JPH0281299A - Trouble forecasting device - Google Patents

Trouble forecasting device

Info

Publication number
JPH0281299A
JPH0281299A JP63232506A JP23250688A JPH0281299A JP H0281299 A JPH0281299 A JP H0281299A JP 63232506 A JP63232506 A JP 63232506A JP 23250688 A JP23250688 A JP 23250688A JP H0281299 A JPH0281299 A JP H0281299A
Authority
JP
Japan
Prior art keywords
trouble
failure
inclination
error
hazard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63232506A
Other languages
Japanese (ja)
Other versions
JPH0664664B2 (en
Inventor
Kazuaki Mutsukawa
六川 和昭
Toshiaki Tejima
手島 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23250688A priority Critical patent/JPH0664664B2/en
Publication of JPH0281299A publication Critical patent/JPH0281299A/en
Publication of JPH0664664B2 publication Critical patent/JPH0664664B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Alarm Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PURPOSE:To easily forecast trouble before the occurrence of trouble in a product by only inputting data of periodical inspection, etc., by generating a hazard Weibull chart in accordance with a trouble discrimination level to a calculate an inclination (m) and outputting the inclination (m) for discrimination of the latent trouble state of the product. CONSTITUTION:Periodical inspection data is inputted by an input device 2, and an operation processing device 1 calculates the error between input values and reference values and stores error calculation results or the like in the memory of a microcomputer, and an error decision level lower than the changeable level for decision of general trouble is inputted by a maintenance man. The processing device performs the trouble deciding operation and regards products exceeding the decision level as faulty products and automatically generates a hazard Weibull chart 4 and calculates the inclination (m). The value of the fixed-form parameter (m) is outputted from the operation processing device 1 to an output device 3 to output numbers and trouble contents of measuring meters which decide trouble. Since the inclination (m) larger than one indicates the existence of latent trouble before trouble due to wear, preventive maintenance is performed by the value of the inclination (m).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は各種製品の予防保全に用いる故障予知装置に係
り、特に破壊検査や製品・部品の劣化等に関する高度な
専門知識を必要とせずに、定期検査データ等を基に故障
に至る以前に予防保全を実施するに好適な故障予知装置
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a failure prediction device used for preventive maintenance of various products, and is capable of predicting failure without requiring advanced specialized knowledge regarding destructive inspection or deterioration of products/parts. The present invention relates to a failure prediction device suitable for implementing preventive maintenance before a failure occurs based on periodic inspection data and the like.

〔従来の技術〕[Conventional technology]

従来の定期検査データの処理装置は入力部より入力され
た定期検査データにより誤差計算を実施して定形化され
た記録用紙に出力するという事務用機器として使用され
ているのみであって、予防保全はあくまでも熟練者の判
断によるか又は計器等をサンプリングしての破壊検査に
より劣化度を判断するといった高度な専門知識を要する
技術であった。また従来のハザード・ワイブルチャート
手法は故障の累積といった故障した製品・部品等を統計
処理して、残った健全な製品・部品等の状態を推定する
保全手法であった。
Conventional periodic inspection data processing devices are only used as office equipment that performs error calculations based on periodic inspection data input from an input unit and outputs the results on standardized recording forms, and are used only for preventive maintenance. This was a technology that required highly specialized knowledge, such as determining the degree of deterioration by the judgment of experts or by destructive inspection of sampling instruments. Furthermore, the conventional hazard Weibull chart method is a maintenance method that statistically processes failed products and parts, such as cumulative failures, to estimate the condition of remaining healthy products and parts.

