JPH0280305A - Production of crystalline high temperature superconducting thin film - Google Patents

Production of crystalline high temperature superconducting thin film

Info

Publication number
JPH0280305A
JPH0280305A JP1093007A JP9300789A JPH0280305A JP H0280305 A JPH0280305 A JP H0280305A JP 1093007 A JP1093007 A JP 1093007A JP 9300789 A JP9300789 A JP 9300789A JP H0280305 A JPH0280305 A JP H0280305A
Authority
JP
Japan
Prior art keywords
thin film
substrate
superconducting
high temperature
temperature superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1093007A
Other languages
Japanese (ja)
Inventor
Tsunemi Sugimoto
常実 杉本
Shigeru Igai
滋 猪飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP1093007A priority Critical patent/JPH0280305A/en
Publication of JPH0280305A publication Critical patent/JPH0280305A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain a high temp. superconducting thin film having satisfactory crystalline property by prepg. the crystalline thin film basing on an organometallic vapor growth process while supplying ozone as at least a part of oxidizing gas. CONSTITUTION:A crystalline thin film of an oxide high temp. superconducting material is prepd. by supplying ozone as at least a part of oxidizing gas in a stage of prepg. the crystalline oxide high temp. superconducting thin film basing on an organometallic vapor growth process. It is desirable to irradiate a base plate with light having 150-600nm wavelength in order to prepare a thin film having satisfactory crystalline property on a base plate at a relatively low temp. Examples for the crystalline oxide high temp. superconducting thin film prepd. by the organometallic vapor growth are those comprising Bi-alkaline earth element-Cu-O type superconducting ceramic, or rare earth element-alkaline earth element Cu-O type superconducting ceramic, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、有機金属化学的気相成長による酸化物高温超
電導結晶性薄膜の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing an oxide high temperature superconducting crystalline thin film by organometallic chemical vapor deposition.

(従来技術及びその問題点) Y−Ba−Cu−0系に代表される稀土類元素−アルカ
リ土類元素−Cu酸化物系高温超電導セラミックス、B
1−Ca−3r−Cu−0系に代表されるBi−アルカ
リ土類元素−Cu酸化物からなる高温超電導セラミック
スは、交通機関、重電機器、コンピューター、医療機器
の多方面への応用が期待されている。
(Prior art and its problems) Rare earth element-alkaline earth element-Cu oxide system high temperature superconducting ceramics represented by Y-Ba-Cu-0 system, B
High-temperature superconducting ceramics made of Bi-alkaline earth element-Cu oxides, represented by the 1-Ca-3r-Cu-0 system, are expected to have a wide range of applications in transportation, heavy electrical equipment, computers, and medical equipment. has been done.

これらの酸化物系高温超電導セラミフクスは、液体窒素
のような安価な冷媒で冷却することによっても超電導状
態になるため、液体ヘリウム中でしか超II導状態を示
さないNb−Ti系超電導合金などの代わりに、超電導
マグネットなどに使えれば、経済的に大きなメリットが
ある・酸化物系高温超電導体を電子デバイスに応用する
場合において、基板上に超電導結晶性薄膜を、あるいは
絶縁薄膜と超電導結晶性薄膜の多層膜を形成する必要が
ある。
These oxide-based high-temperature superconducting ceramics become superconducting even when cooled with an inexpensive refrigerant such as liquid nitrogen, so they are similar to Nb-Ti-based superconducting alloys that only exhibit super II conductivity in liquid helium. If it can be used instead for superconducting magnets, etc., it would have a great economic advantage. When applying oxide-based high-temperature superconductors to electronic devices, it is possible to use a superconducting crystalline thin film on a substrate, or an insulating thin film and a superconducting crystalline thin film. It is necessary to form a multilayer film.

従来、結晶性薄膜の形成法としては種々の方法が知られ
ているが、有機金属錯体の蒸気をガス同伴により熱分解
炉に送り基板上で熱分解させ薄膜を形成させる、いわゆ
る有機金属化学的気相成長法(Metal Organ
ic Chemical Vapor Deposit
ionHMOCVD法)が薄膜形成速度の制御が容易で
あり、また常圧近辺で製造することができ量産し易い等
の理由から一般によく用いられる。
Conventionally, various methods are known for forming crystalline thin films, but the so-called organometallic chemical method involves sending the vapor of an organometallic complex along with gas to a thermal decomposition furnace and thermally decomposing it on a substrate to form a thin film. Vapor phase growth method (Metal Organ
ic Chemical Vapor Deposit
ion HMOCVD method) is commonly used because it is easy to control the thin film formation rate, it can be manufactured at around normal pressure, and mass production is easy.

