JPH028278B2 - - Google Patents
Info
- Publication number
- JPH028278B2 JPH028278B2 JP58197211A JP19721183A JPH028278B2 JP H028278 B2 JPH028278 B2 JP H028278B2 JP 58197211 A JP58197211 A JP 58197211A JP 19721183 A JP19721183 A JP 19721183A JP H028278 B2 JPH028278 B2 JP H028278B2
- Authority
- JP
- Japan
- Prior art keywords
- ring
- furnace
- equipment
- heat exchanger
- intermediate heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims description 5
- 238000003466 welding Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 10
- 239000012530 fluid Substances 0.000 description 10
- 238000005192 partition Methods 0.000 description 10
- 238000013016 damping Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 6
- 238000009434 installation Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000002826 coolant Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229910003470 tongbaite Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Devices For Medical Bathing And Washing (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
【発明の詳細な説明】
本発明は、LMFBR(高速増殖炉型原子炉)に
おける炉内機器の支持装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a support device for equipment inside a LMFBR (fast breeder reactor).
従来、この種の原子炉における炉内機器の支持
装置は第1図に示すような構造になつている。 Conventionally, a support device for in-core equipment in this type of nuclear reactor has a structure as shown in FIG.
図において、1は原子炉容器、2はルーフスラ
ブ、3は炉内機器である中間熱交換器、4は一次
系ポンプ、5は炉心支持構造、6は炉心上部機
構、7は上部プレナム、8は下部プレナム、9は
隔壁構造、10は炉心、11は炉内配管である。 In the figure, 1 is a reactor vessel, 2 is a roof slab, 3 is an intermediate heat exchanger which is an in-core equipment, 4 is a primary system pump, 5 is a core support structure, 6 is a core upper mechanism, 7 is an upper plenum, 8 9 is a lower plenum, 9 is a partition wall structure, 10 is a reactor core, and 11 is an in-core piping.
上記炉心上部機構6はルーフスラブ2から吊り
下げられており、炉心10は原子炉容器から炉心
支持構造5を介して吊り下げられ、炉心10を出
た冷却材は高温の上部プレナム7に流出し、中間
熱交換器3を通つて低温の下部プレナム8へ流出
する。上記下部プレナム8の冷却材は一次系ポン
プ4に吸い込まれ、炉内配管11を通して再び炉
心10へ送り込まれる。また、高温の上部プレナ
ム7から低温の下部プレナム8への熱損失を最小
限に止めるよう隔壁構造9が設けられているの
で、炉心支持構造5はほぼ下部プレナム温度と同
等となつている。 The upper core mechanism 6 is suspended from the roof slab 2, and the reactor core 10 is suspended from the reactor vessel via the core support structure 5, and the coolant leaving the core 10 flows into the high temperature upper plenum 7. , through an intermediate heat exchanger 3 to a lower temperature plenum 8. The coolant in the lower plenum 8 is sucked into the primary system pump 4 and sent into the reactor core 10 again through the reactor piping 11. Further, since the partition wall structure 9 is provided to minimize heat loss from the high temperature upper plenum 7 to the low temperature lower plenum 8, the temperature of the core support structure 5 is approximately equal to the lower plenum temperature.
上記下部プレナム8は上部プレナム7に比べ、
低温であるとはいえ、中間熱交換器3、一次系ポ
ンプ4の据付面であるルーフスラブ2の上面とは
約300℃の温度差がある。 The lower plenum 8 is compared to the upper plenum 7,
Although the temperature is low, there is a temperature difference of about 300°C from the upper surface of the roof slab 2, which is the installation surface for the intermediate heat exchanger 3 and the primary system pump 4.
