JPH0282646A - Semiconductor integrated circuit and discriminating method thereof - Google Patents

Semiconductor integrated circuit and discriminating method thereof

Info

Publication number
JPH0282646A
JPH0282646A JP63235819A JP23581988A JPH0282646A JP H0282646 A JPH0282646 A JP H0282646A JP 63235819 A JP63235819 A JP 63235819A JP 23581988 A JP23581988 A JP 23581988A JP H0282646 A JPH0282646 A JP H0282646A
Authority
JP
Japan
Prior art keywords
semiconductor integrated
integrated circuit
microstrip line
frequency
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63235819A
Other languages
Japanese (ja)
Inventor
Keiichi Honda
本多 圭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63235819A priority Critical patent/JPH0282646A/en
Publication of JPH0282646A publication Critical patent/JPH0282646A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To discriminate kinds in a short time by measuring the high-frequency characteristics of a microstrip line for discrimination formed onto a substrate composed of a semiconductor or a derivative. CONSTITUTION:Circuits 7 and a microstrip line 16 for discrimination are formed onto a substrate 4. The microstrip line 16 consists of a transmission line 2, a stab 1, ground patterns 3, etc. A high-frequency probe 17 is used for measuring the high-frequency characteristics of the microstrip line 16. A metallic pad 15 for transmission is brought into contact with regions 18a, 18b and a metallic pad 13 for grounding with regions 19a, 19b in order to measure high-frequency characteristics by employing the high-frequency probe. When the transmission line 2 has characteristic impedance matched with a measurement system, the microstrip line 16 functions as a band lamitation filter, attenuation of which is maximized at frequency where the length of the stab 1 is brought to the quarter of a wavelength. Accordingly, when the length of the stab 1 is changed in response to the kind of a semiconductor integrated circuit, the kind of the semiconductor integrated circuit can be discriminated only by acquiring maxi mum attenuation frequency.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は製造工程において、自動的に種類を識別するこ
とのできる半導体集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a semiconductor integrated circuit whose type can be automatically identified during the manufacturing process.

(a)従来の技術 従来、種類を自動的に識別することのできる半導体集積
回路として、 (i)品種名あるいは品種を表わす図柄を付した半導体
集積回路、 (1宜)識別用の複数の電極を設けた半導体集積回路(
特開昭62−145764号公報参照)が提案されてい
る。
(a) Conventional technology Conventionally, as a semiconductor integrated circuit whose type can be automatically identified, (i) a semiconductor integrated circuit with a type name or a pattern representing the type; (1) a plurality of electrodes for identification; A semiconductor integrated circuit (
(See Japanese Patent Laid-Open No. 145764/1983) has been proposed.

(i)の半導体集積回路では、人間が図柄を観察するこ
とにより識別し、(ii)の半導体集積回路では、を極
間の接続状態(短絡または開放)をスイッチングマトリ
クスを用いて全て検出し、その絹合せから識別している
In the semiconductor integrated circuit (i), humans can identify the pattern by observing the pattern, and in the semiconductor integrated circuit (ii), the connection state (short circuit or open) between the electrodes is all detected using a switching matrix. It is identified by its silk combination.

(・・)発明が解決しようとする課題 (i)の半導体集積回路では識別のための要員が必要で
あり、工程の全自動化ができないという問題がある。
(...) Problem to be Solved by the Invention The semiconductor integrated circuit of (i) requires personnel for identification, and there is a problem in that the process cannot be fully automated.

また、(ii)の半導体集積回路では、全自動化は可能
であるものの、識別できる種類の数はtiの数で決定さ
れるため、多品種に対応するためにはより多くのTL極
を設ける必要がある。従って、短!/開放を検出するた
めに長時間を要するという問題がある。
In addition, in the semiconductor integrated circuit (ii), although full automation is possible, the number of types that can be identified is determined by the number of ti, so it is necessary to provide more TL poles to support a wide variety of products. There is. Therefore, short! /There is a problem that it takes a long time to detect an open state.