MOCVD法による超電導結晶性薄膜の製造においては
、超電導結晶の組成金属の有機金属錯体と供給酸素との
加熱基板上での熱分解反応によって複合金属酸化物から
なる薄膜を形成させる。しかしながら、原料の有機金属
錯体、分解反応雰囲気ガス、基板温度範囲等の適切な選
択、組み合わせを決めることが困難であり、結晶性の良
好な超電導結晶性薄膜が再現性良く得られないといった
問題点があった。
In manufacturing a superconducting crystalline thin film by the MOCVD method, a thin film made of a composite metal oxide is formed by a thermal decomposition reaction between an organometallic complex of a constituent metal of a superconducting crystal and supplied oxygen on a heated substrate. However, it is difficult to determine the appropriate selection and combination of raw material organometallic complexes, decomposition reaction atmosphere gas, substrate temperature range, etc., and there are problems in that superconducting crystalline thin films with good crystallinity cannot be obtained with good reproducibility. was there.

(問題点解決のための技術的手段) 本発明者等は、上記問題点について鋭意研究した結果、
本発明に至った。
(Technical means for solving the problem) As a result of intensive research into the above problem, the present inventors found that
This led to the present invention.

本発明は、有機金属化学的気相成長法によって酸化物高
温超電導結晶性薄膜を製造する際に、少なくとも一部の
酸化性ガスとしてオゾンを供給すること、および銅含有
有機金属化合物の原料ガスを、他の原料ガスとあらかじ
め混合せず独立に基板付近に供給することを特徴とする
酸化物高温超電導結晶性薄膜の再現性の良好な製造法に
関する。
The present invention provides for supplying ozone as at least a part of the oxidizing gas and supplying a raw material gas for a copper-containing organometallic compound when manufacturing an oxide high temperature superconducting crystalline thin film by organometallic chemical vapor deposition. , relates to a method for producing an oxide high-temperature superconducting crystalline thin film with good reproducibility, characterized in that it is supplied to the vicinity of a substrate independently without being mixed with other raw material gases in advance.

また、比較的低温の基板上に結晶性の良好な薄膜を製造
するために、基板上に波長150〜600nmの光を照
射する酸化物高温超電導結晶性薄膜の製造法である。
Moreover, in order to manufacture a thin film with good crystallinity on a relatively low-temperature substrate, there is a method for manufacturing an oxide high-temperature superconducting crystalline thin film in which the substrate is irradiated with light having a wavelength of 150 to 600 nm.

本発明のMOCVD法で製造される酸化物高温超電導結
晶性薄膜としては、Bi−アルカリ土類元素−Cu酸化
物系超電導セラミックス、あるいは稀土類元素−アルカ
リ土類元素−Cu酸化物系超電導セラミックス等からな
る結晶性薄膜が挙げられる。
The oxide high temperature superconducting crystalline thin film produced by the MOCVD method of the present invention includes Bi-alkaline earth element-Cu oxide superconducting ceramics, rare earth element-alkaline earth element-Cu oxide superconducting ceramics, etc. For example, a crystalline thin film consisting of

Bi−アルカリ土類元素−Cu酸化物系高温超電導セラ
ミックスは、次の一般式、B i、AxCuyO7で表
される。式中AはMg、Ca、Ba及びSrから選択さ
れる少なくとも一種類のアルカリ土類元素を示している
。上記式において、1<xく4.1 <y<4.3 、
5 < z < 9 、5の範甥のものが特に好ましい
Bi-alkaline earth element-Cu oxide-based high temperature superconducting ceramics is represented by the following general formula, Bi,AxCuyO7. In the formula, A represents at least one alkaline earth element selected from Mg, Ca, Ba, and Sr. In the above formula, 1<x×4.1<y<4.3,
5 < z < 9, those in the range of 5 are particularly preferred.

稀土類元素−アルカリ土類元素−Cu酸化物系超電導セ
ラミックスは、次の一般式、R,AXCu。
The rare earth element-alkaline earth element-Cu oxide-based superconducting ceramic has the following general formula: R, AXCu.

08で表される。式中RはY、La、Nd、Sm、Eu
、Cd、Dy、HoXTm5Tb、Lu及びErから選
択される少なくとも一種類の稀土類元素、AはBa及び
Srから選択される少なくとも一種類のアルカリ土類元
素を示している。上記式において、1.5<x<2.5
.2.5<y<3゜5.6.5<z<7の範囲が好まし
い。
It is represented by 08. In the formula, R is Y, La, Nd, Sm, Eu
, Cd, Dy, HoXTm5Tb, Lu and Er, and A represents at least one alkaline earth element selected from Ba and Sr. In the above formula, 1.5<x<2.5
.. The range of 2.5<y<3°5.6.5<z<7 is preferable.

本発明において使用する原料の有機金属錯体の有機部分
(配位子)としてアセチルアセトン、ヘキサフルオロア
セチルアセトン、ジピバロイルメタン、あるいはシクロ
ペンクジエンを使用することができる。好ましい配位子
としては、次式の有機化合物、 CH。
Acetylacetone, hexafluoroacetylacetone, dipivaloylmethane, or cyclopencdiene can be used as the organic moiety (ligand) of the organometallic complex as a raw material used in the present invention. Preferred ligands include organic compounds of the following formula: CH.

RCCHz   CCCH:1 0      0   C9H。RCCHz CCCH:1 0    0  C9H.