また従来のこの種の製品・部品等の劣化推定方法および
劣化診断装置として、例えば特開昭58−61474号
公報では故障の分布状態が正規分布により表わし得るも
のと仮定することにより、少ないサンプル数で小さい故
障確率の推定を可能として、正規分布の経年変化を数式
化することにより、寿全試験を行なった期間よりさらに
長期間の寿命予測を可能とする方法を提案している。ま
た特開昭62−134568号公報では統計的手法では
なく、個々の劣化状態を予め実験により評価しておいた
サンプルと相互に比較して判定する装置を提案している
。しかしこれらの方法および装置は、いずれも特性値が
基準となる故障限界値以下であるか否かで故障を判定し
ており、まだ故障限界に達していない製品・部品の故障
予測方法に関しては示されていない。
In addition, as a conventional deterioration estimation method and deterioration diagnosis device for this type of products and parts, for example, Japanese Patent Application Laid-Open No. 58-61474 uses a small number of samples by assuming that the distribution state of failures can be represented by a normal distribution. We are proposing a method that makes it possible to estimate a small failure probability and to mathematically express the secular change of a normal distribution, thereby making it possible to predict the lifespan for a longer period than the period in which the lifespan test was conducted. Furthermore, Japanese Patent Application Laid-Open No. 134568/1983 proposes an apparatus that compares each deterioration state with samples that have been evaluated through experiments in advance, rather than using a statistical method. However, these methods and devices all judge failure based on whether or not the characteristic value is below the reference failure limit value, and there are no methods for predicting failure of products and parts that have not yet reached the failure limit. It has not been.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、熟練者の判断あるいは計器等をサンプ
リングしての破壊検査によりその劣化度を判断するか、
または計器故障後の故障時期と発生件数によるハザード
・ワイブルチャートを作成して傾き(形状パラメータ)
mにより初期故障、偶発故障、摩耗故障に分類して予防
保全に利用しており(第6図参照)、いずれも高度の専
門知識と多大の労力および時間を要する問題があった。
In the above-mentioned conventional technology, the degree of deterioration is determined by the judgment of an expert or by destructive inspection of sampling instruments, etc.
Or create a hazard Weibull chart based on failure time and number of occurrences after instrument failure and slope (shape parameter)
They are classified into initial failures, random failures, and wear-out failures based on m (see Figure 6), and are used for preventive maintenance (see Figure 6), all of which have problems that require a high degree of specialized knowledge, a great deal of labor, and time.

またハザード・ワイブルチャートによる故障判定方法は
製品が故障しなければ使用できないという問題があった
Another problem is that the failure determination method using the Hazard-Weibull chart cannot be used unless the product fails.

本発明の目的は、定期検査等のデータを入力するのみで
製品故障になる以前に簡便に故障を予知して予防保全に
利用できる故障予知装置を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a failure prediction device that can easily predict failures before product failures by simply inputting data such as periodic inspection data and can be used for preventive maintenance.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、計器等の製品の定期検査データ等を入力す
る手段と、データの入力値と真値とを比較した誤差デー
タと可変の故障判定レベルとを順次比較し、この故障判
定レベルを越えた製品を潜在的故障を含む故障とみなし
てハザード・ワイブルチャートを作成のうえ傾きmを演
算出力する演算処理装置と、演算処理結果を出力する出
力装置とを備え、製品の初期故障、偶発故障、摩耗故障
等の潜在的故障状態を判定して予防保全ができるように
構成した故障予知装置により達成される。
The above purpose is to provide a means for inputting periodic inspection data of products such as meters, and to sequentially compare error data obtained by comparing the input data value and true value with a variable failure judgment level, and to exceed this failure judgment level. It is equipped with an arithmetic processing unit that regards a product as a failure including a potential failure, creates a hazard Weibull chart, calculates and outputs the slope m, and an output device that outputs the arithmetic processing result, and is equipped with an output device that outputs the result of the arithmetic processing. This is achieved by a failure prediction device configured to determine potential failure states such as wear-out failures and perform preventive maintenance.

〔作用〕[Effect]

上記故障予知装置は、定期検査データ等を入力し、この
入力値と校正用の真値とを比較して誤差を算出し該算出
結果を記憶部に記憶したのち、ある故障判定レベルを入
力することにより、この故障判定レベルと上記算出結果
の誤差とを比較して判定レベルを越えているものを故障
品とみなし、これよりハザード・ワイブルチャートを自
動的に作成して傾きmを算出するが、ここで故障判定レ
ベルを保守員により任意に変更できるようにして、一般
に故障と判定するレベルよりも低い故障判定レベルを入
力することにより、このとき得られるハザード・ワイブ
ルチャートの傾きmが1より大きい時には摩耗故障期に
入る以前の潜在的故障を含んでおり、今後に故障率が上
昇するものと予知することにより予防保全の必要がある
ことがわかるので、製品が完全に故障してしまう以前に
計画的に予防保全を行なうことが可能となる。
The failure prediction device inputs periodic inspection data, etc., calculates an error by comparing this input value with a true value for calibration, stores the calculation result in a storage unit, and then inputs a certain failure judgment level. By comparing this failure judgment level and the error of the above calculation result, a product that exceeds the judgment level is regarded as a defective product, and from this a hazard Weibull chart is automatically created and the slope m is calculated. , here, the failure determination level can be changed arbitrarily by maintenance personnel, and by inputting a failure determination level lower than the level that is generally determined to be a failure, the slope m of the hazard Weibull chart obtained at this time is less than 1. If the value is large, it includes potential failures before entering the wear-out failure period, and by predicting that the failure rate will increase in the future, it can be seen that preventive maintenance is necessary, so it is possible to detect potential failures before the product completely fails. This makes it possible to carry out preventive maintenance in a planned manner.