上述したような構造において、炉内機器である
中間熱交換器3、一次系ポンプ4、炉心上部機構
6、特に長尺である中間熱交換器3、一次系ポン
プ4を単に上部から吊り下げた片持梁では、地震
条件の厳しい地域において構造的に成り立つ見通
しは薄い。そこで従来は、中間熱交換器3、一次
系ポンプ4の据付部であるルーフスラブ2と、炉
心支持構造5の中間熱交換器3、一次系ポンプ4
貫通部との温度差による熱膨張変位差を吸収で
き、しかも中間熱交換器3、一次系ポンプ4の下
部で幾分でも支持効果が期待できるようにマノメ
ー構造タ12が考えられていた。 In the above-described structure, the reactor equipment such as the intermediate heat exchanger 3, the primary system pump 4, and the core upper mechanism 6, especially the long intermediate heat exchanger 3 and the primary system pump 4, are simply suspended from the top. Cantilever beams have little prospect of being structurally viable in areas with severe seismic conditions. Therefore, conventionally, the intermediate heat exchanger 3 and the primary system pump 4 are installed in the roof slab 2, which is the installation part of the intermediate heat exchanger 3 and the primary system pump 4, and the intermediate heat exchanger 3 and the primary system pump 4 in the core support structure 5.
The manometer structure 12 was designed to be able to absorb the difference in thermal expansion displacement caused by the temperature difference with the penetrating portion, and also to provide some support effect at the lower part of the intermediate heat exchanger 3 and the primary system pump 4.
第2図は、上記マノメータ構造12の詳細図で
あり、中間熱交換器3が仕切円筒13に対して相
対的に矢印()方向に動いたとすると、中間熱
交換器3と仕切円筒13のX′方向の隙間は小さ
くなり、X方向の隙間が大きくなる。 FIG. 2 is a detailed view of the manometer structure 12. If the intermediate heat exchanger 3 moves in the direction of the arrow () relative to the partition cylinder 13, then the The gap in the ' direction becomes smaller, and the gap in the X direction becomes larger.
また、上記中間熱交換器3と外側円筒体14は
一体構造となつているので、仕切円筒13と外側
円筒体14の隙間は逆になる。このため、中間熱
交換器3と仕切円筒13と外側円筒体14の隙間
の流体は、矢印(→)の方向に運動し、流体が運
動するためのェネルギーが中間熱交換器3への抗
力となつて制振効果が期待されている。 Moreover, since the intermediate heat exchanger 3 and the outer cylindrical body 14 have an integral structure, the gaps between the partition cylinder 13 and the outer cylindrical body 14 are reversed. Therefore, the fluid in the gap between the intermediate heat exchanger 3, the partition cylinder 13, and the outer cylinder 14 moves in the direction of the arrow (→), and the energy for the movement of the fluid acts as a drag force on the intermediate heat exchanger 3. It is expected to have a damping effect over time.
しかしながら、上述したシステムにおいて、中
間熱交換器3と仕切円筒13、仕切円筒13と外
側円筒体14の隙間は中間熱交換器3の製作据付
精度及び、上述した中間熱交換器3の据付部と炉
心支持構造5の貫通部の温度差による熱膨張変位
を考慮すると各隙間で約100mm程度が必要になる
と考えられるため、流路面積が大きく、あまり制
振効果が期待できないことになる。 However, in the above-mentioned system, the gaps between the intermediate heat exchanger 3 and the partition cylinder 13, and between the partition cylinder 13 and the outer cylinder 14 are determined by the manufacturing and installation accuracy of the intermediate heat exchanger 3 and the above-mentioned installation part of the intermediate heat exchanger 3. Considering the thermal expansion displacement caused by the temperature difference in the penetrating portion of the core support structure 5, it is thought that about 100 mm is required for each gap, so the flow path area is large and a significant vibration damping effect cannot be expected.
また、地震発生時、仕切円筒13と外側円筒体
14の間の液体ナトリウムが仕切円筒13の上端
を越して中間熱交換器3と仕切円筒13の間の隙
間に入つて、廻り込む流路以外の流路が生じない
ように、上部にはHeガス層16を設け、炉外に
てHeガス層16の圧力制御を行なうシステム及
び炉外には導入管15が必要になる等の問題があ
つた。 In addition, when an earthquake occurs, liquid sodium between the partition cylinder 13 and the outer cylinder 14 passes over the upper end of the partition cylinder 13 and enters the gap between the intermediate heat exchanger 3 and the partition cylinder 13, except for the flow path where it goes around. In order to prevent a flow path from occurring, a He gas layer 16 is provided at the top, and there are problems such as a system for controlling the pressure of the He gas layer 16 outside the furnace and an introduction pipe 15 outside the furnace. Ta.