〔式中、Rは炭素数1〜4のフッ素化低級アルキル基を
示す〕であり、この配位子を用いると合成、単離が容易
であり、有機金属錯体自体の蒸気圧が低く薄膜形成速度
が大きいといった利点がある。
[In the formula, R represents a fluorinated lower alkyl group having 1 to 4 carbon atoms.] When this ligand is used, synthesis and isolation are easy, and the vapor pressure of the organometallic complex itself is low, making it possible to form a thin film. It has the advantage of high speed.

本発明で使用する有機金属錯体の製造法としては、通常
の金属錯体の製造法の技術を採用することができる。例
えば所望の高温超電導単結晶の成分である金属(例えば
Bi、、Cu、Ca、Ba、Sr、Y等の稀土類元素)
の水酸化物、金属塩等の金属化合物と上式の有機化合物
との水溶液からpH調整により得られる粗結晶をエタノ
ール−水から再結晶し、さらに乾燥させることにより容
易に得ることができる。上式中のRとしてはトリフルオ
ロメチル基(以下、T P Mと略記する)、ペンタフ
ルオロエチル基(以下、PPMと略記する)、ヘプタフ
ルオロプロピル基等を挙げることができる。
As a method for producing the organometallic complex used in the present invention, techniques for producing ordinary metal complexes can be employed. For example, metals that are components of a desired high-temperature superconducting single crystal (e.g., rare earth elements such as Bi, Cu, Ca, Ba, Sr, and Y)
It can be easily obtained by recrystallizing crude crystals obtained from an aqueous solution of a metal compound such as a hydroxide or a metal salt and an organic compound of the above formula by adjusting the pH from ethanol-water and further drying. Examples of R in the above formula include a trifluoromethyl group (hereinafter abbreviated as TPM), a pentafluoroethyl group (hereinafter abbreviated as PPM), and a heptafluoropropyl group.

本発明のMOCVD法による酸化物高温超電導結晶性薄
膜の製造は、結晶性薄膜生成用の加熱された基板が備え
られた反応管に、オゾン含有酸化性ガスおよびキャリア
ーガスに同伴された原料の有機金属錯体のガスを供給し
、反応管内の有機金属錯体を基板上で酸化熱分解させる
ことにより行うことができる。
In the production of an oxide high temperature superconducting crystalline thin film by the MOCVD method of the present invention, a raw material organic material, which is entrained in an ozone-containing oxidizing gas and a carrier gas, is placed in a reaction tube equipped with a heated substrate for producing a crystalline thin film. This can be carried out by supplying a metal complex gas and oxidizing and thermally decomposing the organometallic complex in the reaction tube on the substrate.

上記の酸化性ガスとしては、従来酸素ガスが用いられて
いるが、少なくともその一部をオゾンで置換することに
よって結晶性の良好な超電導セラミックス薄膜を製造す
ることができる。オゾンを含有する酸素に光を照射する
ことによって、励起された酸素分子、原子状酸素等の種
々の活性な酸素励起種が生成し、これらが結晶性超電導
セラミックス薄膜の形成に重要な役割を果たすものと推
定される。
Oxygen gas has conventionally been used as the oxidizing gas, but by replacing at least a portion of it with ozone, a superconducting ceramic thin film with good crystallinity can be produced. By irradiating oxygen containing ozone with light, various active oxygen excited species such as excited oxygen molecules and atomic oxygen are generated, and these play an important role in the formation of crystalline superconducting ceramic thin films. It is estimated that

上記において、酸化性ガスおよび有機金属錯体のガスを
供給すると同時に、基板上に波長150〜600 nm
の光を照射し、反応管内の有機金属錯体を基板上で酸化
熱分解および光分解させることによって、比較的基板温
度を低くして、酸化物高温超電導結晶性薄膜を製造する
ことができる。
In the above, at the same time that the oxidizing gas and the organometallic complex gas are supplied, a wavelength of 150 to 600 nm is applied onto the substrate.
By irradiating the reaction tube with light to cause oxidative thermal decomposition and photodecomposition of the organometallic complex in the reaction tube on the substrate, an oxide high temperature superconducting crystalline thin film can be produced at a relatively low substrate temperature.

一般に、酸化物高温超電導結晶性薄膜の製造において、
基板の温度を高(すると、基板上に異種の超電導結晶性
薄膜、あるいは絶縁薄膜と超電導結晶性薄膜の多層膜を
形成する場合、既に形成された超電導結晶性薄膜あるい
は絶縁薄膜の影響を受けて、超電導結晶性薄膜への不純
物の拡散がおこり、形成された多層膜の特性が損なわれ
やすい。
Generally, in the production of oxide high temperature superconducting crystalline thin films,
When the temperature of the substrate is raised (then, when forming a different type of superconducting crystalline thin film or a multilayer film of an insulating thin film and a superconducting crystalline thin film on the substrate, it will be affected by the already formed superconducting crystalline thin film or insulating thin film). , impurities diffuse into the superconducting crystalline thin film, and the properties of the formed multilayer film are likely to be impaired.