本発明はL述の問題に鑑み為されたもので全自勧化が可
能で、しかも短時間に種類を識別することのできる半導
体集積回路及びその識別方法を提供しようとするもので
ある。
The present invention has been made in view of the problems mentioned above, and it is an object of the present invention to provide a semiconductor integrated circuit and a method for identifying the semiconductor integrated circuit, which can be completely self-developed and can identify the type in a short time.

(ニ)課題を解決するための手段 本発明は、半導体あるいは誘電体より成る基板を用いた
半導体集積回路において、前記基板上に識別用のマイク
ロストリップ線路を備えて成ることを特徴とする半導体
集積回路である。
(d) Means for Solving the Problems The present invention provides a semiconductor integrated circuit using a substrate made of a semiconductor or a dielectric, characterized in that a microstrip line for identification is provided on the substrate. It is a circuit.

また、本発明は半導体あるいは誘電体より成る基板−F
に設けられた識別用のマイクロストリップ線路の高周波
特性を測定することにより種類を識別することを特徴と
する半導体集積回路の識別方法である。
Further, the present invention also provides a substrate made of a semiconductor or a dielectric material.
This is a semiconductor integrated circuit identification method characterized in that the type is identified by measuring the high frequency characteristics of an identification microstrip line provided in the semiconductor integrated circuit.

(ネ)作 用 本発明によれば、半導体集積回路の種類に応じた識別用
のマイクロストリップ線路を基板上に付加しているので
、該マイクロストリップ線路の高周波特性を測定するこ
とにより種類を識別できる。
(N) Function According to the present invention, since a microstrip line for identification according to the type of semiconductor integrated circuit is added on the substrate, the type can be identified by measuring the high frequency characteristics of the microstrip line. can.

(へ)実施例 第1図(a)(b)(c)は半導体集積回路を示し、第
1図(a)は上面図、第1図(b)は第1図(a)にお
けるf−1線断面図、第1図(c)は第1図(a)にお
けるII−II線断面図である。
(f) Example FIGS. 1(a), (b), and (c) show a semiconductor integrated circuit, FIG. 1(a) is a top view, and FIG. 1(b) is an f- A 1-line sectional view, FIG. 1(c) is a sectional view taken along the line II--II in FIG. 1(a).

(4・)は半導体あるいは誘電体より成る基板であり、
この基板(・1)上に回路(7)及び識別用のマイクロ
ストリップ線路(16)が設けられている。マイクロス
トリップ線路(16)は伝送ライン(2)、スタブ(1
)、接地パターン(3)、接続導体(6)、及び裏面接
地導体(5)で構成される。
(4.) is a substrate made of semiconductor or dielectric material,
A circuit (7) and an identification microstrip line (16) are provided on this substrate (1). The microstrip line (16) is a transmission line (2), a stub (1)
), a grounding pattern (3), a connecting conductor (6), and a back grounding conductor (5).

ところで、前記マイクロストリップ線路(16)の高周
波特性の測定には第2図(a)(b)に示す如く高周波
プローブが用いられる。第2図(a)は高周波プローブ
の上面図、第2図(b)は第2図(a)におけるIII
 −III線断面図であり、(11)はセラミックより
成るプローブ本体、(14)は信号ラインパターン、(
12)は接地パターン、(15)は伝送用金属パッド、
(13)は接地用金属パッドである。
By the way, to measure the high frequency characteristics of the microstrip line (16), a high frequency probe is used as shown in FIGS. 2(a) and 2(b). Figure 2 (a) is a top view of the high frequency probe, Figure 2 (b) is the III in Figure 2 (a).
-III line sectional view, (11) is a probe body made of ceramic, (14) is a signal line pattern, (
12) is the ground pattern, (15) is the transmission metal pad,
(13) is a grounding metal pad.

高周波では接地がきちんと採れているかどうかが正しい
測定値が得られるかどうかのポイントの一つであり、そ
の観点から高周波プローブク17)の接地用金属パッド
(13)に対応するものとして、基板(4)上に貫通孔
内に形成された接続導体(6)により裏面接地導体(5
)と接続されている接地パターン(3)を設けている。
At high frequencies, one of the key points in determining whether accurate measurement values can be obtained is whether or not the grounding is properly established. ) is connected to the back surface ground conductor (5) by the connecting conductor (6) formed in the through hole on the
) is provided with a grounding pattern (3) connected to the ground pattern (3).