そこで、上述した従来の下部振れ止め構造を避
けるため、炉内機器の板厚を増し、剛性を上げる
ことも考えられるが、板厚を増すと物量が増加す
るばかりでなく、上部プレナム7の過熱渡変化に
よる熱応力によつて構造的に成立させる事が難し
い。 Therefore, in order to avoid the conventional lower steady rest structure mentioned above, it is possible to increase the thickness of the furnace equipment and increase its rigidity. It is difficult to make it structurally viable due to thermal stress caused by changes in temperature.
また、マノメータ構造においては、Heガスの
圧力制御装置が必要であり、炉内にも導入管15
が必要になるが、その割には制振効果が小さいた
めに、これら従来の構造に代る新規な構造の開発
が望まれていた。 In addition, in the manometer structure, a He gas pressure control device is required, and there is also an inlet pipe 15 inside the furnace.
However, since the damping effect is relatively small, it has been desired to develop a new structure to replace these conventional structures.
本発明は、上述した要望に応えるためになされ
たものであり、原子炉容器内の機器を支持する構
造として、径方向の緩やかな熱変位に対しては抗
力を発生せず、地震時の急激な振動に対しては大
きな抗力を生じさせる支持装置として、振れ止め
リング及び受けリングからなるリング組合せ体を
多段に設置し、かつ流体制振効果を高めるために
流体の逃げを封鎖してなる第1の発明と、上下に
上記リング組合せ体をそれぞれ1組又は数組設け
ると共に、上記上下リング組合せ体の間で円周方
向等分位置に4本以上の垂直ベーンを取付け、か
つ、流体制振効果を高めるために流体の逃げを封
鎖した第2の発明とよりなる炉内機器の支持装置
を提供せんとするものである。 The present invention has been made in response to the above-mentioned needs, and is designed to be used as a structure for supporting equipment inside a nuclear reactor vessel, without generating drag against gradual thermal displacement in the radial direction, and without generating resistance against sudden thermal displacement during earthquakes. As a support device that generates a large resistance against vibrations, a ring assembly consisting of a steady rest ring and a receiving ring is installed in multiple stages, and the escape of fluid is blocked in order to enhance the fluid vibration effect. According to the invention of No. 1, one set or several sets of the above-mentioned ring combinations are provided on the upper and lower sides, four or more vertical vanes are installed at equal positions in the circumferential direction between the above-mentioned upper and lower ring combinations, and the fluid vibration It is an object of the present invention to provide a support device for equipment in a reactor according to the second invention, in which escape of fluid is sealed in order to enhance the effect.
以下、本発明による実施例を第3図ないし第7
図に基づいて詳細に説明する。 Embodiments according to the present invention will be described below with reference to FIGS. 3 to 7.
This will be explained in detail based on the figures.
第3図ないし第4図a,bは本発明による第1
の発明の一実施例を示す炉内機器支持装置の具体
例であり、第4図aの左側及び右側に、第3図の
A−A線断面及びB−B線断面をそれぞれ示し、
従来構造と対応する同一部品には同一符号を付し
て説明する。 FIGS. 3 to 4 a and b show the first embodiment according to the present invention.
This is a specific example of an in-core equipment support device showing an embodiment of the invention, and the left and right sides of FIG.
The same parts corresponding to the conventional structure will be described with the same reference numerals.
図において、17は炉内機器である中間熱交換
器3用のスタンドパイプ、18は振れ止めリン
グ、19は振れ止めリング18の受けリング、1
9′,19″は固定受けリングである。 In the figure, 17 is a stand pipe for the intermediate heat exchanger 3 which is a furnace equipment, 18 is a steady rest ring, 19 is a receiving ring for the steady rest ring 18, 1
9', 19'' are fixed receiving rings.