前記波長の光を照射する場合には基板温度を低くするこ
とができるので、上述した問題点のない結晶性薄膜を製
造することができる。
When irradiating light with the above wavelength, the substrate temperature can be lowered, so a crystalline thin film that does not have the above-mentioned problems can be manufactured.

本発明のMOCVD法による酸化物高温超電導結晶性薄
膜の製造の一態様においては、キャリアーガスに同伴さ
れ反応管内に供給される原料の有機金属錯体のガスのう
ち、銅の有機金属錯体のガスは、他の原料の有機金属錯
体のガスとあらかじめ混合されず、独立に基板付近のノ
ズルから基板上に供給される。銅の有機金属錯体は、酸
化性ガスの存在下、アルカリ土類元素あるいは稀土類元
素の有機金属錯体と反応し、例えばBaCu○2、Y2
Cu z Osを容易に生成し、製造条件の僅かな違い
によって所望の結晶性高温超電”JTR膜を再現性良く
製造することが困難になる。銅の有機金属錯体を他の有
機金属錯体とは独立して基板に供給することによって、
上記のような不都合をなくすことができる。
In one embodiment of the production of an oxide high temperature superconducting crystalline thin film by the MOCVD method of the present invention, among the raw material organometallic complex gases that are accompanied by a carrier gas and supplied into the reaction tube, the copper organometallic complex gas is The gas is not mixed in advance with other raw material organometallic complex gases, and is supplied onto the substrate independently from a nozzle near the substrate. Organometallic complexes of copper react with organometallic complexes of alkaline earth elements or rare earth elements in the presence of oxidizing gas, such as BaCu○2, Y2
Cu z Os is easily produced, and slight differences in manufacturing conditions make it difficult to produce the desired crystalline high-temperature superelectric "JTR" film with good reproducibility. By supplying it to the substrate independently,
The above-mentioned inconveniences can be eliminated.

以下に本発明による酸化物高温超電導結晶性薄膜の製造
法について詳述する。
The method for producing the oxide high temperature superconducting crystalline thin film according to the present invention will be described in detail below.

各原料が充填された供給用容器の温度制御は有機金属錯
体の種類等により異なるが、実用的には30〜250°
Cの温度にコントロールされる。キャリアーガスとして
は不活性ガス、例えばアルゴン、窒素等が挙げられ、そ
のガス流量としては原料の種類によって適宜界なるが、
通常1〜1000Id/min、が選択される。供給用
容器と反応管までの配管は有機金属錯体の凝縮等の問題
を避けるため、分解する温度より低い温度で保温するこ
とが好ましい。好ましい温度範囲は100〜250°C
である。原料の銅の有機金属錯体のガスは、反応管内の
基板付近に設けられたノズルから基板上に供給する。銅
以外の原料の有機金属錯体のガスは、反応管内に導入す
る前に混合することもできる。
The temperature control of the supply container filled with each raw material differs depending on the type of organometallic complex, but in practical terms it is 30 to 250 degrees.
The temperature is controlled at C. Examples of the carrier gas include inert gases such as argon and nitrogen, and the gas flow rate varies depending on the type of raw material.
Usually 1 to 1000 Id/min is selected. In order to avoid problems such as condensation of the organometallic complex, the piping from the supply container to the reaction tube is preferably kept at a temperature lower than the decomposition temperature. The preferred temperature range is 100-250°C
It is. The gas of the organometallic complex of copper as a raw material is supplied onto the substrate from a nozzle provided near the substrate in the reaction tube. The organometallic complex gas as a raw material other than copper can also be mixed before being introduced into the reaction tube.

反応管に供給するオゾン含を酸化性ガスの速度は、1 
rI11/min、〜101 /min、が選択される
。オゾン含有酸化性ガスは、オゾンと酸素および/ある
いは不活性ガスとの混合ガス等が使用でき、オゾン含有
量は、0.1゛モル%以上、好ましくは1モル%以上で
ある。オゾン含有酸化性ガスは、基板が設置された反応
管内に導入される前に、銅以外の原料有機金属錯体のガ
スのすべて、あるいは一部と混合されることがより好ま
しい。
The speed of the ozone-containing oxidizing gas supplied to the reaction tube is 1
rI11/min, ~101/min, is selected. The ozone-containing oxidizing gas may be a mixed gas of ozone, oxygen and/or an inert gas, and the ozone content is at least 0.1 mol%, preferably at least 1 mol%. It is more preferable that the ozone-containing oxidizing gas is mixed with all or part of the gas of the raw material organometallic complex other than copper before being introduced into the reaction tube in which the substrate is installed.

反応管内に設けられた基板としては、MgO1A ff
i 203、Z r Oz  S r T i Ch、
シリコン単結晶等を用いることができる。基板はヒータ
ー付の、例えば石英製の基板加熱ホルダーに固定し、基
板の温度は300〜900°C1好ましくは400〜8
00 ”Cの範囲に保持する。さらに基板面を原料ガス
導入口に対して3〜50度傾けることが好ましい。
As the substrate provided in the reaction tube, MgO1A ff
i 203, Z r Oz S r T i Ch,
Silicon single crystal or the like can be used. The substrate is fixed to a substrate heating holder equipped with a heater, for example made of quartz, and the temperature of the substrate is 300 to 900°C, preferably 400 to 80°C.
00'' C. Furthermore, it is preferable that the substrate surface is tilted by 3 to 50 degrees with respect to the raw material gas inlet.

