、 TlO2層、屈折率
2.05、膜厚940X、51層2層、屈折率1.45
、膜厚860X、得られた5層膜の可視光(450〜6
5゜nm)f二対する反射率を測定したところ、116
cs以下と反射防止膜として効果のあることが明らかと
なった。
The refractive index and film thickness of each layer of the five-layer film formed as described above were adjusted as follows. SiO2+TiO2 layer, refractive index 1.74. Film J1620X, TlO2 layer, refractive index 2.05, film thickness 940X, 51 layers, 2 layers, refractive index 1.45
, film thickness 860X, visible light (450~6
5゜nm) When the reflectance for f2 was measured, it was 116
It became clear that the film was effective as an antireflection film when it was less than cs.

〔発明の効果〕〔Effect of the invention〕

本発明によれば誘電体薄膜を高スループツト、低コスト
で形成できるので、レンズ製品、フィルタ等を安価に製
造できるという効果がある。
According to the present invention, a dielectric thin film can be formed at high throughput and at low cost, so that lens products, filters, etc. can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の実施例を示す説明図であ
る。 a・・・パルス光 1・・・ガラス基板 2・・・有機金属化合物を含む塗布液 3・・・誘電速薄膜 4・・・Si O2+Ti 02層 5・・・TlO2層 6・・・SiO□層。
FIG. 1 and FIG. 2 are explanatory diagrams showing an embodiment of the present invention. a...Pulsed light 1...Glass substrate 2...Coating liquid containing organometallic compound 3...Dielectric fast thin film 4...SiO2+Ti02 layer 5...TlO2 layer 6...SiO□ layer.

Claims (1)

【特許請求の範囲】[Claims] 1、有機金属錯体を有機溶媒に溶解してガラス基板上に
塗布した後、加熱法としてパルス光を照射することを特
徴とする誘電体薄膜の形成方法。
1. A method for forming a dielectric thin film, which comprises dissolving an organometallic complex in an organic solvent and coating the solution on a glass substrate, followed by irradiation with pulsed light as a heating method.
JP63232440A 1988-09-19 1988-09-19 Formation of dielectric thin film Granted JPH0283239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63232440A JPH0283239A (en) 1988-09-19 1988-09-19 Formation of dielectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63232440A JPH0283239A (en) 1988-09-19 1988-09-19 Formation of dielectric thin film

Publications (2)

Publication Number Publication Date
JPH0283239A true JPH0283239A (en) 1990-03-23
JPH0529617B2 JPH0529617B2 (en) 1993-05-06

Family

ID=16939301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63232440A Granted JPH0283239A (en) 1988-09-19 1988-09-19 Formation of dielectric thin film

Country Status (1)

Country Link
JP (1) JPH0283239A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283459A (en) * 1990-03-30 1991-12-13 Hitachi Ltd Semiconductor integrated circuit device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138708A (en) * 1981-02-20 1982-08-27 Hitachi Ltd Composition for forming transparent conductive film and method of forming transparent conductive film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138708A (en) * 1981-02-20 1982-08-27 Hitachi Ltd Composition for forming transparent conductive film and method of forming transparent conductive film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283459A (en) * 1990-03-30 1991-12-13 Hitachi Ltd Semiconductor integrated circuit device

Also Published As

Publication number Publication date
JPH0529617B2 (en) 1993-05-06

Similar Documents

Publication Publication Date Title
US4966812A (en) Sol-gel antireflective coating on plastics
US4929278A (en) Sol-gel antireflective coating on plastics
US6180188B1 (en) Method for preparing a multilayer optical material with crosslinking-densifying by ultraviolet radiation
TWI225105B (en) Method for producing metal oxide thin film
JPH03188938A (en) Method and device for forming thin film of inorganic polymer and applied product thereof
EP0136751B1 (en) Method of manufacturing a layer of an oxide of an element from group iva
JPS6048461B2 (en) Heat reflective glass plate and its manufacturing method
JPS59213643A (en) Method of setting magnesium fluoride layer on substrate
US4346324A (en) Heat mirror for incandescent lamp
JPH11511109A (en) Self-cleaning glass and method for producing the same
JP2001511107A (en) Tantalum oxide-based inorganic polymer material having high refractive index and mechanical abrasion resistance, method for producing the same, and optical material containing the polymer
JPH0114258B2 (en)
US4293593A (en) Method of fabricating heat mirror for incandescent lamp envelope
JP2001209016A (en) Method for changing infrared spectrum of silicon dioxide thin film obtained from sylsesquioxane resin
JPH0283239A (en) Formation of dielectric thin film
JP2964513B2 (en) High heat resistant high refractive index composite oxide thin film, composition for forming the same, and incandescent lamp
JPH06136162A (en) Formation of thin metal oxide film
Floch et al. Porous silica sol-gel coatings for Nd: glass high-power pulsed laser uses
JP2946569B2 (en) Composition for forming high heat resistant high refractive index composite oxide thin film
JPH10139482A (en) Formation of titanium oxide membrane
JPH0926514A (en) Thin film material for three-dimensional optical waveguide and its production
JPH10297436A (en) Manufacture of mirror for vehicle with improved rainy weather visibility
JP2000282244A (en) Production of titanium oxide film
JP3350711B2 (en) Manufacturing method of diffraction grating
JPH04182327A (en) Surface-treated glass and its production