JPH0279753A - Magnet type rotor - Google Patents

Magnet type rotor

Info

Publication number
JPH0279753A
JPH0279753A JP63229923A JP22992388A JPH0279753A JP H0279753 A JPH0279753 A JP H0279753A JP 63229923 A JP63229923 A JP 63229923A JP 22992388 A JP22992388 A JP 22992388A JP H0279753 A JPH0279753 A JP H0279753A
Authority
JP
Japan
Prior art keywords
rotor
thermoplastic resin
protection member
members
yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63229923A
Other languages
Japanese (ja)
Inventor
Tadashi Iizuka
飯塚 董
Makoto Tanaka
誠 田中
Yukio Serizawa
芹沢 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63229923A priority Critical patent/JPH0279753A/en
Publication of JPH0279753A publication Critical patent/JPH0279753A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lower vibrations and noises, and to improve energy efficiency by heating pressing-injecting a crystalline thermoplastic resin having a glass transition temperature of 40 deg.C or more into the clearances of a permanent magnet, an adjacent permanent magnet, a yoke, an end-section protective member and an outer-circumference protective member and cooling and solidifying the thermoplastic resin. CONSTITUTION:Yokes 1, to which hole sections into which cylindrical members 8 can be penetrated are formed previously, are constituted cylindrically by a magnetic substance such as iron, and a plurality of magnets 2 are arranged cylindrically on the outer circumferential sections of the yokes 1. Cylindrical external protective members 3 are fitted, end-section protective members 4a are installed at both ends in the axial direction, and the cylindrical members 8 are engaged into the end-section protective members 4a and the hole sections of the yokes 3. A crystalline thermoplastic resin such as polyphenylene sulfide having a glass transition temperature of 40 deg.C or more is heated and pressure- injected from the detente holes 10 combining filler holes of the end-section protective members 4a, and a rotor constitutional member is fixed mechanically and cooled, thus completing a rotor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は回転子に係り、特にインバータ等の制御装置を
介して供給される電源によって駆動され、回転域が低速
から高速にまで及ぶ、例えば密閉型電動圧縮機等に好適
な無刷子電動機の永久磁石型回転子に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a rotor, and in particular to a rotor that is driven by power supplied through a control device such as an inverter, and whose rotation range ranges from low speed to high speed, e.g. The present invention relates to a permanent magnet rotor for a brushless motor suitable for hermetic electric compressors and the like.

〔従来の技術〕[Conventional technology]

従来の永久磁石型回転子(以下単1こ回転子と称す)の
−数的橘造は、第5図、および第6図に示す如く、鉄等
の磁性体にて円筒状に構成されたヨーク1の外周部に所
定の磁極が形成されるように複数個のC型永久磁石(以
下単に磁石と称す)2を接着剤等で固着して円筒状に配
置したものである。磁石2の材料としては、フェライト
磁石の使用が一般的であるが、このフェライト磁石は機
械的強度に脆いという欠点を有しており、従って高速回
転時の遠心力による破損及び飛散等の防止を目的として
、磁石2の外周部には、ガラス繊維強化熱硬化性樹脂や
ステンレス管等の外周部保護部材3が設けられている。
A conventional permanent magnet rotor (hereinafter referred to as a single rotor) has a cylindrical structure made of a magnetic material such as iron, as shown in Figures 5 and 6. A plurality of C-shaped permanent magnets (hereinafter simply referred to as magnets) 2 are fixed with adhesive or the like and arranged in a cylindrical shape so that predetermined magnetic poles are formed on the outer periphery of a yoke 1. Ferrite magnets are commonly used as the material for the magnet 2, but this ferrite magnet has the disadvantage of being weak in mechanical strength, so it is difficult to prevent damage and scattering due to centrifugal force during high-speed rotation. For this purpose, an outer circumferential protection member 3 made of glass fiber-reinforced thermosetting resin, stainless steel pipe, or the like is provided on the outer circumference of the magnet 2.

