JPH0281480A - Semiconductor photodetector - Google Patents

Semiconductor photodetector

Info

Publication number
JPH0281480A
JPH0281480A JP63232213A JP23221388A JPH0281480A JP H0281480 A JPH0281480 A JP H0281480A JP 63232213 A JP63232213 A JP 63232213A JP 23221388 A JP23221388 A JP 23221388A JP H0281480 A JPH0281480 A JP H0281480A
Authority
JP
Japan
Prior art keywords
layer
concentration
buffer layer
impurity concentration
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63232213A
Other languages
Japanese (ja)
Inventor
Fumihiko Kuroda
黒田 文彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63232213A priority Critical patent/JPH0281480A/en
Publication of JPH0281480A publication Critical patent/JPH0281480A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To prevent a sudden change in a current value by a method wherein a low-concentration layer whose impurity concentration is low is formed to be adjacent to a light-absorbing layer and a variation in a width of a depletion layer by a variation in a bias voltage is absorbed. CONSTITUTION:A thickness of a light-absorbing layer is made a little thinner than that of a conventional layer so that a depletion layer can be extended easily up to a buffer layer; at the same time, an impurity concentration of an InP buffer layer to be grown on an InP substrate is lowered gradually according to a distance from a P-N junction. Such a concentration distribution of the InP buffer layer can be achieved easily when an amount of a dopant gas is increased gradually during an epitaxial growth operation by VPE, MOCVD or the like. During this process, the impurity concentration of the InP buffer layer may be at a definite low concentration without changing it continuously. In this case, the concentration of the buffer layer is set at 1X10<16>cm<-3> or lower; an extension of the depletion layer can be absorbed. Thereby, an increase in an electric current near a breakdown voltage of an APD becomes gentle; accordingly, a bias voltage can be adjusted easily and a peripheral circuit can be simplified.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、アバランシェφフォトダイオド(A P 
D)に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) This invention provides an avalanche φ photodiode (A P
Regarding D).

(従来の技術) 従来のAPDの濃度構成、および動作状態での電界分市
を第6図(a) 、(b)に示す。例えば、InP層内
に形成されたPN接合に逆バイアスを印加すると、空乏
層はInP層からInGaAsP層を経てIn Ga 
As層にまで伸びる。空乏化されたInGaAs層で光
が吸収されると、電子ホール対が発生する。このホール
は、空乏層内の電界に加速されてInP層に注入される
、注入されたホールはInP結晶内の格子に衝突し、新
たな電子−ホール対を発生する。InP層内の電界が充
分に高いとき、このホールの加速と新たな電子−ホール
対の発生が連鎖的に起こり、キャリアの増倍がなされる
。これがAPDの動作原理である。
(Prior Art) The concentration structure of a conventional APD and the electric field distribution in the operating state are shown in FIGS. 6(a) and 6(b). For example, when a reverse bias is applied to a PN junction formed in an InP layer, the depletion layer changes from the InP layer through the InGaAsP layer to the InGaAsP layer.
It extends to the As layer. When light is absorbed in the depleted InGaAs layer, electron-hole pairs are generated. These holes are accelerated by the electric field in the depletion layer and injected into the InP layer. The injected holes collide with the lattice in the InP crystal and generate new electron-hole pairs. When the electric field in the InP layer is sufficiently high, the acceleration of these holes and the generation of new electron-hole pairs occur in a chain reaction, resulting in multiplication of carriers. This is the operating principle of APD.

典型的なAPDのI−V特性を、第7図に示す。The IV characteristics of a typical APD are shown in FIG.

低バイアス時には、暗電流および光電流は、バイアス電
圧の増加によって徐々に増加していく。降伏電圧(vb
)近傍になると、増倍層内の増倍層内の電界値が上昇し
てくるためにキャリアの発生も指数関数的に増加し、そ
の結果電流も急激に増加して、降伏に至る。
At low bias, the dark current and photocurrent gradually increase with increasing bias voltage. Breakdown voltage (vb
.

APDの増倍率は、低電圧での光電流と動作電圧での光
電流との比で表わされ、信号は動作電圧での光電流と暗
電流の差として出力される。従っ”C,APDの動作電
圧は、0.9〜0.95V bの値が選ばれる。
The multiplication factor of the APD is expressed as the ratio of the photocurrent at low voltage to the photocurrent at operating voltage, and a signal is output as the difference between the photocurrent and dark current at operating voltage. Therefore, the operating voltage of the APD is selected to be 0.9 to 0.95 Vb.