尚、基板(4)の裏面接地導体(5)と確実に接触可能
な高周波プローブを用いるのであれば、マイクロストリ
ップ線路(16)を伝送ライン(2)、スタブ(1)、
及び裏面接地導体(5)で構成することができる。
In addition, if a high frequency probe that can reliably contact the back surface ground conductor (5) of the board (4) is used, the microstrip line (16) can be connected to the transmission line (2), the stub (1),
and a back ground conductor (5).

斯かる高周波プローブを用いて高周波特性を測定するに
は伝送用金属パッド(15)を第1図(a)の領域(1
8a )(18b)に、接地用金属パッド(13)を第
1図(a)の領域(19a)(19b)に接触させれば
よい。半導体集積回路に高周波プローブ(II)を接触
させた状態を第3図に示す。
To measure high-frequency characteristics using such a high-frequency probe, place the transmission metal pad (15) in the area (1) shown in Figure 1(a).
8a) (18b), the grounding metal pad (13) may be brought into contact with the areas (19a) (19b) shown in FIG. 1(a). FIG. 3 shows a state in which the high frequency probe (II) is brought into contact with the semiconductor integrated circuit.

また、第4図は自動検査システムの構成例を示し、(1
01)はコンピュータ、(102)は回路特性を測定す
るための集積回路測定装置、(103)はブローμ、(
104)は回路に接触可能な測定用のプローブ、(10
5)は高周波プローブ(17)が接続されたネ/トワー
クアナライザである。この自動検査システムはブローμ
(103)に設置された半導体集積回路に前述した高周
波プローブ(17)を接触させ、ネントワークアナライ
ザ(105)で高周波特性を測定し、この測定データを
後述する原理に基、づいてコンピュータ(011)で処
理することで該半導体集積回路の種類を識別することが
できる。
In addition, Fig. 4 shows an example of the configuration of an automatic inspection system, and (1
01) is a computer, (102) is an integrated circuit measuring device for measuring circuit characteristics, (103) is a blow μ, (
104) is a measurement probe that can touch the circuit;
5) is a network analyzer to which a high frequency probe (17) is connected. This automatic inspection system blow μ
The above-mentioned high frequency probe (17) is brought into contact with the semiconductor integrated circuit installed at (103), the high frequency characteristics are measured by the network analyzer (105), and this measurement data is transferred to the computer (011) based on the principle described later. ), the type of the semiconductor integrated circuit can be identified.

次に、」−述したマイクロストリップ線路(16)を用
いての半導体集積回路の種類を識別する原理及び具体例
について以下に詳述する。
Next, the principle and specific example of identifying the type of semiconductor integrated circuit using the microstrip line (16) described above will be described in detail below.

伝送ライン(2)を測定系(高周波プローブ、ネ・/ト
ワークアナライザ)と整合の採れた特性インピーダンス
(通常50Ω)とすると、マイクロストリップ線路(1
6)は第5図に示す伝達特性から明らかな如くスタブ(
1)の長さが丁度波長(波長は誘;li 14の性質、
マイクロストリップ線路の寸法等により変換された値で
あり、真空中の値そのままではない。)の1八となる周
波数で最大減衰量となる帯域阻止フィルタとなる。従っ
て、特定の半導体集積回路に特定のマイクロストリップ
線路(16)を設けておけば、その高周波特性の伝達特
性を測定し、最大減衰周波数を求めることにより、スタ
ブ(1)の長さ(波長の174)を知ることができる(
スタブ(1)の長さによっては2つ以上の減衰ピーク周
波数が現われるが、一番低いピーク周波数を最大減衰周
波数とする。)すなわち、半導体集積回路の種類に応じ
てスタブ(1)の長さを替えたマイクロストリップ線路
(帯域阻止フィルタ)(16)を半導体集積回路の基板
(4)に設けることにより、最大減衰周波数を求めるだ
けで半導体集積回路の種類を識別することができる。
Assuming that the transmission line (2) has a characteristic impedance (usually 50Ω) that matches the measurement system (high frequency probe, network analyzer), the microstrip line (1
6) is a stub (
1) The length is exactly the wavelength (the wavelength is the wavelength; the property of li 14,
This is a value converted according to the dimensions of the microstrip line, etc., and is not the same as the value in vacuum. ) becomes a band rejection filter with maximum attenuation at a frequency of 18. Therefore, if a specific microstrip line (16) is provided in a specific semiconductor integrated circuit, the length of the stub (1) (wavelength 174) can be known (
Although two or more attenuation peak frequencies appear depending on the length of the stub (1), the lowest peak frequency is taken as the maximum attenuation frequency. ) That is, by providing a microstrip line (band rejection filter) (16) with a stub (1) of different length depending on the type of semiconductor integrated circuit on the substrate (4) of the semiconductor integrated circuit, the maximum attenuation frequency can be increased. The type of semiconductor integrated circuit can be identified just by asking.