一方密閉型’Ili動圧縮機に於ては、異物の混入は摺
動部の信頼性を損うことになるので、磁石若しくは回転
子の製造時に磁石内部に生じる小さな亀裂が回転時の遠
心力若しくは振動等によって磁石を破損させ、破損した
磁石の微小片が圧縮i1内に散乱するのを防止する目的
で回転子軸方向の両端部には端部保護部材4が設けられ
る。この端部保護部材4はアルミニウム若しくは亜鉛な
どの低融点金属のダイカストにより形j戊され、ヨーク
1内部を貫通する複数の連結部6によって回転子の軸方
向両端に保持されている。
On the other hand, in closed-type 'Ili dynamic compressors, contamination of foreign matter will impair the reliability of the sliding parts, so small cracks that occur inside the magnets during the manufacture of the magnets or rotor may cause centrifugal force during rotation. Alternatively, end protection members 4 are provided at both ends of the rotor in the axial direction in order to prevent the magnets from being damaged by vibration or the like and minute pieces of the damaged magnets being scattered within the compression i1. This end protection member 4 is die-cast from a low melting point metal such as aluminum or zinc, and is held at both ends of the rotor in the axial direction by a plurality of connecting portions 6 passing through the inside of the yoke 1.

諜 〔発明が解決しようとするP!u題点〕上記従来技術で
構成された回転子に於いては、磁石2と外周保護部材3
をダイキャストマシンの金型内にセットし端部保護部材
4を形成すると、製作面において、低融点金属(例えば
亜鉛)ダイカスト時の約400℃のヒートショックと高
射出圧力(例えば700−/CfI)により、磁石2が
急激な熱歪をうけて、第7図に示すごとく磁石2に亀裂
13を生じて破損に至り、空隙部を発生する。
Intelligence [P that invention tries to solve! u Problem] In the rotor constructed by the above-mentioned conventional technology, the magnet 2 and the outer circumferential protection member 3
is set in the mold of a die-casting machine to form the end protection member 4. When die-casting a low melting point metal (e.g. zinc), heat shock of about 400°C and high injection pressure (e.g. 700-/CfI) are produced. ), the magnet 2 undergoes rapid thermal strain, causing cracks 13 in the magnet 2 as shown in FIG. 7, leading to breakage and creating a void.

湯の未充填部や巣などの鋳造欠陥が質量のアンバランス
となって、高速回転時に振動を発生する。
Casting defects such as unfilled areas and cavities cause mass imbalance, which causes vibrations during high-speed rotation.

充填金属の密度が大きいとアンバランス量が更に拡大し
て、回転体としての性能が低下する。また、外周保護部
材の変形3aや亜鉛のはみ出しに対して、仕上げ加工が
必要であった。
If the density of the filling metal is high, the amount of unbalance will further increase and the performance as a rotating body will deteriorate. Further, finishing work was required to prevent deformation 3a of the outer circumferential protection member and protrusion of zinc.

亜鉛が完全に充填した場合の回転子のモータ特性は磁石
間に充填した導電性の亜鉛に誘起電流が発生し、これが
漂遊損失として働いてモータ効率を2〜5%低下させる
When the rotor is completely filled with zinc, an induced current is generated in the conductive zinc filled between the magnets, which acts as a stray loss and reduces motor efficiency by 2 to 5%.

これに対して磁石2を別体の端部保護部材4と連結棒で
機械的に締結する方式ではフェライト磁石の軸方向長さ
のバラツキを見込んで回転子寸法の設計がなされるため
、端部uaKm材4と磁石2との間には場合によって相
当大きな間隙が生じる。
On the other hand, in the method of mechanically fastening the magnet 2 to the separate end protection member 4 using a connecting rod, the rotor dimensions are designed taking into account variations in the axial length of the ferrite magnets. In some cases, a fairly large gap is created between the uaKm material 4 and the magnet 2.