〔実施例〕〔Example〕

以下に本発明の一実施例を第1図ないし第6図により説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 6.

第1図は本発明による故障予知装置の一実施例を示す基
本演算処理フローチャートである。第1図において、ま
ず処理lOOで定期検査データの計器番号2校正前出力
2校正値等を入力装置(入力部)2により入力する。処
理101で演算処理装置101は上記入力値(校正前出
力)と基準値10との誤差演算を行ない、処理102で
計器番号、検査口、運転開始日、誤差演算結果等をマイ
クロコンピュータのメモリに格納する。ついで処理10
3の保守員による可変人力により、処理104で変更可
能な一般の故障と判定するレベルよりも低い値の誤差判
定レベル(故障判定レベル)を入力する。処理105で
演算処理装置1は上記誤差演算結果が誤差判定レベルを
越える条件で故障判定演算を行ない、処理106で上記
故障と判定した計器の誤差値、稼動時間tからグラフを
プロットしたのちこれらに最も近い直線を引くハザード
・ワイブルチャート作成演算を行ない、処理107で上
記直線の傾きである形状パラメータmを決定する。上記
演算結果に基づいて演算処理装置1より出力袋[3に処
理108で定期検査禁出力を行ない、処理109で上記
形状パラメータmの値を出力し、処理110で上記故障
(潜在的故障を含む)と判定した計器の番号、故障内容
出力を行なう。また処理106で作成のハザード・ワイ
ブルチャートを出力してもよい。これらの出力により傾
きmの値から初期故障、偶発故障、摩耗故障等の潜在的
故障状態を判定して計器類の予防保全が行なえる。
FIG. 1 is a basic arithmetic processing flowchart showing an embodiment of the failure prediction device according to the present invention. In FIG. 1, first, in process lOO, instrument number 2 pre-calibration output 2 calibration values, etc. of periodic inspection data are inputted through input device (input unit) 2. In process 101, the arithmetic processing unit 101 calculates the error between the input value (output before calibration) and the reference value 10, and in process 102, the instrument number, inspection port, operation start date, error calculation result, etc. are stored in the memory of the microcomputer. Store. Then processing 10
In step 104, an error determination level (failure determination level) lower than the level for determining a general failure, which can be changed, is inputted by the variable human power of the maintenance staff No. 3. In process 105, the arithmetic processing unit 1 performs a failure determination calculation under the condition that the error calculation result exceeds the error determination level, and in process 106, it plots a graph from the error value and operating time t of the instrument determined to be malfunctioning, and then plots a graph based on the error value and operating time t of the instrument determined to be malfunctioning. A Hazard-Weibull chart creation calculation is performed to draw the closest straight line, and in step 107, a shape parameter m, which is the slope of the straight line, is determined. Based on the above calculation results, the processing unit 1 outputs the periodic inspection prohibition output from the output bag [3 in process 108, outputs the value of the shape parameter m in process 109, and outputs the above failure (including potential failure) in process 110. ) and the failure details are output. Further, the hazard Weibull chart created in process 106 may be output. With these outputs, potential failure states such as initial failure, random failure, wear-out failure, etc. can be determined from the value of the slope m, and preventive maintenance of instruments can be performed.