マイクロストリップ線路の最大減衰周波数を決定するパ
ラメータは17iI述したようにスタブ(1)の長さL
であり、この最大減衰周波数の再現性に影響を及ぼすパ
ラメータとしては基板の厚さH1比jRを率ε1、及び
伝送ライン(2)の幅Wがある。これらのパラメータの
設計値と実際の値との誤差が小さいほど、最大減衰周波
数の測定値から逆算して求めるスタブの長さの誤差も小
さくなり識別感度がよくなる。誤差が全くなく、ネット
ワークアナライザが高分解能であれば、26GHzまで
で数百種類の識別が可能である。しかし、実際には基板
の厚さHで±5%、比誘電率ε7で±3%、伝送ライン
の幅Wで±10%程度の誤差が発生する場合があり、最
大減衰周波数の設計から0.1GHz以下のずれが生じ
る。従って充分に安全を見込んで、約0.5GHz単位
で識別するようスタブの長さを設定しても、26GHz
までで、約30種類の品種を区別することができる。
The parameter that determines the maximum attenuation frequency of the microstrip line is the length L of the stub (1) as described in 17iI.
Parameters that affect the reproducibility of this maximum attenuation frequency include the substrate thickness H1 ratio jR, the ratio ε1, and the width W of the transmission line (2). The smaller the error between the design value and the actual value of these parameters, the smaller the error in the length of the stub calculated by back calculation from the measured value of the maximum attenuation frequency, and the better the identification sensitivity becomes. If there is no error and the network analyzer has high resolution, it is possible to identify hundreds of types up to 26 GHz. However, in reality, errors of about ±5% in the substrate thickness H, ±3% in the dielectric constant ε7, and ±10% in the width W of the transmission line may occur, and there are errors in the design of the maximum attenuation frequency. A deviation of .1 GHz or less occurs. Therefore, even if you set the length of the stub to identify in units of about 0.5 GHz to ensure sufficient safety, the 26 GHz
Approximately 30 varieties can be distinguished.

半導体集積回路としては、半導体基板の上に複数の素子
を作り込んだMMIC(モノリシンクマイクロウニイブ
IC)と、このMM I Cや単体部品を誘TL体基板
りに設計回路に従って装着したMIC(マイクロウェー
ブIC)とがあるが、本発明はこのどちらにも適用可能
である。MM I CでGaAsの半導体基板を用いた
場合、及びMICでアルミナセラミンクの誘電体基板を
用いた場合の設計値と最大減衰周波数の例を以下に示す
Semiconductor integrated circuits include MMIC (monolithic microunib IC), in which multiple elements are fabricated on a semiconductor substrate, and MIC (monolithic microunib IC), in which MMIC and single components are mounted on a dielectric TL substrate according to a designed circuit. Microwave IC), and the present invention is applicable to both. Examples of design values and maximum attenuation frequencies when a GaAs semiconductor substrate is used in the MM IC and an alumina ceramic dielectric substrate is used in the MIC are shown below.