このため、この部分に間隙充填材を設けて磁石2の端部
保護の補強がなされていた。この間隙充填材は熱硬化性
樹脂を充填、硬化する等の手段によって構成されると、
回転子組み立て工数の増加や、熱硬化性樹脂の反応副生
成物や未反応物による圧縮機構成物の冷媒、冷凍機油、
絶縁材料への影響が大きくなるなどの問題があった。
For this reason, a gap filler is provided in this portion to reinforce the protection of the end of the magnet 2. If this gap filler is constructed by filling and curing a thermosetting resin,
Increased rotor assembly man-hours, reaction by-products and unreacted materials from thermosetting resins may cause refrigerant, refrigeration oil,
There were problems such as increased influence on insulating materials.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、磁石とヨーク、端部保護部材および外周保
護部材をヨークに設けた突起部を磁石の配置のガイドに
活用し、上記構成部材をヨークと端部保護部材を貫通す
る棒とその突端の加締めの機械的な締結方式によって所
定の配置にセットした後、端部保護部材に設けた樹脂注
入口より、溶融粘度を任意に調整し、低温度(例えば2
00〜350℃)、低圧力(例えば300Kfr/cn
l)で充jjJでき、低密度の非導電性の特長を有し、
かつ、耐フロン冷凍機油性のすぐれたガラス転移温度4
0℃以上の結晶性熱可塑性樹脂を一気に注入一体に充填
固着できる構造にすることにより達成できる。
The above purpose is to utilize the protrusion provided on the yoke to guide the placement of the magnet, the magnet, the yoke, the end protection member, and the outer periphery protection member, and to use the above-mentioned components as a rod passing through the yoke and the end protection member and its tip. After setting in the specified position using the mechanical fastening method of crimping, the melt viscosity is arbitrarily adjusted through the resin injection port provided in the end protection member, and the melt viscosity is adjusted at a low temperature (for example, 2
00~350℃), low pressure (e.g. 300Kfr/cn
l) can be charged with jjjj and has the feature of low density non-conductivity,
In addition, it has excellent glass transition temperature 4 and is resistant to fluorocarbon refrigerator oil.
This can be achieved by creating a structure in which the crystalline thermoplastic resin having a temperature of 0° C. or higher can be injected all at once and fixed together.

注入口の充填物は回転子の回転動作に対して、ずれない
ように、機械的な締結作用も兼ねているものである。
The filler in the injection port also serves as a mechanical fastener to prevent displacement due to the rotational movement of the rotor.

〔作用〕[Effect]

充填するガラス転移温度40°C以上の結晶性熱可塑性
樹脂は、密閉型圧縮機の使用環境となるフロンと冷凍機
油の混合液に対して、アタック性、例えば強度の低下、
膨潤や溶解、応力亀裂現象や低分子物の抽出がされ難く
、無機系充填材を任意に配合して溶融粘度を適当に選定
し、かつ低温度、低圧力で充填することが可能なため、
ヒートショックによる磁石の損傷や外周保護部材の変形
や充填が容易にできることなどにより、回転体のアンバ
ランス性を大巾に改善できる。また、アルミニウムや亜
鉛の充填金属に比べて低密度となるので微少の充填欠陥
があっても動バランス特性を少く抑えることができ、振
動を小さくできる作用や軽量化による回転応答性の改善
がはかれる。
The crystalline thermoplastic resin filled with a glass transition temperature of 40°C or higher has attack resistance, such as a decrease in strength, and
It is resistant to swelling, dissolution, stress cracking, and extraction of low-molecular substances, and it is possible to mix inorganic fillers arbitrarily, select an appropriate melt viscosity, and fill at low temperature and pressure.
The unbalance of the rotating body can be greatly improved by preventing damage to the magnet due to heat shock and by making it easier to deform and fill the outer periphery protection member. In addition, since the density is lower than that of aluminum or zinc filled metals, even if there are minute filling defects, dynamic balance characteristics can be suppressed to a minimum, reducing vibration and improving rotational response due to weight reduction. .

結晶性熱可塑性樹脂は予じめ、ヨーク、磁石、外周保護
部材、端部保護部材を金型内にセットした状態で端部保
護部材に設けた注入口より、注入後、冷却固化するのみ
で、各部品を同時に一体に充填固着することができる。
The crystalline thermoplastic resin is injected through the injection port provided in the edge protection member with the yoke, magnet, outer circumference protection member, and edge protection member set in the mold in advance, and then simply cooled and solidified. , each part can be filled and fixed together at the same time.