ここでAPDの動作電圧は、わずかな電圧の変動によっ
て電流値か急変する領域にあることに問題がある。即ち
、バイアス電圧がわずかに変動するだけで増倍率などが
急激に変動する。またvb値は温度によっても変動する
ため、環境温度の変動などによっても増倍率などが変動
する。従って、APDの増倍率を任意の値に設定し、こ
れを維持するためには、バイアス電圧を随時細かく調整
せねばならず、そのためAPDの周辺の回路構成は大変
複雑なものになってしまうという問題があった。
Here, there is a problem in that the operating voltage of the APD is in a region where the current value changes suddenly due to a slight voltage variation. That is, even a slight change in the bias voltage causes a sudden change in the multiplication factor. Furthermore, since the vb value varies depending on the temperature, the multiplication factor etc. also vary due to changes in the environmental temperature. Therefore, in order to set the APD's multiplication factor to an arbitrary value and maintain it, the bias voltage must be finely adjusted as needed, which makes the circuit configuration around the APD extremely complex. There was a problem.

(発明が解決しようとする課8) この様に通常のAPDは、動作電圧近傍のバイアス電圧
の僅かな変動によっても電流値が急変するという課題を
解決しようとするものである。
(Issue 8 to be Solved by the Invention) In this manner, ordinary APDs attempt to solve the problem that the current value changes suddenly even with a slight variation in the bias voltage near the operating voltage.

[発明の構成] (課題を解決するための手段) 本発明は、バイアス電圧の変動による空乏層幅の変動を
吸収する層を設けて、多少の電圧の変動があっても増倍
層内の電界値はあまり変わらない様にすることにより、
上の課題を解決する。その1つの方法は、光吸収層に隣
接して、不純物濃度の低い低濃度層を設け、この層にま
で空乏層を延ばすことである。この層の不純物濃度は、
PN接合から離れるに従って徐々に低下するよう設定し
た方が効果が大きい、この低濃度層を設ける方法は、光
吸収層内の不純物濃度を徐々に低下させることによって
も実現できる。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a layer that absorbs variations in depletion layer width due to variations in bias voltage, so that even if there is a slight variation in voltage, the multiplication layer is By making sure that the electric field value does not change much,
Solve the above problem. One method is to provide a lightly doped layer with a low impurity concentration adjacent to the light absorption layer and extend the depletion layer to this layer. The impurity concentration of this layer is
This method of providing a low concentration layer, which is more effective if it is set so that the impurity concentration gradually decreases as it moves away from the PN junction, can also be realized by gradually decreasing the impurity concentration in the light absorption layer.

また、PN接合を形成する第2導電形領域の不純物濃度
を、PN接合から離れるに従って徐々に低ドさせること
によっても実現可能である。
It can also be realized by gradually lowering the impurity concentration of the second conductivity type region forming the PN junction as the distance from the PN junction increases.

(作  用) 電圧は電界の積分で表される。層内の不純物a度が一定
のとき、不純物濃度が低い程空乏層が伸びるため、最大
電界値は低くなる。従って、空乏層の末端が達する領域
の不純物濃度を低下させれば、空乏層を延ばすためによ
り大きな電圧を要するため、多少のバイアス電圧の変動
によっては、増倍層能の電界値は大きく変動はしない。
(Effect) Voltage is expressed as the integral of the electric field. When the degree of impurity in the layer is constant, the lower the impurity concentration, the longer the depletion layer becomes, so the maximum electric field value becomes lower. Therefore, if the impurity concentration in the region where the end of the depletion layer reaches is lowered, a larger voltage is required to extend the depletion layer, so the electric field value of the multiplication layer function will not change significantly depending on a slight change in the bias voltage. do not.

一方、あまりの低lIs度化は動作電圧自体が大きくな
ってしまい、実用上使用し難い。そこで低濃度層の不純
物濃度を、PN接合に近い部分ではやや高くし、遠ざか
るに従って漸次低下するようにしておく、こうすること
により、動作電圧自体をあまり高くすることなく、空乏
層の延びを吸収することができる。
On the other hand, if the lIs is too low, the operating voltage itself becomes large, making it difficult to use it practically. Therefore, the impurity concentration of the low-concentration layer is made slightly higher near the PN junction, and gradually decreases as it moves away.By doing this, the extension of the depletion layer can be absorbed without increasing the operating voltage itself too much. can do.

(実施例) 本発明の第1の実施例の、濃度構成図および電界分布図
を第1図(a) 、 (b)に示す。構造的には従来の
APDと同様であるが、光吸収層の厚さを従来よりもや
や薄くして空乏層をバッファ層まで延ばしやすくすると
同時に、初めにInP基板上に成長させるInPバッフ
ァ層の不純物濃度を、PN接合から離れるに従って徐々
に低下させている。この様なInPバッファ層の濃度分
布は、VPEやMOCVDなど、によるエビキタシャル
成長中に、ドーパントガスの量を徐々に増していくこと
により、容易に達成できる。このときのI−V特性を第
2図に示す。従来のAPDの様な、vb近傍での電流の
急激な増加は見られず、緩やかな降伏特性を示している
(Example) A concentration structure diagram and an electric field distribution diagram of a first example of the present invention are shown in FIGS. 1(a) and 1(b). The structure is similar to conventional APD, but the thickness of the light absorption layer is made slightly thinner than before to make it easier to extend the depletion layer to the buffer layer. The impurity concentration is gradually decreased as the distance from the PN junction increases. Such a concentration distribution of the InP buffer layer can be easily achieved by gradually increasing the amount of dopant gas during the epitaxial growth by VPE, MOCVD, or the like. The IV characteristics at this time are shown in FIG. Unlike conventional APDs, a sudden increase in current near vb is not observed, and a gradual breakdown characteristic is exhibited.