マイクロストリップ線路の設計値 マイクロストリップ線路の最大減衰周波数また、第6図
は他の実施例の半導体集積回路の上面図であり、前述し
た実施例に比し、マイクロストリップ線路(16)の占
有面積を小さくしたものである。この実施例の場合、ス
タブ(1)が同じ長さであれば、iii述した実施例に
比し、最大減衰周波数はl G Hz程度小さくなるが
、再現性は全んと′変わらないので、識別できる種類の
総数は数%減少するだけである。
Design value of microstrip line Maximum attenuation frequency of microstrip line FIG. 6 is a top view of a semiconductor integrated circuit of another embodiment. It is a smaller version of . In the case of this embodiment, if the stub (1) has the same length, the maximum attenuation frequency will be about 1 GHz smaller than in the embodiment described in iii, but the reproducibility will not change at all. The total number of distinguishable species is reduced by only a few percent.

尚、マイクロストリップ線路パターンとしては帯域阻止
フィルターに限定されることはなく、例えばバンドパス
フィルタ、インダクタンス等を用いることができる。
Note that the microstrip line pattern is not limited to a band-stop filter, and for example, a band-pass filter, an inductance, etc. can be used.

(ト)発明の効果 本発明は以上の説明から明らかな々口く、半導体集積回
路、特に少量多品種の半導体集積回路の製造r、程にお
いて、識別用のマイクロストリップ線路を用いた全自動
化された識別を可能とし、また、1度の高周波測定を行
なうだけで、後はその測定データをコンピュータ処理し
て当該回路を識別することができるので、非常に迅速に
種類を識別することができる。1足って、省人角化、高
効率fヒが可能となり、製造コストの低減を企画し得る
(G) Effects of the Invention It is clear from the above description that the present invention is a fully automated method for manufacturing semiconductor integrated circuits, especially small-volume, high-mix semiconductor integrated circuits, using microstrip lines for identification. In addition, by performing high-frequency measurement only once, the measurement data can be processed by a computer to identify the circuit in question, so the type can be identified very quickly. With just one foot, it is possible to save labor, achieve high efficiency, and reduce manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)(c)は半導体集積回路を示し、麻
1図(a)は上面図、第1図(b)は第1図(a)にお
けるI−r線断面図、第1図(c)は第1図(a)にお
けるII −II線断面図である。第2図(a)(b)
は高周波プローブを示し、第2図(a)は上面図、第2
図(b)は第2図(a)におけるIII −III線断
面図である。第3図は半導体集積回路に高周波プローブ
を接触させた状態を示す側面図である。第4図は自動検
査システムの構成例を示す図である。第5図はマイクロ
ストリップ線路の伝達特性を示す図である。第6図は他
の実施例の半導体集積回路の上面図である。 (1)・・・スタブ、(2)・・・伝送ライン、(3)
・・・接地導体パターン、(4)・・基板、(5)・・
・裏面接地導体、(16)・・マイクロストリップ線路
、(17)・・・高周波プローブ゛。 第1図
1(a), 1(b), and 1(c) show a semiconductor integrated circuit, FIG. 1(a) is a top view, FIG. 1(b) is a sectional view taken along line I-r in FIG. 1(a), FIG. 1(c) is a sectional view taken along the line II--II in FIG. 1(a). Figure 2 (a) (b)
shows a high-frequency probe, FIG. 2(a) is a top view,
FIG. 2(b) is a sectional view taken along the line III--III in FIG. 2(a). FIG. 3 is a side view showing a state in which a high frequency probe is brought into contact with a semiconductor integrated circuit. FIG. 4 is a diagram showing an example of the configuration of an automatic inspection system. FIG. 5 is a diagram showing the transfer characteristics of the microstrip line. FIG. 6 is a top view of a semiconductor integrated circuit according to another embodiment. (1)...Stub, (2)...Transmission line, (3)
...Ground conductor pattern, (4)...Substrate, (5)...
- Back ground conductor, (16)...Microstrip line, (17)...High frequency probe. Figure 1

Claims (1)