かかる実施例は、熱硬化性樹脂のごとく、加熱硬化工程
や充填物はみ出しの除去と外周保護部材との締結工程な
どの複雑な組立て作業を必要としないので生産性がすぐ
れている。また熱硬化性樹脂では加熱硬化反応を伴うた
め、反応副生成物や未反応残留物が冷媒冷凍機油に溶出
して、圧縮機および冷媒配管系において、析出して流路
の閉塞現象や冷媒、冷凍機油、電気絶縁物に対して特性
劣化を加促する心配があるが、本発明の樹脂ではこのよ
うな溶出問題をおCすことがない。
Unlike thermosetting resins, this embodiment has excellent productivity because it does not require complicated assembly operations such as a heat curing process, removal of protruding filler material, and fastening process to the outer periphery protection member. In addition, since thermosetting resins involve a heat curing reaction, reaction by-products and unreacted residues are eluted into the refrigerant refrigeration oil and precipitate in the compressor and refrigerant piping system, causing flow path blockage and refrigerant damage. Although there is a concern that the resin may accelerate the deterioration of properties of refrigeration oil and electrical insulators, the resin of the present invention does not suffer from such elution problems.

このように製作したインバータ制御モータに組込んで性
能をみると、非導電性樹脂の充填の効果で漂遊損失が減
少し、モータ効率を大巾に改善できることを確認できた
When it was incorporated into the inverter-controlled motor manufactured in this way and its performance was observed, it was confirmed that the effect of filling with non-conductive resin reduced stray loss and significantly improved motor efficiency.

ここで使用できるガラス転移温度40℃以上の結晶性熱
可塑性樹脂とは圧縮機が通常に運転するでいるので、フ
ロンや冷凍機油の分子間内への侵入を抑制する作用とし
て働くので、溶解や膨潤、機械的強度の低下などの劣化
現象が発生しない。
The crystalline thermoplastic resin that can be used here has a glass transition temperature of 40°C or higher, and since the compressor is operating normally, it works to suppress the intrusion of fluorocarbons and refrigeration oil into the molecules, so it does not melt or melt. Deterioration phenomena such as swelling and decrease in mechanical strength do not occur.

ガラス転移温度40℃以上の結晶性熱可塑性樹脂とは、
ポリアミド(ナイロン6、ナイロン66など)、ボリフ
エニレンサ4#7アイド、ポリブチレンテレフタレート
、ポリエチレンテレフタレート、ポリエーテルエーテル
ケトン、芳香族ポリエステル、ポリエチレンナフタレー
ト、ポリアミドイミドなどの樹脂を対象としたもので、
これら中に任意の範囲でガラス繊維や無機充填材をブレ
ンドして、必要な溶融粘度と流動性とを調整すると共に
、樹脂の?t(i強強化を狙うことかできるものである
A crystalline thermoplastic resin with a glass transition temperature of 40°C or higher is
Targets resins such as polyamide (nylon 6, nylon 66, etc.), polyphenylene 4 #7 ide, polybutylene terephthalate, polyethylene terephthalate, polyether ether ketone, aromatic polyester, polyethylene naphthalate, polyamideimide, etc.
Glass fibers and inorganic fillers can be blended in any range to adjust the necessary melt viscosity and fluidity of the resin. t(i) It is possible to aim for stronger strength.

上記のごとく、本発明の永久磁石型回転子は高速、特に
インバータ制御の密閉型電動圧縮機の無刷子型モータに
組込むと、振動が少く、またモータ効率が2〜596向
上できる特長がある。
As mentioned above, when the permanent magnet rotor of the present invention is incorporated into a brushless motor of a high-speed, especially inverter-controlled hermetic electric compressor, it has the advantage of reducing vibration and improving motor efficiency by 2 to 596 points.