ここで上記中間熱交換器3と振れ止めリンング
18との間には、両者の熱膨張差を拘束しないよ
う適切量のギヤツプδ1(5mm程度)を設けるとと
もに、振れ止めリンング18とスタンドパイプ1
7、及び受けリング19と中間熱交換器3との間
にはギヤツプδ2(50mm程度)を設ける。これはル
ーフスラブ2と炉心支持構造5の熱膨張差によ
り、スタンドパイプ17に対して中間熱交換器3
が矢印()の方向に相対変位するが、それを拘
速しないようにするためのものである。 Here, an appropriate amount of gap δ 1 (approximately 5 mm) is provided between the intermediate heat exchanger 3 and the steady rest ring 18 so as not to restrict the difference in thermal expansion between the two, and a gap δ 1 (approximately 5 mm) is provided between the steady rest ring 18 and the stand pipe 1.
7, and a gap δ 2 (approximately 50 mm) is provided between the receiving ring 19 and the intermediate heat exchanger 3. This is caused by the difference in thermal expansion between the roof slab 2 and the core support structure 5, which causes the intermediate heat exchanger 3 to
is relatively displaced in the direction of the arrow (), but this is to prevent it from being constrained.
上記振れ止めリング18と受けリング19はそ
の径を変えて多段に設け、中間熱交換器3やスタ
ンドパイプ17と異なる材質としている。本発明
による実施例では、中間熱交換器3、スタンドパ
イプ17、固定リング19′,19″などがオース
テナイト系ステンレス鋼SUS304であるのに対し
て、振れ止めリング18、受けリング19はそれ
よりも低熱膨張率のマルテンサイト系ステンレス
鋼SUS403を用いている。 The steady rest ring 18 and the receiving ring 19 are provided in multiple stages with different diameters, and are made of a different material from the intermediate heat exchanger 3 and the stand pipe 17. In the embodiment according to the present invention, the intermediate heat exchanger 3, stand pipe 17, fixing rings 19', 19'', etc. are made of austenitic stainless steel SUS304, while the steady rest ring 18 and the receiving ring 19 are made of SUS304. Martensitic stainless steel SUS403 with a low coefficient of thermal expansion is used.
また、振れ止めリング18の外周及び受けリン
グ19の内周には、第4図aに示すように流体廻
り込み時の抵抗を大きくするように凹凸を設けて
いる。 Furthermore, the outer periphery of the steady rest ring 18 and the inner periphery of the receiving ring 19 are provided with irregularities to increase resistance when fluid circulates, as shown in FIG. 4a.
なお、第4図bに示すように凹凸の代りに、多
数の羽根状の突起18′,19″或いはラビリンス
構造にしてもよい。すなわち第4図bでは、突起
18′を振れ止めリング18に、突起19をス
タンドパイプ17に突設した例であり、振れ止め
リング18の位置の水平断面を示しているので、
受けリング19の内面は隠れている。 In addition, as shown in FIG. 4b, instead of the unevenness, a large number of wing-shaped protrusions 18', 19'' or a labyrinth structure may be used. In other words, in FIG. 4b, the protrusions 18' are attached to the steady rest ring 18. , is an example in which the protrusion 19 is protruded from the stand pipe 17, and shows a horizontal cross section at the position of the steady rest ring 18.
The inner surface of the receiving ring 19 is hidden.
また、上記振れ止めリング18、受けリング1
9の滑り面には焼付き等を防止するために、クロ
ムカーバイト等による表面硬化処理が施されてい
る。 In addition, the steady rest ring 18, the receiving ring 1
The sliding surface of No. 9 is surface hardened with chromium carbide or the like to prevent seizure or the like.
なお、振れ止めリング18は中間熱交換器3の
外周に、受けリング19はスタンドパイプ17の
内周に、挿嵌した状態でも良いが、上記受けリン
グ19をスタンドパイプに溶接もしくはねじ止め
で固着しても良い。この場合、上下の固定リング
19′,19″にかかる荷重が減少し構造上有利と
なる。 Note that the steady rest ring 18 may be inserted into the outer periphery of the intermediate heat exchanger 3, and the receiving ring 19 may be inserted into the inner periphery of the stand pipe 17, but the receiving ring 19 may be fixed to the stand pipe by welding or screwing. You may do so. In this case, the load applied to the upper and lower fixing rings 19', 19'' is reduced, which is advantageous in terms of structure.