第2図は本発明による故障予知装置の一実施例を示すデ
ータ処理装置の構成柄図である。第2図において、1は
故障予知計算処理機能を備えた演算処理装置で、マイク
ロコンピュータおよび記憶部(メモリ)等からなる。2
は定期検査データ等を入力する入力装置、3は演算処理
結果のハザード・ワイブルチャート等を出力する出力装
置で、CRT表示装置およびプリンタ等を備える。この
構成で、キーボード等のデータ入力装置2より計器類の
定期検査データ等を演算処理装置1に入力し、この入力
値と定期検査時の基準となる基準値とをマイクロコンピ
ュータで比較演算して誤差を算出したのち、その誤差演
算結果等を記憶部(メモリ)に記憶する。この定形化さ
れた出力例を次に示す。
FIG. 2 is a structural diagram of a data processing device showing an embodiment of the failure prediction device according to the present invention. In FIG. 2, reference numeral 1 denotes an arithmetic processing unit equipped with a failure prediction calculation processing function, which includes a microcomputer, a storage section (memory), and the like. 2
3 is an input device for inputting periodic inspection data, etc., and 3 is an output device for outputting a hazard Weibull chart, etc. of the arithmetic processing results, and includes a CRT display device, a printer, etc. With this configuration, periodic inspection data of instruments, etc. is inputted to the arithmetic processing unit 1 from a data input device 2 such as a keyboard, and the microcomputer compares and calculates this input value with a standard value that is used as a reference for periodic inspections. After calculating the error, the error calculation results and the like are stored in a storage unit (memory). An example of this stylized output is shown below.

第3図は第2図の定期検査データの定形出力データ柄図
である。第3図において、5は定形化された定期検査表
出力例である。定期検査表5は検査日、計器番号、製品
番号、製品使用開始日等が記録される。また校正対象計
器に対する基準入力(%+ m A ) e基準出力(
mV)、校正前側定出力(mV)、校正前出力と基準出
力の誤差(%)9校正機測定出力である校正値(mV)
、校正値と基準出力の誤差(%)等の値が記録される。
FIG. 3 is a standard output data pattern diagram of the periodic inspection data shown in FIG. In FIG. 3, numeral 5 is an example of a standardized periodic inspection table output. The periodic inspection table 5 records the inspection date, instrument number, product number, product use start date, etc. Also, the reference input (% + mA) for the instrument to be calibrated, e reference output (
mV), constant output before calibration (mV), error between output before calibration and reference output (%)9 Calibration value (mV) which is the measurement output of the calibration machine
, the error (%) between the calibration value and the reference output, and other values are recorded.

さらに注目する誤差(校正前)の値がグラフ表示されて
おり、いずれの値も製品の良否判定誤差±0.5%以内
であるので、この判定誤差±0.5%9判定結果良等が
記録されている。この定期検査データの誤差(校正前)
の最大値を集めたグラフを次に示す。
Furthermore, the values of the errors to be noted (before calibration) are displayed in a graph, and all values are within ±0.5% of the product quality judgment error, so this judgment error is ±0.5%9. recorded. Error in this periodic inspection data (before calibration)
The graph below shows the maximum values of .

第4図は第2図の定期検査データの計器誤差分布の経年
変化柄図である。第4図において、第3図の誤差(校正
前)%を全ての定期検査対象計器(製品)について集め
、これを使用期間(稼動時間)年に対してグラフにプロ
ットして表示している。
FIG. 4 is a diagram showing the secular change in the instrument error distribution of the periodic inspection data shown in FIG. In FIG. 4, the error percentage (before calibration) in FIG. 3 is collected for all instruments (products) subject to periodic inspection, and is plotted and displayed in a graph against the period of use (operating time) in years.