従って、上記の密閉型電動圧縮機を使用して、冷凍装置
を構成すると低振動低騒音化がはかれ、エネルギー効率
が2〜596向上する。ここでの冷凍装置とはルームニ
アコンディショナー、冷蔵庫、除湿機、ショーケース、
大形空気調和機などを対象とするものである。
Therefore, when a refrigeration system is constructed using the above-mentioned hermetic electric compressor, vibration and noise can be reduced, and energy efficiency can be improved by 2 to 596 points. The refrigeration equipment here refers to room conditioners, refrigerators, dehumidifiers, showcases,
This applies to large air conditioners, etc.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図、第2図、第あり、円
筒状に配置される磁石2との当接部の全域にわたって環
状に設けられており、複数の樹脂注入口兼まわり止め穴
10と連結し、さらに磁石2の軸方向端部が嵌挿可能部
と樹脂の流路となるように径方向に所定の幅を有して構
成されるものである。また8は端部保護部材4m及びヨ
ーク1の内部を各々軸方向に貫通する複数の棒状部材で
あり、軸方向両端への突出端9にネジ又は加締め等によ
る締結手段を施すことにより、端部保護部材4aを外周
保護部材3を挾んで、回転子の軸方向両端に保持するも
のである。
Hereinafter, one embodiment of the present invention will be described in Fig. 1, Fig. 2, and Fig. 2. It is connected to the stopper hole 10 and has a predetermined width in the radial direction so that the axial end of the magnet 2 serves as an insertable portion and a resin flow path. Reference numeral 8 denotes a plurality of rod-like members that penetrate the end protection member 4m and the inside of the yoke 1 in the axial direction, and the ends 9 that protrude toward both ends in the axial direction are fastened by screws, crimping, etc. The outer circumferential protection member 4a is held at both ends of the rotor in the axial direction with the outer circumferential protection member 3 sandwiched therebetween.

次に第2図に示す回転子の構成方法を説明すると予め棒
状部材8が貫通可能な穴部を設けたヨーク1を鉄等の磁
性体にて円筒状に構成し、このヨークlの外周部に所定
の磁極が形成されるように複数個の磁石2をヨーク1に
形成した第3図の詳細図に示す突起部1aをガイドにし
て、適当な間隙をもたせて、円筒状に配置する。しかる
後、円筒状の外部保護部材3を嵌挿し、予め棒状部材8
が貫通可能な穴部を設けた端部保護部材4aを軸方向両
端に装着し、このとき磁石2の端部がヨーク1の軸方向
端部より突出する場合にはその突出部を凹部7へ嵌挿す
る。そして棒状部材8を端部保護部材4a及びヨーク1
の穴部へ嵌挿するとともに、突出端9にネジ又は加締め
などの適当な締結加工を施して、端部保護部材4aとヨ
ーク1と外周保護部材3を挾んだ状態で固着し、端部保
護部材4aの注入口兼まわり止め穴10より、ガラス転
移温度40℃以上の結晶性熱可塑性樹脂、例えばポリフ
ェニレンサルファイドを250〜350℃に加熱して、
約300Ke/cn!で加圧注入し、磁石2と隣接する
磁石2の格子状流路12と端部保護部材の凹部7に設け
た段付環状流路7aに一体形に充填して、回転子構成部
材を機械的に固着させた後、冷却して回転子が完成する
。この時、回転子構成部材の温度を150℃以上に予熱
しておくと、樹脂の流動充填性が良く、また結晶化が促
進されて、耐フロン、耐冷凍機油性や機械的強度が著し
く改善できた。
Next, the method of constructing the rotor shown in FIG. 2 will be explained. A yoke 1 is made of a magnetic material such as iron and has a cylindrical shape, in which a hole through which a rod-shaped member 8 can pass is provided in advance, and the outer circumference of this yoke 1 is A plurality of magnets 2 are formed on the yoke 1 so as to form a predetermined magnetic pole. Using the protrusion 1a shown in the detailed view of FIG. 3 as a guide, the magnets 2 are arranged in a cylindrical shape with an appropriate gap. After that, the cylindrical external protection member 3 is inserted and the rod-shaped member 8 is inserted in advance.
At this time, if the end of the magnet 2 protrudes from the axial end of the yoke 1, the protruding part is inserted into the recess 7. Insert. Then, the rod-shaped member 8 is attached to the end protection member 4a and the yoke 1.
At the same time, the protruding end 9 is fitted with an appropriate fastening process such as screwing or caulking, and the end protection member 4a, yoke 1, and outer periphery protection member 3 are fixed in a sandwiched state. A crystalline thermoplastic resin having a glass transition temperature of 40°C or higher, such as polyphenylene sulfide, is heated to 250 to 350°C through the injection port and rotation stopper hole 10 of the protection member 4a.
Approximately 300Ke/cn! The magnets 2, the lattice-like channels 12 of the adjacent magnets 2, and the stepped annular channels 7a provided in the recesses 7 of the end protection member are integrally filled, and the rotor components are machined. After fixing, the rotor is completed by cooling. At this time, if the temperature of the rotor components is preheated to 150°C or higher, the fluidity and filling of the resin will be improved and crystallization will be promoted, resulting in significant improvements in fluorocarbon resistance, resistance to refrigerator oil, and mechanical strength. did it.