反応管内壁の温度は上記と同様の理由で凝縮、分解を防
ぐため、100〜250°Cの範囲の温度に保温される
ことが好ましい。熱分解炉はリボンヒーター、電気炉、
恒温槽等を用いて加熱することができる。
The temperature of the inner wall of the reaction tube is preferably maintained at a temperature in the range of 100 to 250°C to prevent condensation and decomposition for the same reason as above. Pyrolysis furnaces include ribbon heaters, electric furnaces,
Heating can be done using a constant temperature bath or the like.

基板を前記温度範囲内において比較的低い温度例えば7
00°C以下に保持し、基板上での原料有機金属錯体の
分解を促進させる場合には、既に説明したように、反応
管の外側から基板上に波長150〜600nmの光を照
射する。光源としては通常知られた低圧および高圧水銀
ランプ、キセノンランプ、重水素ランプ等の紫外光を含
むランプ、アルゴンレーザー、エキシマレーザ−、アル
ゴンレーザー光をティ倍したレーザー光等が採用できる
The substrate is heated to a relatively low temperature within the temperature range, e.g.
When maintaining the temperature at 00° C. or lower to promote decomposition of the raw material organometallic complex on the substrate, as already explained, the substrate is irradiated with light with a wavelength of 150 to 600 nm from outside the reaction tube. As the light source, commonly known lamps containing ultraviolet light such as low-pressure and high-pressure mercury lamps, xenon lamps, and deuterium lamps, argon lasers, excimer lasers, and laser light multiplied by argon laser light can be used.

基板、ガス導入口が設けられた反応管は、ステンレス製
の反応管等を用いることができるが、光を照射する場合
は、波長150〜600nmの光の透過性が良いものが
好ましく、石英製の反応管、あるいは石英製の窓を有す
るステンレス製の反応管等が好適に用いられる。
The reaction tube provided with the substrate and gas inlet can be made of stainless steel, but in the case of irradiation with light, it is preferable to use one that has good transparency for light with a wavelength of 150 to 600 nm. or a stainless steel reaction tube with a quartz window are preferably used.

反応管内の圧力は、0.1〜1000torr、好まし
くは10〜760 torrである。
The pressure inside the reaction tube is 0.1 to 1000 torr, preferably 10 to 760 torr.

(実施例) 以下に実施例を示し、本発明を更に詳しく説明する。(Example) The present invention will be explained in more detail with reference to Examples below.

実施例1 石英製の反応管内に脱脂洗浄後のSrTiO3〔面指数
(100)の単結晶]の基板を、供給ガス口の方向に対
して5度傾けたヒーター内蔵の基板ホルダーに固定し、
原料ガスを流す前に酸素を3ffi/min、で反応管
内に流通して5分間基板を800°Cに保ち、その後7
00°Cまで基板温度を下げた。
Example 1 A substrate of SrTiO3 [single crystal with a surface index (100)] after degreasing and cleaning was fixed in a quartz reaction tube to a substrate holder with a built-in heater tilted at 5 degrees with respect to the direction of the supply gas port.
Before flowing the raw material gas, oxygen was passed through the reaction tube at 3ffi/min to keep the substrate at 800°C for 5 minutes, and then 7
The substrate temperature was lowered to 00°C.

ステンレス製容器内のY (PPM)1、Ba(PPM
)zはそれぞれ130°C,200°Cに保温され、ア
ルゴンガスをそれぞれに50m1/min、、100 
m17m1n、で流通し、オゾン発生器からの3f/m
in、のオゾン、酸素およびアルゴンの混合ガス(モル
比で0.05 : 1 : 1)と混合後、反応管内に
供給された。同時に90°Cで保温されたステンレス製
容器内のCu(PPM)zにアルゴンガスを30m1/
min、で流通し、反応管内の基板上に直接供給した。
Y (PPM)1, Ba (PPM) in a stainless steel container
)z are kept at 130°C and 200°C, respectively, and argon gas is supplied to each at 50ml/min, 100°C.
3f/m from an ozone generator.
After mixing with a mixed gas of ozone, oxygen, and argon (molar ratio: 0.05:1:1), the mixture was supplied into the reaction tube. At the same time, 30 ml of argon gas was added to Cu(PPM) in a stainless steel container kept at 90°C.
min, and was directly supplied onto the substrate in the reaction tube.

反応管および反応管まで流路は、有機金属錯体の凝縮を
防ぐため200〜220°Cに保温した。
The reaction tube and the flow path leading to the reaction tube were kept at a temperature of 200 to 220°C to prevent condensation of the organometallic complex.