この誤差%は第3図の誤差(校正前)の値eの中で絶対
値の最大値maxl e lをプロットしており、第3
図の例では0.48がプロット値である。ここで定期検
査データの製品の故障判定レベル(良否判定誤差)は保
守員により任意に変更できるようにし、上記の通常の故
障判定レベル(良否判定誤差)0.5%よりも低い例え
ば変更後の故障判定レベル0.4%の値を入力装置2よ
り入力する。演算処理装置1内のマイクロコンピュータ
は記憶部に蓄積された定期検査データの誤差(校正前)
演算結果と変更後の故障判定レベル(良否判定誤差)±
0.4%とを比較演算して、この判定レベルを越えた誤
差を持つ製品を故障品(潜在的故障品を含む)とみなし
、その計器番号等をリストアツブする。したがって例え
ば第3図に例示の定期検査表5のデータは変更後の故障
判定レベル±0.4%では故障(不良)とみなされる0
次に演算処理袋M1は変更後の故障判定レベルで故障と
みなした製品に対してハザード・ワイブルチャートを作
成する。
This error% is calculated by plotting the maximum absolute value maxl e l of the error (before calibration) value e in Figure 3.
In the example shown in the figure, 0.48 is the plot value. Here, the failure judgment level (pass/fail judgment error) of the product in the periodic inspection data can be changed arbitrarily by maintenance personnel, and for example, after the change The value of failure determination level 0.4% is input from the input device 2. The microcomputer in the arithmetic processing unit 1 detects errors in periodic inspection data stored in the storage unit (before calibration).
Calculation result and failure judgment level after change (pass/fail judgment error) ±
A comparison operation is made with 0.4%, and a product with an error exceeding this determination level is regarded as a defective product (including a potentially defective product), and its instrument number etc. are restored. Therefore, for example, the data in periodic inspection table 5 shown in FIG.
Next, the arithmetic processing bag M1 creates a hazard Weibull chart for the product deemed to be failed at the changed failure determination level.

第5図は第2図の定期検査データのハザード・ワイブル
チャートの出力柄図である。第5図において、4はハザ
ード・ワイブルチャート出力例で。
FIG. 5 is an output pattern of the hazard Weibull chart of the periodic inspection data shown in FIG. In Figure 5, 4 is an example of Hazard Weibull chart output.

故障判定レベルXI+12%のときの使用時間tに対す
る故障累積件数H(t)を表示している。上記の演算処
理装置1のマイクロコンピュータは故障判定レベルXl
+X2%のときに定期検査データの誤差(校正前)%の
値から故障(潜在的故障を含む)とみなした第4図に例
示の多数の製品に対し、その製品開始日から運転時間(
使用時間)を算出して、ハザード・ワイブルチャート4
の使用時間tに対応の故障累積件数H(t)を自動プロ
ットしたのち、そのプロットした点に対して最も近似し
た直線を作画することにより、その直線の傾き(形状パ
ラメータ)mを求める処理を行ない出力装置3に出力す
る。この直線の傾き(形状パラメータ)mの値により次
に製品の故障期の判定ができる。
The cumulative number of failures H(t) with respect to usage time t when the failure determination level is XI+12% is displayed. The microcomputer of the arithmetic processing unit 1 described above has a failure judgment level of Xl.
+
Hazard Weibull Chart 4
After automatically plotting the cumulative number of failures H(t) corresponding to the usage time t of and output to the output device 3. Next, the failure period of the product can be determined based on the value of the slope (shape parameter) m of this straight line.