本発明の前記方式で製作した回転子は動バランス特性が
きわめて良好で、振動が少なく、かっモータ効率が2〜
596向上することが実測により確認できた。
The rotor manufactured by the above method of the present invention has extremely good dynamic balance characteristics, little vibration, and a motor efficiency of 2 to 2.
It was confirmed through actual measurement that the improvement was achieved by 596 points.

次に充填する樹脂の種類について、密閉型圧縮機が運転
されるフロン22とナフテン系冷凍機油の共存液の中に
種々の樹脂を150℃、7日間浸没し、樹脂の特性変化
を実測した結果(実施例1〜9)と供試樹脂の特性(比
較例1〜6)との関係を表−1、表−2に示した。
Next, regarding the type of resin to be filled, we immersed various resins in a coexisting liquid of Freon 22 and naphthenic refrigeration oil in which a hermetic compressor was operated at 150°C for 7 days, and measured the changes in resin properties. The relationships between (Examples 1 to 9) and the properties of the test resins (Comparative Examples 1 to 6) are shown in Tables 1 and 2.

この結果によると、実施例1〜5、実施例7〜8に示す
ごとく結晶性樹脂のポリアミド(ナイロン6、ナイロン
66)、ポリフェニレンサルファイド、ポリブチレンテ
レフタレート、ポリエチレンテレフタレート、ポリエー
テルエーテルケトン、ポリエチレンナフタレートのガラ
ス転移温度40℃以上のものが、強度低下、膨潤溶解や
亀裂や溶解抽出物が非常に少いため、充填物として最適
であることを見い出した。一方実施例6のガラス転移温
度の低いポリアセタールや比較例1〜6に示すとと(供
試した非品性のポリフェニレンオキサイド、ポリカーボ
ネート、ポリサルフォン、ポリエーテルサルフオン、ポ
リエーテルイミド、ボリアリレートは膨潤溶解現象や強
度特性の著しい低下がおこり、実用的でないことが確認
された。従って、前記のガラス転移温度40℃以上の結
晶性熱可烈性樹脂を充填して固着した回転子は、密閉型
圧縮機の使用環境において、十分な実用性能を保有する
ことが判明された。また、この試験に共存した、エステ
ルイミドエナメル線、ポリニステールフィルムへのアタ
ック性は少なく、問題とならない。同様にフロン22の
分解やナフテン系冷凍機油の炭化促進などの劣化加泥現
象も見受けられなかった。
According to the results, as shown in Examples 1 to 5 and Examples 7 to 8, crystalline resins such as polyamide (nylon 6, nylon 66), polyphenylene sulfide, polybutylene terephthalate, polyethylene terephthalate, polyether ether ketone, polyethylene naphthalate, etc. It has been found that a material with a glass transition temperature of 40° C. or higher is most suitable as a filler because it has very little strength reduction, swelling and dissolution, cracking, and dissolved extractables. On the other hand, the polyacetal with a low glass transition temperature of Example 6 and the non-quality polyphenylene oxide, polycarbonate, polysulfone, polyether sulfone, polyetherimide, and polyarylate shown in Comparative Examples 1 to 6 were swollen and dissolved. It was confirmed that the rotor was impractical due to a significant decrease in the phenomenon and strength properties.Therefore, the rotor filled with and fixed with the crystalline thermosetting resin with a glass transition temperature of 40°C or higher cannot be used in a hermetic compressor. It was found that it has sufficient practical performance in the usage environment of Freon 22.Also, the attack on the esterimide enamel wire and polynyster film that coexisted in this test was small and did not pose a problem.Similarly, Freon 22 No deterioration and muddying phenomena such as decomposition of naphthenic oil or promotion of carbonization of naphthenic refrigeration oil were observed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ヨーク、端部保護部材、磁石、外周保
護部材の固着組立が溶融樹脂の注入成形により、簡単に
できるので、回転子の生産性が向上して経済的効果が期
待できると共に、低密度の樹脂が完全に充填されるので
、回転体の質量のアンバラン特性に起因する振動や軽量
化による回転応答性などの回転体性能が向上し、更に充
填物が非導電性物質であるため、モータ組品とした場合
の回転子に生じる誘起電流による漂遊損失を減少させる
効果が働き、アルミニウムダイカスト充填に比べて、モ
ータ効率が2〜596向上する効果がある。また充填し
た樹脂は圧縮機の運転環境に於いても、十分な強度と耐
フロン耐冷凍機油性を有しているので、フロンを使用す
る密閉型電動圧縮機のモータのフェライト磁石型回転子
として、信頼性が高く、特にインバータ制御により、回
転数が高速となる用途において、回転子性能の向上に著
るしい効果がある。したがって、密閉型電動圧縮機、こ
れを使用する冷凍装置においても、低振動低騒音、エネ
ルギー効率2〜596の向上の期待が見込める。
According to the present invention, the fixing assembly of the yoke, end protection member, magnet, and outer periphery protection member can be easily performed by injection molding of molten resin, so that the productivity of the rotor is improved and economical effects can be expected. Since the low-density resin is completely filled, the performance of the rotating body is improved, such as vibrations caused by the unbalanced characteristics of the rotating body's mass, and rotational response due to weight reduction, and the filling is made of a non-conductive material. Therefore, it has the effect of reducing stray loss due to induced current generated in the rotor when used as a motor assembly, and has the effect of improving motor efficiency by 2 to 596 points compared to aluminum die-cast filling. In addition, the filled resin has sufficient strength and resistance to fluorocarbons and refrigerating machine oil even in the operating environment of the compressor, so it can be used as a ferrite magnet rotor for the motor of a hermetic electric compressor that uses fluorocarbons. It has high reliability and has a significant effect on improving rotor performance, especially in applications where the rotation speed is high due to inverter control. Therefore, low vibration, low noise, and improvement in energy efficiency of 2 to 596 can be expected in hermetic electric compressors and refrigeration systems using the same.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の平面部分断面図、第2図は
正面部分断面図、第3図は第1図のA部詳細図、第4図
は第1図のB部詳細図である。第5図は従来の一般的な
フェライト磁石型回転子の平面部分断面図、第6図は正
面品分断面図、第7図は第6図のC部詳細図である。
Fig. 1 is a partial cross-sectional plan view of an embodiment of the present invention, Fig. 2 is a partial cross-sectional front view, Fig. 3 is a detailed view of section A in Fig. 1, and Fig. 4 is a detailed view of section B in Fig. 1. It is. FIG. 5 is a partial cross-sectional plan view of a conventional general ferrite magnet type rotor, FIG. 6 is a cross-sectional view of the front part, and FIG. 7 is a detailed view of section C in FIG. 6.