約1時間基板上に結晶性薄膜成長をおこなって得られた
Y−Ba−Cu酸化物超電導薄膜の電気抵抗を測定した
結果、92にで電気抵抗が零になった。この薄膜のX線
回折スペクトルは(00で)面に基づくピークだけを示
し、この薄膜がC軸配向した結晶性の良好な酸化物高温
超電導結晶性薄膜であることがわかった。
As a result of measuring the electrical resistance of the Y--Ba--Cu oxide superconducting thin film obtained by growing a crystalline thin film on a substrate for about 1 hour, the electrical resistance became zero at 92. The X-ray diffraction spectrum of this thin film showed only a peak based on the (00) plane, indicating that this thin film was a C-axis oriented oxide high temperature superconducting crystalline thin film with good crystallinity.

実施例2 Y(PPM):l、Ba(PPM)zおよびCu(PP
M)2の代わりに、y (TPM)、、Ba(TPM)
zおよびCu(TPM)zを用いた以外は、実施例1と
同様な方法により薄膜を形成させた。
Example 2 Y(PPM):l, Ba(PPM)z and Cu(PP
M) instead of 2, y (TPM), , Ba (TPM)
A thin film was formed in the same manner as in Example 1 except that z and Cu(TPM)z were used.

得られたY−Ba−Cu酸化物超電導薄膜の電気抵抗を
測定した結果、93にで電気抵抗が零になった。この薄
膜のX線回折スペクトルは(00り面に基づくピークだ
けを示し、この薄膜がC軸配向した結晶性の良好な酸化
物高温超電導結晶性薄膜であることがわかった。
As a result of measuring the electrical resistance of the obtained Y-Ba-Cu oxide superconducting thin film, the electrical resistance became zero at 93. The X-ray diffraction spectrum of this thin film showed only a peak based on the 00 plane, indicating that this thin film was a C-axis oriented oxide high temperature superconducting crystalline thin film with good crystallinity.

実施例3 石英製の反応管内にSrTiO3[面指数(100)の
単結晶]の基板を、供給ガス口の方向に対して5度傾け
たヒーター内蔵の基板ホルダーに固定し、原料ガスを流
す前に酸素を3f/min、で反応管内に流通して5分
間基板を800 ”Cに保ち、その後600°Cまで基
板温度を下げ、反応管外部から500Wの高圧水銀ラン
プにより基板上へ光照射を開始した。
Example 3 A substrate of SrTiO3 [single crystal with surface index (100)] was fixed in a quartz reaction tube to a substrate holder with a built-in heater tilted at 5 degrees with respect to the direction of the supply gas port, and before flowing the raw material gas. Oxygen was then passed through the reaction tube at 3 f/min to keep the substrate at 800"C for 5 minutes. After that, the substrate temperature was lowered to 600°C, and the substrate was irradiated with light from outside the reaction tube using a 500W high-pressure mercury lamp. It started.

実施例1と同様な方法で石英の光照射用の窓を有するス
テンレス製反応管内にオゾン、酸素およびアルゴンの混
合ガス(モル比1:1:2)、Y(PPM)、、Ba(
PPM)zおよびCu (PPM)2を供給した。反応
管および反応管まで流路は、有機金属錯体の凝縮を防く
ため200〜220°Cに保温した。
A mixed gas of ozone, oxygen and argon (molar ratio 1:1:2), Y(PPM), Ba(
PPM)z and Cu(PPM)2 were fed. The reaction tube and the flow path leading to the reaction tube were kept at a temperature of 200 to 220°C to prevent condensation of the organometallic complex.

約1時間基板上に結晶性薄膜成長をおこなって得られた
Y−Ba−Cu酸化物超電導薄膜の電気抵抗を測定した
結果、94にで電気抵抗が零になった。この薄膜のX線
回折スペクトルは(00り面に基づくピークだけを示し
、この薄膜がC軸配向した結晶性の良好な酸化物高温超
電導結晶性薄膜であることがわかった。
As a result of measuring the electrical resistance of the Y-Ba-Cu oxide superconducting thin film obtained by growing a crystalline thin film on the substrate for about 1 hour, the electrical resistance became zero at 94. The X-ray diffraction spectrum of this thin film showed only a peak based on the 00 plane, indicating that this thin film was a C-axis oriented oxide high temperature superconducting crystalline thin film with good crystallinity.

実施例4 石英製の反応管内に5rTiO3(面指数〔100)の
単結晶〕の基板を、供給ガス口の方向に対して5度(頃
けたヒーター内蔵の基板ホルダーに固定し、原料ガスを
流す前に酸素ガスを3ffi/min、で反応管内に流
通して5分間基板を800°Cに保ち、その後650 
’Cまで基板温度を下げ、反応管外部から500Wの高
圧水銀ランプにより基板上へ光照射を開始した。
Example 4 A substrate of 5rTiO3 (single crystal with a surface index of 100) was fixed in a quartz reaction tube at 5 degrees with respect to the direction of the supply gas port (fixed to a substrate holder with a built-in heater, and the raw material gas was allowed to flow). First, oxygen gas was passed through the reaction tube at 3ffi/min to keep the substrate at 800°C for 5 minutes, and then heated at 650°C.
The substrate temperature was lowered to 'C, and light irradiation onto the substrate was started from outside the reaction tube using a 500 W high-pressure mercury lamp.