lnPバッファ層の不純物濃度は、この様に連続的に変
化するのではなく一定の低濃度であってもよい。この場
合、バッファ層の濃度は1×1016cnI−3以下で
なければ、空乏層の延びを吸収する効果は期待できない
The impurity concentration of the lnP buffer layer may be a constant low concentration instead of changing continuously like this. In this case, the effect of absorbing the extension of the depletion layer cannot be expected unless the concentration of the buffer layer is 1×10 16 cnI −3 or less.

InPバッファ層の不純物濃度の低下は、第3図(a)
 、 (b)の様に段階的であってもよい。LPE成長
に於いて、不純物の量が異なるInPメルトをいくつか
用意し、不純物の少ないものから順次成長させていくこ
とにより、この様な構造が形成される。
The decrease in the impurity concentration of the InP buffer layer is shown in Figure 3(a).
, (b) may be performed in stages. In LPE growth, such a structure is formed by preparing several InP melts with different amounts of impurities and growing them in order from the one with the least amount of impurities.

また、不純物濃度が徐々に低下して空乏層の伸びを吸収
する領域は、InPバッファ層に限らずIn Ga A
s光吸収層に掛かってもよいし、光吸収層のみで空乏層
の伸びを吸収することも可能である。その様子を第4図
(a) 、(b)に示す。
In addition, the region where the impurity concentration gradually decreases and absorbs the elongation of the depletion layer is not limited to the InP buffer layer but also the InGaA
It may be applied to the s-light absorption layer, or it is also possible to absorb the elongation of the depletion layer only by the light absorption layer. The situation is shown in FIGS. 4(a) and 4(b).

以上は空乏層の伸びをn形層で吸収する例を示してきた
が、第5図(a) 、 (b)の様にp形層で空乏層の
伸びを吸収することも可能である。この様な構造は、8
1などのn形となる不純物を、例えば150KeVでイ
オン注入し、700〜750℃でアニールした後、従来
のAPDと同様にCdやZnなどを拡散することにより
形成することができる。もちろん、上で示したn形層で
吸収する方法と、ここで示したp形層で空乏層の伸びを
吸収する方法とを組み合わせることも可能である。
Although the example above has been shown in which the elongation of the depletion layer is absorbed by the n-type layer, it is also possible to absorb the elongation of the depletion layer by the p-type layer as shown in FIGS. 5(a) and 5(b). This kind of structure is 8
It can be formed by ion-implanting an n-type impurity such as 1, for example, at 150 KeV, annealing at 700 to 750° C., and then diffusing Cd, Zn, etc. as in the conventional APD. Of course, it is also possible to combine the method of absorbing with the n-type layer shown above and the method of absorbing the elongation of the depletion layer with the p-type layer shown here.

以上、発明では、(i)低濃度層の不純物温度を、PN
接合部から離れるに従って、段階的若しくは連続的に低
減する、(ii)光吸収層内の不純物温度をPN接合部
から離れるに従って、段階的若しくは連続的に低減する
( ji )から離れるに従って、段階的若しくは連続
的に低減するといういずれかの手法を組合せて実施する
ことができる。
As described above, in the invention, (i) the impurity temperature of the low concentration layer is set to PN
(ii) reduce the impurity temperature in the light absorption layer stepwise or continuously as you move away from the PN junction; (ii) reduce the impurity temperature in the light absorption layer stepwise or continuously as you move away from the PN junction; Alternatively, it is possible to implement a combination of methods of reducing the amount continuously.

また、InGaAs/InP系APDに限らず、Slや
Ge、その他Ga As系やGa Sb系などのあらゆ
る半導体系に於いて、本発明の精神を逸脱すること無く
応用することも可能であろう。
Further, the present invention may be applied not only to InGaAs/InP APDs but also to any semiconductor system such as Sl, Ge, GaAs, GaSb, etc. without departing from the spirit of the present invention.