【特許請求の範囲】 1、半導体あるいは誘電体より成る基板を用いた半導体
集積回路において、前記基板上に識別用のマイクロスト
リップ線路を備えて成ることを特徴とする半導体集積回
路。 2、半導体あるいは誘電体より成る基板上に設けられた
識別用のマイクロストリップ線路の高周波特性を測定す
ることにより種類を識別することを特徴とする半導体集
積回路の識別方法。
[Scope of Claims] 1. A semiconductor integrated circuit using a substrate made of a semiconductor or a dielectric, characterized in that a microstrip line for identification is provided on the substrate. 2. A method for identifying a semiconductor integrated circuit, characterized in that the type is identified by measuring the high frequency characteristics of a microstrip line for identification provided on a substrate made of a semiconductor or dielectric.
JP63235819A 1988-09-20 1988-09-20 Semiconductor integrated circuit and discriminating method thereof Pending JPH0282646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63235819A JPH0282646A (en) 1988-09-20 1988-09-20 Semiconductor integrated circuit and discriminating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63235819A JPH0282646A (en) 1988-09-20 1988-09-20 Semiconductor integrated circuit and discriminating method thereof

Publications (1)

Publication Number Publication Date
JPH0282646A true JPH0282646A (en) 1990-03-23

Family

ID=16991727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63235819A Pending JPH0282646A (en) 1988-09-20 1988-09-20 Semiconductor integrated circuit and discriminating method thereof

Country Status (1)

Country Link
JP (1) JPH0282646A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334935A (en) * 2001-05-08 2002-11-22 Mitsubishi Electric Corp High-frequency circuit chip, high-frequency circuit device having the chip, and method of manufacturing the same
JP2009140993A (en) * 2007-12-04 2009-06-25 Yokogawa Electric Corp Printed circuit board
JP2016122706A (en) * 2014-12-24 2016-07-07 株式会社ソシオネクスト Semiconductor device, manufacturing method of the same, and identification method of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334935A (en) * 2001-05-08 2002-11-22 Mitsubishi Electric Corp High-frequency circuit chip, high-frequency circuit device having the chip, and method of manufacturing the same
JP2009140993A (en) * 2007-12-04 2009-06-25 Yokogawa Electric Corp Printed circuit board
JP2016122706A (en) * 2014-12-24 2016-07-07 株式会社ソシオネクスト Semiconductor device, manufacturing method of the same, and identification method of the same

Similar Documents

Publication Publication Date Title
US4593243A (en) Coplanar and stripline probe card apparatus
US4851794A (en) Microstrip to coplanar waveguide transitional device
US20090121802A1 (en) Systems and Methods for Tuning Filters
US4926234A (en) Semiconductor device operating in high frequency range
US7656166B2 (en) Multilayer wiring board and method for testing the same
US5477137A (en) Probeable substrate substitute for a calibration standard and test fixture
JPH0282646A (en) Semiconductor integrated circuit and discriminating method thereof
KR20050114580A (en) An apparatus for detecting defect at an interconnect in a circuit pattern and a defect detecting system therewith
US4891577A (en) Apparatus for measuring noise characteristics
CA2101344C (en) Method and apparatus for adjusting the impedance of a microstrip transmission line
JPH04199651A (en) Semiconductor device and manufacture thereof
US5900308A (en) Microstrip line dielectric filter
KR100519012B1 (en) Calibrating device for a multilayer laminated circuit module and method for making thereof
JPH0227746A (en) Microwave integrated circuit and manufacture thereof
JP2002290115A (en) Input/output end part connection structure for millimeter wave transmission line
JPS62294303A (en) Semiconductor device and its manufacture
KR100457332B1 (en) Reference package for calibrating test systems
JPS62181438A (en) Semiconductor device
JPH09304455A (en) Method for managing characteristics of high frequency substrate
JPH0262064A (en) Ceramic package
JP2002286786A (en) Impedance measuring circuit pattern and impedance measuring circuit board
JPS6294965A (en) Semiconductor device
Lafferty Measuring the self-resonant frequency of capacitors
JPH07270478A (en) Crosstalk inspection method for printed circuit board
JPH06181246A (en) Probing device