ステンレス製容器内のB i  ((、H3) 3、S
r(PPM)2、Ca(PPM)z、およびCu(PP
M)zはそれぞれ30°C,225°C1160°C1
および90’Cに保温され、アルゴンガスをそれぞれに
1ml/min、、200 !d/min、、200m
1!/min、、100戚/min、で流通した。銅の
有機金属錯体のガスは反応管内の基板上に直接供給し、
ビスマス、カルシウム、およびストロンチウムの有機金
属錯体のガスはオゾン発生器からの3p!、/min、
のオゾン、酸素およびアルゴンの混合ガス(モル比で0
.05 : 1 : 1)と混合して反応管内に供給し
た。反応管および反応管まで流路は、有機金属錯体の凝
縮を防ぐため230〜240°Cに保温した。
B i ((, H3) 3, S in a stainless steel container
r(PPM)2, Ca(PPM)z, and Cu(PP
M) z is 30°C, 225°C1160°C1 respectively
and 90'C, and argon gas was supplied to each at 1ml/min, 200! d/min, 200m
1! It was distributed at a rate of 100 relatives/min. The copper organometallic complex gas is supplied directly onto the substrate in the reaction tube,
Organometallic complex gases of bismuth, calcium, and strontium are 3p from an ozone generator! ,/min,
A mixed gas of ozone, oxygen and argon (in a molar ratio of 0
.. 05:1:1) and supplied into the reaction tube. The reaction tube and the flow path leading to the reaction tube were kept at a temperature of 230 to 240°C to prevent condensation of the organometallic complex.

約1時間基板上に結晶性薄膜成長をおこなって得られた
B1−Ca−3r−Cu酸化物超電導結晶性薄膜の電気
抵抗を測定した結果、102〜106にで電気抵抗が零
になった。この薄膜の帯磁率、X線回折の測定の結果、
この薄膜が低温和、高温相からなり、C軸配向性の良好
な酸化物高温超電導結晶性薄膜であることがわかった。
As a result of measuring the electrical resistance of the B1-Ca-3r-Cu oxide superconducting crystalline thin film obtained by growing a crystalline thin film on a substrate for about 1 hour, the electrical resistance became zero at points 102 to 106. The magnetic susceptibility of this thin film, the results of X-ray diffraction measurements,
This thin film was found to be an oxide high-temperature superconducting crystalline thin film consisting of low-temperature and high-temperature phases and having good C-axis orientation.

比較例1 オゾンを全く使用せず、銅、イツトリウム、バリウムの
有機金属錯体のガスを混合して反応管内に供給した以外
は、実施例1と同様に薄膜を形成した。
Comparative Example 1 A thin film was formed in the same manner as in Example 1, except that ozone was not used at all and a gas of an organometallic complex of copper, yttrium, and barium was mixed and supplied into the reaction tube.

得られた薄膜の電気抵抗を測定した結果、80にで電気
抵抗が零になったが、X線回折の測定によればC軸配向
した結晶性の良好な酸化物高温超電導結晶性薄膜を製造
することができなかった。
As a result of measuring the electrical resistance of the obtained thin film, the electrical resistance became zero at 80°C, but according to the measurement of X-ray diffraction, an oxide high temperature superconducting crystalline thin film with C-axis orientation and good crystallinity was produced. I couldn't.

比較例2 オゾンを全(使用せず、銅、イツトリウム、バリウムの
有機金属錯体のガスを混合して反応管内に供給した以外
は、実施例3と同様に薄膜を形成した。
Comparative Example 2 A thin film was formed in the same manner as in Example 3, except that all ozone was not used and a gas of an organometallic complex of copper, yttrium, and barium was mixed and supplied into the reaction tube.

得られた薄膜は81にで電気抵抗が零になったが、X線
回折の測定によればC軸配向した結晶性の良好な酸化物
高温超電導結晶性薄膜を製造することができなかった。
The electrical resistance of the obtained thin film became zero at 81, but according to X-ray diffraction measurements, it was not possible to produce a high temperature superconducting oxide crystalline thin film with C-axis orientation and good crystallinity.

比較例3 オゾンを全く使用せず、銅、ビスマス、カルシウム、ス
トロンチウムの有機金属錯体のガスを混合して反応管内
に供給した以外は、実施例4と同様に薄膜を形成した。
Comparative Example 3 A thin film was formed in the same manner as in Example 4, except that ozone was not used at all and gases of organometallic complexes of copper, bismuth, calcium, and strontium were mixed and supplied into the reaction tube.

得られた薄膜のは85〜95にで電気抵抗が零になった
が、X線回折の測定によればC軸配向した結晶性の良好
な酸化物高温超電導結晶性薄膜を製造することができな
かった。
Although the electrical resistance of the obtained thin film became zero at 85 to 95, X-ray diffraction measurements showed that a C-axis oriented oxide high temperature superconducting crystalline thin film with good crystallinity could be produced. There wasn't.