第5図ないし第6図は本発明による第2の発明
の一実施例を示す縦断面図及び横断面図、第7図
は同、要部を示す分解斜視図であり、振れ止めリ
ング、受けリング19のリング組合せ体を、支持
部の上下に配設し、その間に円周方向等分に4本
のベーン20を竪方向に配置した構造である。 5 and 6 are longitudinal and transverse sectional views showing an embodiment of the second invention according to the present invention, and FIG. 7 is an exploded perspective view showing the main parts of the same, including a steady rest ring, It has a structure in which a ring assembly of rings 19 is arranged above and below a support part, and four vanes 20 are vertically arranged equally in the circumferential direction between them.
上記ベーン20は、スタンドパイプ17に一体
に設けられた溝状の枠体22の間に適当な間隙を
保持して挾持されており、また、板ばね21で内
側に押圧されている。 The vane 20 is held between groove-shaped frames 22 integrally provided on the stand pipe 17 with an appropriate gap therebetween, and is pressed inward by a leaf spring 21.
したがつて、中間熱交換器3の動きに連動し
て、ベーン20は半径方向のみギヤツプδ2だけ自
由に動くことができる構造になつている。 Therefore, in conjunction with the movement of the intermediate heat exchanger 3, the vanes 20 are structured to be able to move freely by a gap δ 2 only in the radial direction.
また、第7図に示すように、中間熱交換器3を
引き抜いたとき、ベーン20が脱落しないよう
に、ベーンン20の板ばね21の取付幅l1は枠体
22のベーン挾み込み部幅l2より広く形成されて
いる。さらにベーン20の摺動面には焼き付き防
止のために、所定の表面硬化処理が施されてい
る。図中23,24はアニユランス部である。 In addition, as shown in FIG. 7, in order to prevent the vanes 20 from falling off when the intermediate heat exchanger 3 is pulled out, the installation width l 1 of the leaf spring 21 of the vane 20 is the width of the vane insertion part of the frame 22. Formed wider than l 2 . Further, the sliding surface of the vane 20 is subjected to a predetermined surface hardening treatment to prevent seizure. In the figure, numerals 23 and 24 are annulance parts.
以上詳細に説明したように、本発明の炉内機器
の支持装置によれば、液体温度上昇時に熱膨張に
よる拘束が生じることなく、中間熱交換器3をよ
り小さな間隙で振れ止めすることとなる。 As explained in detail above, according to the support device for furnace equipment of the present invention, the intermediate heat exchanger 3 can be rested with a smaller gap without being constrained by thermal expansion when the liquid temperature rises. .
また、地震時には、中間熱交換器3の周囲の液
体が中間熱交換器3の振れに伴ない周方向、上下
方向に急速に移動しようとする。このとき上下方
向には振れ止めリング、受けリング、固定リング
により、その移動が極度に制限され、顕著な制振
効果を奏する。 Further, in the event of an earthquake, the liquid around the intermediate heat exchanger 3 tends to rapidly move in the circumferential direction and the vertical direction as the intermediate heat exchanger 3 swings. At this time, its movement in the vertical direction is extremely restricted by the steady rest ring, the receiving ring, and the fixing ring, resulting in a remarkable vibration damping effect.
ちなみに、第2図のHeガス層を開放端とした
場合と、第3図のように略密封した場合の制振効
果の差を比較すると、中間熱交換器3に生じるモ
ーメント荷重において、第3図の場合では第2図
の約8割程度にまで減少する。さらに、振れ止め
リング、受けリングの凹凸は周方向の液体廻り込
みを制限するのに役立ち、制振効果を一層高める
ことが可能である。 Incidentally, when comparing the difference in damping effect between the case where the He gas layer has an open end as shown in Fig. 2 and the case where it is almost sealed as shown in Fig. 3, it is found that in the moment load generated in the intermediate heat exchanger 3, In the case shown in Fig. 2, it decreases to about 80% of that in Fig. 2. Furthermore, the unevenness of the steady rest ring and the receiving ring helps to limit the circulation of liquid in the circumferential direction, making it possible to further enhance the vibration damping effect.