第6図は第2図の定期検査データの典型的な機器の故障
率曲線(寿命曲線)図である。第6図において1周知の
典型的な機器の故障率曲線(寿命曲線)の使用時間tに
対する故障率λ(1)を表示している、この故障率曲線
から第5図のハザード・ワイブルチャート4の直線の傾
き(形状パラメータ)mが1より大きいm > 1の場
合には、これらの製品は摩耗故障期間に入る直前とみな
すことができるため、ここでリストアツブされた製品に
対して次回定期検査時に交換する等の予防保全を計画す
ることができる。この予防保全に用いる定期検査データ
の項目としては、零点調整量、スパン調整量、線形性、
入出力応答特性等を基準としてもよい。また傾き(形状
パラメータ) m = l 、 m (lの場合には、
それぞれ偶発故障期間、初期故障期の判定ができること
により、短期的な予防保全にも役立つ。この故障率曲線
(寿命曲線)の偶発故障期間(m=1)に対応した規定
の故障率以下の期間が製品の耐用寿命である。
FIG. 6 is a typical equipment failure rate curve (life curve) based on the periodic inspection data shown in FIG. 2. In Figure 6, the failure rate λ(1) of a well-known typical equipment failure rate curve (life curve) with respect to operating time t is displayed.From this failure rate curve, the hazard Weibull chart 4 in Figure 5 is shown. If the slope of the straight line (shape parameter) m is larger than 1 and m > 1, these products can be considered to be about to enter the wear-out failure period, so the next periodic inspection of the restored products will be carried out. Preventive maintenance such as occasional replacement can be planned. Items of periodic inspection data used for this preventive maintenance include zero adjustment amount, span adjustment amount, linearity,
It may be based on input/output response characteristics, etc. Also, the slope (shape parameter) m = l, m (in the case of l,
It is also useful for short-term preventive maintenance by being able to determine the random failure period and early failure period. The period in which the failure rate is equal to or less than the prescribed failure rate corresponding to the random failure period (m=1) of this failure rate curve (life curve) is the useful life of the product.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高度な専門知識等を要せずに簡便に計
器等の定期検査データを用いて製品故障になる以前に故
障予知できるので、予防保全計画を立てることが可能と
なり1本装置を計測制御装置に適用した場合には計測制
御装置だけではなく、しいてはプラント等の信頼性向上
にも多大の効果がある。
According to the present invention, it is possible to easily predict product failures before they occur by using periodic inspection data of instruments without requiring advanced specialized knowledge, making it possible to formulate a preventive maintenance plan. When applied to measurement and control equipment, it has a great effect on improving the reliability not only of the measurement and control equipment, but also of plants, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による故障予知装置の一実施例を示す基
本演算処理フローチャート、第2図は本発明による故酷
予知装置の一実施例を示すデータ処理装置の構成側図、
第3図は第2図の定期検査データの定形出力側図、第4
図は第2図の定期検査データの計器誤差分布の経年変化
側図、第5図は第2図の定期検査データのハザード・ワ
イブルチャートの出力側図、第6図は第2図の定期検査
データの典型的な機器の故障率曲線図である。 1・・・故障予知計算処理機能を備えた演算処理装置、
2・・・定期検査データ等を入力する入力装置、3・・
・演算処理結果のハザード・ワイブルチャート等を出力
する出力装置、4・・・ハザード・ワイブルチャート出
力例、5・・・定形化された定期検査表出力例。
FIG. 1 is a basic arithmetic processing flowchart showing an embodiment of the failure prediction device according to the present invention, and FIG. 2 is a side view of the configuration of a data processing device showing an embodiment of the failure prediction device according to the present invention.
Figure 3 is the standard output side view of the periodic inspection data in Figure 2,
The figure is a side view of the secular variation of the instrument error distribution of the periodic inspection data in Figure 2, Figure 5 is the output side of the hazard Weibull chart of the periodic inspection data in Figure 2, and Figure 6 is the periodic inspection data in Figure 2. FIG. 3 is a typical equipment failure rate curve diagram of the data. 1... Arithmetic processing device equipped with failure prediction calculation processing function,
2... Input device for inputting periodic inspection data, etc., 3...
- Output device that outputs a hazard Weibull chart etc. of the calculation processing result, 4... Example of outputting a hazard Weibull chart, 5... Example of outputting a standardized periodic inspection sheet.

Claims (1)

【特許請求の範囲】[Claims] 1、計器等の製品の定期検査時に得られる定期検査デー
タ等を入力する入力手段と、入力する定期検査データ、
誤差データ等の蓄積データに対して可変の故障判定レベ
ルを入力する手段と、上記蓄積データと可変の故障判定
レベルとの比較演算を行い該故障判定レベルに応じたハ
ザード・ワイブルチャートを作成して傾きmを算出する
演算処理装置と、演算結果のハザード・ワイブルチャー
トの傾きmを製品の初期故障、偶発故障、摩耗故障等の
潜在的故障状態の判定用に出力する出力装置とから成る
故障予知装置。
1. Input means for inputting periodic inspection data etc. obtained during periodic inspection of products such as meters, and periodic inspection data to be input;
A means for inputting a variable failure judgment level for accumulated data such as error data, and a means for performing a comparison operation between the accumulated data and the variable failure judgment level to create a hazard Weibull chart according to the failure judgment level. A failure prediction system consisting of an arithmetic processing unit that calculates the slope m, and an output device that outputs the slope m of the hazard Weibull chart resulting from the calculation for use in determining potential failure states such as initial failures, random failures, and wear-out failures of the product. Device.
JP23250688A 1988-09-19 1988-09-19 Failure prediction device Expired - Lifetime JPH0664664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23250688A JPH0664664B2 (en) 1988-09-19 1988-09-19 Failure prediction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23250688A JPH0664664B2 (en) 1988-09-19 1988-09-19 Failure prediction device

Publications (2)