特許出願人    宇部興産株式会社Patent applicant: Ube Industries Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)有機金属化学的気相成長法によって酸化物高温超
電導結晶性薄膜を製造する際に、少なくとも一部の酸化
性ガスとしてオゾンを供給することを特徴とする酸化物
高温超電導結晶性薄膜の製造法。
(1) An oxide high temperature superconducting crystalline thin film characterized in that ozone is supplied as at least a part of the oxidizing gas when the oxide high temperature superconducting crystalline thin film is produced by an organometallic chemical vapor deposition method. Manufacturing method.
(2)波長150〜600nmの光を基板に照射するこ
とを特徴とする特許請求の範囲第1項記載の酸化物高温
超電導結晶性薄膜の製造法。
(2) A method for producing an oxide high temperature superconducting crystalline thin film according to claim 1, characterized in that the substrate is irradiated with light having a wavelength of 150 to 600 nm.
(3)有機金属化学的気相成長法によって酸化物高温超
電導結晶性薄膜を製造する際に、銅含有有機金属化合物
の原料ガスを、他の原料ガスとあらかじめ混合せず独立
に基板付近に供給することを特徴とする酸化物高温超電
導結晶性薄膜の製造法。
(3) When manufacturing an oxide high temperature superconducting crystalline thin film by organometallic chemical vapor deposition, the raw material gas for the copper-containing organometallic compound is supplied to the vicinity of the substrate independently without being mixed with other raw material gases in advance. A method for producing an oxide high temperature superconducting crystalline thin film characterized by:
(4)少なくとも一部の酸化性ガスとしてオゾンを供給
し、及び/あるいは波長150〜600nmの光を基板
に照射することを特徴とする特許請求の範囲第3項記載
の酸化物高温超電導結晶性薄膜の製造法。
(4) The oxide high temperature superconducting crystalline material according to claim 3, characterized in that ozone is supplied as at least a part of the oxidizing gas and/or the substrate is irradiated with light with a wavelength of 150 to 600 nm. Method of manufacturing thin films.
JP1093007A 1988-06-10 1989-04-14 Production of crystalline high temperature superconducting thin film Pending JPH0280305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1093007A JPH0280305A (en) 1988-06-10 1989-04-14 Production of crystalline high temperature superconducting thin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-141470 1988-06-10
JP14147088 1988-06-10
JP1093007A JPH0280305A (en) 1988-06-10 1989-04-14 Production of crystalline high temperature superconducting thin film

Publications (1)

Publication Number Publication Date
JPH0280305A true JPH0280305A (en) 1990-03-20

Family

ID=26434409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1093007A Pending JPH0280305A (en) 1988-06-10 1989-04-14 Production of crystalline high temperature superconducting thin film

Country Status (1)

Country Link
JP (1) JPH0280305A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201157A (en) * 2000-10-31 2002-07-16 Asahi Denka Kogyo Kk Metal trifluoroacetate hydrate for oxide superconductor and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201157A (en) * 2000-10-31 2002-07-16 Asahi Denka Kogyo Kk Metal trifluoroacetate hydrate for oxide superconductor and method for producing the same

Similar Documents

Publication Publication Date Title
JP4921652B2 (en) Method for depositing yttrium oxide and lanthanum oxide thin films
US5453494A (en) Metal complex source reagents for MOCVD
US5120703A (en) Process for preparing oxide superconducting films by radio-frequency generated aerosol-plasma deposition in atmosphere
US5200388A (en) Metalorganic chemical vapor deposition of superconducting films
WO1989007666A1 (en) Method of forming superconducting materials
JPH0829943B2 (en) Method of forming superconductor thin film
US5185317A (en) Method of forming superconducting Tl-Ba-Ca-Cu-O films
US4982019A (en) Volatile divalent metal alkoxides
JPH0597762A (en) Volatile alkaline earth metal complex and its application
US5319118A (en) Volatile barium precursor and use of precursor in OMCVD process
US5296460A (en) CVD method for forming Bi -containing oxide superconducting films
JP2747036B2 (en) Thin film formation method
JPH0280305A (en) Production of crystalline high temperature superconducting thin film
JPH0219468A (en) Formation of metal oxide
Senzaki et al. Chemical vapor deposition of thin films of ruthenium and formation of an unexpected byproduct using hexafluoro-2-butynetetracarbonylruthenium (0)
JPH0280306A (en) Production of crystalline high temperature superconducting thin film
JPH01257194A (en) Production of thin single crystal film
US4933207A (en) Laser and thermal assisted chemical vapor deposition of mercury containing compounds
USH1170H (en) Volatile divalent double metal alkoxides
JP3818691B2 (en) Raw material compound for CVD of rare earth elements and film forming method using the same
JPH09195050A (en) Production of oxide or metal
US5348631A (en) Method and apparatus for synthesizing lead β-diketonates
KR100648786B1 (en) Copper material for chemical vapor deposition and process for forming thin film using the same
JP4112314B2 (en) Oxide superconducting conductor manufacturing liquid material supply device for CVD reactor and oxide superconducting conductor manufacturing method
JPH0941144A (en) Source material for cvd of rare earth element and film forming method using the same