特に本発明による第2の発明によれば、上下を
略密封した上、周方向に廻り込む液体の流れをベ
ーンにより阻止することにより、流体制振効果を
高めたものである。 Particularly, according to the second aspect of the present invention, the fluid vibration effect is enhanced by substantially sealing the upper and lower sides and blocking the flow of liquid circulating in the circumferential direction with vanes.
すなわち、第6図において矢印()方向へ中
間熱交換器が急激に移動しようとすると、アニユ
ラス部の流体の移動はベーンで阻止されるので、
一方にPoなる圧力が発生し、他方は負圧となる。
この圧力差により、大きな抗力が生じ、中間熱交
換器3の移動を制限することができる。 In other words, when the intermediate heat exchanger tries to rapidly move in the direction of the arrow () in FIG. 6, the movement of the fluid in the annulus is blocked by the vane, so
Pressure Po is generated on one side, and negative pressure is generated on the other side.
This pressure difference creates a large drag force that can restrict movement of the intermediate heat exchanger 3.
なお、熱変位のような緩やかな変位に対して
は、流体が完全密封されていないので拘速するこ
とはない。 Note that for gentle displacements such as thermal displacements, the fluid is not completely sealed, so the speed is not restricted.
第1図は従来の炉内機器支持装置を示す縦断面
図、第2図a,bは従来のマノメータ構造を示す
横断面図及び縦断面図、第3図は本発明による第
1の発明の炉内機器支持装置の一実施例を示す縦
断面図、第4図a,bは同、一実施例の要部を示
す横断面図、第5図ないし第6図は、本叛発明に
よる第2の発明の一実施例を示す縦断面図及び横
断面図、第7図は第5図の要部を示す分解斜視図
である。
1……原子炉容器、3……中間熱交換器、17
……スタンドパイプ、18……振れ止めリング、
19……受けリング、19′,19″……固定リン
グ、18′,19……羽根状突起、20……ベ
ーン、21……板ばね、22……枠体。
FIG. 1 is a vertical cross-sectional view showing a conventional furnace equipment support device, FIGS. 2 a and b are cross-sectional views and vertical cross-sectional views showing a conventional manometer structure, and FIG. FIGS. 4a and 4b are cross-sectional views showing essential parts of the in-furnace equipment support device according to an embodiment of the present invention. FIGS. FIG. 7 is an exploded perspective view showing the main part of FIG. 5. FIG. 1... Reactor vessel, 3... Intermediate heat exchanger, 17
...stand pipe, 18...steady ring,
19... Reception ring, 19', 19''... Fixing ring, 18', 19... Wing-shaped projection, 20... Vane, 21... Leaf spring, 22... Frame body.
Claims (1)
持体と、その外側に設けたスタンドパイプとの間
に振れ止めリング及び受けリングからなるリング
組合せ体を多段に設置し、その上下をスタンドパ
イプに固定した固定リングで封鎖したことを特徴
とする、炉内機器の支持装置。 2 前記受けリングはスタンドパイプに溶接もし
くはねじ止めで固定されたことを特徴とする特許
請求の範囲第1項記載の炉内機器の支持装置。 3 前記リング組合せ体は、材質を被支持体の材
質となるものとしたことを特徴とする特許請求の
範囲第1項記載の炉内機器の支持装置。 4 前記振れ止めリングの外周及び受けリングの
内周は、凹凸を有することを特徴とする、特許請
求の範囲第1項記載の炉内機器の支持装置。 5 前記振れ止めリングの外周及び該外周と対向
するスタンドパイプ内周は、羽根状突起或いはラ
ビリンス構造を有することを特徴とする、特許請
求の範囲第1項記載の炉内機器の支持装置。 6 原子炉内機器の耐震支持構造において、被支
持体とその外側に設けたスタンドパイプとの間に
おける上下位置に、振れ止めリング及び受けリン
グからなる少なくとも1段のリング組合せ体をそ
れぞれ設置し、上記上下位置のリング組合せ体の
間に円周方向等分位置に4本以上の垂直ベーンを
取付けたことを特徴とする炉内機器の支持装置。 7 前記リング組合せ体の材質は、被支持体の材
質となるものとしたことを特徴とする特許請求の
範囲第6項記載の炉内機器の支持装置。[Claims] 1. In an earthquake-resistant support structure for equipment inside a nuclear reactor, a ring assembly consisting of a steady ring and a receiving ring is installed in multiple stages between a supported body and a stand pipe provided on the outside thereof, A support device for equipment inside a furnace, characterized in that its top and bottom are sealed with a fixing ring fixed to a standpipe. 2. The support device for furnace equipment according to claim 1, wherein the receiving ring is fixed to the stand pipe by welding or screwing. 3. The device for supporting equipment in a furnace according to claim 1, wherein the ring assembly is made of a material that is the same as the material of the supported body. 4. The support device for furnace equipment according to claim 1, wherein the outer periphery of the steady rest ring and the inner periphery of the receiving ring have irregularities. 