[発明の効果] この発明によって、APDの降伏電圧近傍での電流の増
加は緩やかなものとなるため、バイアス電圧の調整が容
品となり、周辺回路も簡略化できる。
[Effects of the Invention] According to the present invention, the increase in current near the breakdown voltage of the APD becomes gradual, so the bias voltage can be easily adjusted and the peripheral circuitry can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第3図乃至第5図は、本発明の実施例である
APDの濃度分布および電界分布を示す図、第2図は本
発明の実施例であるAPDの■V特性を示す図、第6図
は従来のAPDの濃度分布および電界分布を示す図、第
7図は従来のAPDのI−V特性を示す図である。
Figures 1 and 3 to 5 are diagrams showing the concentration distribution and electric field distribution of an APD that is an embodiment of the present invention, and Figure 2 is a diagram showing the ■V characteristics of an APD that is an embodiment of the present invention. , FIG. 6 is a diagram showing the concentration distribution and electric field distribution of the conventional APD, and FIG. 7 is a diagram showing the IV characteristics of the conventional APD.

Claims (2)

【特許請求の範囲】[Claims] (1)第1の導電形の光吸収層と、第1の導電形のキャ
リア増倍層と、該キャリア増倍層に接してPN接合を形
成する第2の導電形の半導体層とを有する半導体受光素
子に於いて、前記光吸収層の前記PN接合とは反対側の
面に隣接して、その不純物濃度が1×10^1^6cm
^−^3以下である低濃度層を有し、かつ素子の動作状
態に於いて前記PN接合から延びる空乏層が該低濃度層
に侵入する構造であることを特徴とする半導体受光素子
(1) It has a light absorption layer of a first conductivity type, a carrier multiplication layer of the first conductivity type, and a semiconductor layer of a second conductivity type forming a PN junction in contact with the carrier multiplication layer. In the semiconductor light-receiving element, an impurity concentration of 1 x 10^1^6 cm is provided adjacent to the surface of the light absorption layer opposite to the PN junction.
1. A semiconductor light-receiving device having a structure in which the depletion layer extending from the PN junction penetrates into the low concentration layer when the device is in an operating state.
(2)前記半導体受光素子に於いて、前記光吸収層の不
純物濃度は1×10^1^6cm^−^3以下であり、
かつ厚さは1.5μm以下であることを特徴とする、請
求項1記載の半導体受光素子。
(2) In the semiconductor light receiving element, the impurity concentration of the light absorption layer is 1×10^1^6 cm^-^3 or less,
2. The semiconductor light receiving element according to claim 1, wherein the semiconductor light receiving element has a thickness of 1.5 μm or less.
JP63232213A 1988-09-19 1988-09-19 Semiconductor photodetector Pending JPH0281480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63232213A JPH0281480A (en) 1988-09-19 1988-09-19 Semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63232213A JPH0281480A (en) 1988-09-19 1988-09-19 Semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPH0281480A true JPH0281480A (en) 1990-03-22

Family

ID=16935760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63232213A Pending JPH0281480A (en) 1988-09-19 1988-09-19 Semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPH0281480A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04352371A (en) * 1991-05-29 1992-12-07 Mitsubishi Electric Corp Avalanche photodiode
AT14141U1 (en) * 2014-04-09 2015-05-15 Kraiburg Austria Gmbh & Co Kg rubber mat

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04352371A (en) * 1991-05-29 1992-12-07 Mitsubishi Electric Corp Avalanche photodiode
AT14141U1 (en) * 2014-04-09 2015-05-15 Kraiburg Austria Gmbh & Co Kg rubber mat

Similar Documents

Publication Publication Date Title
US4481523A (en) Avalanche photodiodes
EP0043734B1 (en) Avalanche photodiodes
US5304824A (en) Photo-sensing device
CA1225730A (en) Back-illuminated photodiode with a wide bandgap cap layer
GB2085655A (en) Semiconductor photodiode
US4599632A (en) Photodetector with graded bandgap region
KR950004550B1 (en) Light-receiving element
US20230327040A1 (en) Avalanche photo diode
JPH038117B2 (en)
WO2018189898A1 (en) Semiconductor light-receiving element
JP2002231992A (en) Semiconductor light receiving element
Ando et al. InGaAs/InP separated absorption and multiplication regions avalanche photodiode using liquid-and vapor-phase epitaxies
JPS63955B2 (en)
Shirai et al. A planar InP/InGaAsP heterostructure avalanche photodiode
US6558973B2 (en) Metamorphic long wavelength high-speed photodiode
JPS6244709B2 (en)
JPH0281480A (en) Semiconductor photodetector
GB2029639A (en) Infra-red photodetectors
US4443809A (en) p-i-n Photodiodes
GB2082389A (en) Semiconductor photo detector
US4477964A (en) Method of making p-i-n photodiodes
GB2054957A (en) Avalanche photodiode
JPS60198786A (en) Semiconductor photo receiving element
JPH0157509B2 (en)
JPS58170073A (en) Semiconductor device