Claims (1)

【特許請求の範囲】 1、円筒状ヨークの外周部に分割した永久磁石を配置し
、更に円筒状外周保護部材を嵌挿し、軸方向両端に前記
保護部材を設けてなる回転子に於いて、前記永久磁石と
隣接する永久磁石、ヨーク、端部保護部材および外周保
護部材との隙間に、ガラス転移温度40℃以上の結晶性
熱可塑性樹脂を加熱加圧注入後冷却固化して、前記構成
部材を固着して機械的に締結する構造の磁石型回転子。 2、前記結晶性熱可塑性樹脂として、ポリアミド、ポリ
フェニレンサルファイド、ポリブチレンテレフタレート
、ポリエチレンテレフタレート、ポリエーテルエーテル
ケトン、芳香族ポリエステル、ポリエチレンナフタレー
ト、ポリアミドイミドなどを使用することを特徴とする
特許請求の範囲第1項記載の回転子。 3、特許請求の範囲第1項記載の回転子を使用した密閉
型電動圧縮機。 4、特許請求の範囲第3項記載の密閉型電動圧縮機を用
いた冷凍装置。
[Claims] 1. In a rotor in which divided permanent magnets are arranged on the outer circumference of a cylindrical yoke, a cylindrical outer circumference protection member is further fitted and the protection members are provided at both ends in the axial direction, A crystalline thermoplastic resin having a glass transition temperature of 40° C. or higher is injected under heat and pressure into the gap between the permanent magnet and the adjacent permanent magnet, yoke, end protection member, and outer circumference protection member, and then cooled and solidified to form the component member. A magnetic rotor with a structure that fixes and mechanically fastens the rotor. 2. Claims characterized in that polyamide, polyphenylene sulfide, polybutylene terephthalate, polyethylene terephthalate, polyether ether ketone, aromatic polyester, polyethylene naphthalate, polyamideimide, etc. are used as the crystalline thermoplastic resin. The rotor according to item 1. 3. A hermetic electric compressor using the rotor according to claim 1. 4. A refrigeration system using the hermetic electric compressor according to claim 3.
JP63229923A 1988-09-16 1988-09-16 Magnet type rotor Pending JPH0279753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63229923A JPH0279753A (en) 1988-09-16 1988-09-16 Magnet type rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63229923A JPH0279753A (en) 1988-09-16 1988-09-16 Magnet type rotor