Publication Number Publication Date
JPH0281299A true JPH0281299A (en) 1990-03-22
JPH0664664B2 JPH0664664B2 (en) 1994-08-22

Family

ID=16940397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23250688A Expired - Lifetime JPH0664664B2 (en) 1988-09-19 1988-09-19 Failure prediction device

Country Status (1)

Country Link
JP (1) JPH0664664B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232564A (en) * 2006-03-01 2007-09-13 Chugoku Electric Power Co Inc:The Facilities diagnostic support apparatus, system, and computer program
JP2008171026A (en) * 2007-01-05 2008-07-24 Toshiba Corp Maintenance method and maintenance device for system, and program
JP2010272023A (en) * 2009-05-22 2010-12-02 Toshiba Corp Device and method for maintenance of plant
WO2013145493A1 (en) * 2012-03-30 2013-10-03 日本電気株式会社 Pipeline administration assistance device and pipeline administration assistance system
JP2016115008A (en) * 2014-12-11 2016-06-23 日本電信電話株式会社 Failure prediction device, failure prediction method and failure prediction program
JP2017151686A (en) * 2016-02-24 2017-08-31 日本電信電話株式会社 Analysis data selection device and analysis data selection method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232564A (en) * 2006-03-01 2007-09-13 Chugoku Electric Power Co Inc:The Facilities diagnostic support apparatus, system, and computer program
JP2008171026A (en) * 2007-01-05 2008-07-24 Toshiba Corp Maintenance method and maintenance device for system, and program
JP2010272023A (en) * 2009-05-22 2010-12-02 Toshiba Corp Device and method for maintenance of plant
WO2013145493A1 (en) * 2012-03-30 2013-10-03 日本電気株式会社 Pipeline administration assistance device and pipeline administration assistance system
US9921146B2 (en) 2012-03-30 2018-03-20 Nec Corporation Pipeline management supporting server and pipeline management supporting system
JP2016115008A (en) * 2014-12-11 2016-06-23 日本電信電話株式会社 Failure prediction device, failure prediction method and failure prediction program
JP2017151686A (en) * 2016-02-24 2017-08-31 日本電信電話株式会社 Analysis data selection device and analysis data selection method

Also Published As

Publication number Publication date
JPH0664664B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
US5511004A (en) Diagnostic method for an evolutionary process
US10527520B2 (en) Operating wind motors and determining their remaining useful life
US7254514B2 (en) Method and system for predicting remaining life for motors featuring on-line insulation condition monitor
US6694286B2 (en) Method and system for monitoring the condition of an individual machine
Hashemian State-of-the-art predictive maintenance techniques
US20050143953A1 (en) A method and system for targeting and monitoring the energy performance of manufacturing facilities
KR102408426B1 (en) Method for detecting anomaly using equipment age index and apparatus thereof
WO2017138238A1 (en) Monitoring device, and method for controlling monitoring device
US20080288213A1 (en) Machine condition monitoring using discontinuity detection
KR100758152B1 (en) Fault diagnosis method using automation through quantization of vibration signals
JPH0281299A (en) Trouble forecasting device
An et al. Detection of process anomalies using an improved statistical learning framework
JP2018113027A (en) Process abnormality state diagnosis method and abnormality state diagnosis device
CN112947177B (en) Equipment point inspection system, method, device and storage medium
US11886831B2 (en) Data sorting device and method, and monitoring and diagnosis device
JPH05195980A (en) Preventive maintenance system for high-speed centrifugal pump dealing with high-temperature and high-pressure fluid
Bicen Propositional logic concept for fault diagnosis in complex systems
Buceti et al. Automatic validation of the five-channel DCN interferometer in ENEA-FTU based on soft-computing techniques
JPH07181292A (en) Plant operation support system
KR102385534B1 (en) Virtual lifetime data generation apparatus based on mutual similarity between data and method thereof
Wang Rotary machinery health condition monitoring, fault diagnosis and prognosis.
WO1995022089A1 (en) Method and apparatus for diagnosing fault
JP6859381B2 (en) State change detection device and state change detection program
Srikantam et al. Determining Sensor Accuracy for Condition Monitoring Applications based on End of Life Metrics: Capacitor Case Study
Schadler et al. Adaptive Methods for Fault Detection on Research Engine Test Beds