5. The support device for furnace equipment according to claim 1, wherein the outer periphery of the steady rest ring and the inner periphery of the stand pipe facing the outer periphery have a wing-like projection or a labyrinth structure. 6. In the seismic support structure for internal reactor equipment, at least one ring assembly consisting of a steady rest ring and a receiving ring is installed at the upper and lower positions between the supported body and the stand pipe provided on the outside thereof, A support device for in-furnace equipment, characterized in that four or more vertical vanes are installed at equal positions in the circumferential direction between the ring combinations in the above-mentioned upper and lower positions. 7. The device for supporting equipment in a furnace according to claim 6, wherein the material of the ring combination is the same as the material of the supported body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58197211A JPS6089793A (en) | 1983-10-21 | 1983-10-21 | Supporter for apparatus in reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58197211A JPS6089793A (en) | 1983-10-21 | 1983-10-21 | Supporter for apparatus in reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6089793A JPS6089793A (en) | 1985-05-20 |
JPH028278B2 true JPH028278B2 (en) | 1990-02-23 |
Family
ID=16370670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58197211A Granted JPS6089793A (en) | 1983-10-21 | 1983-10-21 | Supporter for apparatus in reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6089793A (en) |
-
1983
- 1983-10-21 JP JP58197211A patent/JPS6089793A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6089793A (en) | 1985-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08179070A (en) | Fuel assembly for pressurised water reactor | |
JPS61114096A (en) | Lateral force absorber in pressure vessel | |
JPH028278B2 (en) | ||
US4517927A (en) | Steam generator for liquid metal fast breeder reactor | |
JPS5925476B2 (en) | Rod-shaped structural parts between fuel assemblies of boiling water reactors | |
JPS6140357B2 (en) | ||
JPS63246699A (en) | Support structure of nuclear-reactor in-core structure | |
JPH0512798Y2 (en) | ||
JPS6148789A (en) | Supporter for core of nuclear reactor | |
JPH01101496A (en) | Support structure for nuclear reactor internal structure | |
JPS60165586A (en) | Nuclear reactor | |
JPS62147100A (en) | Dumping support device for high temperature liquid immersion equipment | |
JPS6073393A (en) | Supporter for apparatus in reactor | |
JPS60263891A (en) | Fast breeder reactor | |
JPH01193690A (en) | Fuel assembly | |
JPS61283892A (en) | Faster breeder | |
JPS6034382A (en) | Vibration-proof supporter for suspension support type high-temperature vessel | |
JPS5811688A (en) | Earthquake-proof supporting structure of vessel | |
JPS59171895A (en) | Intermediate heat exchanger for tank type fast breeder | |
JPS59151093A (en) | Reactor | |
JPH02190795A (en) | Partition wall of tank type fast breeder | |
JPS6120892A (en) | Earthquakeproof supporter for vessel of nuclear reactor | |
JPS61212785A (en) | Earthquake-proof supporter for reactor vessel of fast breeder reactor | |
JPS6029695A (en) | Vibration-damping mechanism of boiling-water type reactor pressure vessel | |
JPS6285891A (en) | Supporter for pressure vessel of nuclear reactor |