Publications (1)

Publication Number Publication Date
JPH0279753A true JPH0279753A (en) 1990-03-20

Family

ID=16899858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63229923A Pending JPH0279753A (en) 1988-09-16 1988-09-16 Magnet type rotor

Country Status (1)

Country Link
JP (1) JPH0279753A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048138A (en) * 1990-04-26 1992-01-13 Hitachi Ltd Refrigerant-resistant motor rotor
EP0729214A2 (en) * 1995-02-21 1996-08-28 A.O. Smith Corporation Electric motor for operation in ammonia and refrigeration system including same
US6768242B1 (en) * 1999-11-19 2004-07-27 Minebea Co., Ltd. Rotor structure of inner rotor type motor
JP2006197693A (en) * 2005-01-12 2006-07-27 Mitsui High Tec Inc Manufacturing device of rotor laminated core and manufacturing method
JP2009239988A (en) * 2008-03-25 2009-10-15 Mitsubishi Electric Corp Permanent magnet type motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825572U (en) * 1981-08-12 1983-02-18 株式会社日立製作所 magnet rotor
JPS62166755A (en) * 1986-01-16 1987-07-23 Sanyo Electric Co Ltd Rotor with permanent magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825572U (en) * 1981-08-12 1983-02-18 株式会社日立製作所 magnet rotor
JPS62166755A (en) * 1986-01-16 1987-07-23 Sanyo Electric Co Ltd Rotor with permanent magnet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048138A (en) * 1990-04-26 1992-01-13 Hitachi Ltd Refrigerant-resistant motor rotor
EP0729214A2 (en) * 1995-02-21 1996-08-28 A.O. Smith Corporation Electric motor for operation in ammonia and refrigeration system including same
EP0729214A3 (en) * 1995-02-21 1997-05-28 Smith Corp A O Electric motor for operation in ammonia and refrigeration system including same
US6768242B1 (en) * 1999-11-19 2004-07-27 Minebea Co., Ltd. Rotor structure of inner rotor type motor
JP2006197693A (en) * 2005-01-12 2006-07-27 Mitsui High Tec Inc Manufacturing device of rotor laminated core and manufacturing method
JP4688505B2 (en) * 2005-01-12 2011-05-25 株式会社三井ハイテック Rotor laminated iron core manufacturing apparatus and manufacturing method
JP2009239988A (en) * 2008-03-25 2009-10-15 Mitsubishi Electric Corp Permanent magnet type motor

Similar Documents

Publication Publication Date Title
JP7093301B2 (en) Manufacturing method of consequential pole type rotor, motor, air conditioner, and consequent pole type rotor
KR930005345B1 (en) Stator housing and rotor of mini-motor
US11031831B2 (en) Electric motor and air conditioner
US8601686B2 (en) Water circulating pump, manufacturing method thereof, and heat pump apparatus
US20200067358A1 (en) Rotor, motor, air conditioning apparatus, and manufacturing method of rotor
US20230238840A1 (en) Motor apparatus, compressor, and refrigeration apparatus
JP2008172965A (en) Permanent magnet rotor, motor and electrical apparatus
JPH0279753A (en) Magnet type rotor
JP3564299B2 (en) Outer rotor type motor stator
JP5230694B2 (en) Motor rotor, motor and air conditioner
US10090726B2 (en) Motor and air-conditioning apparatus
CN105745822B (en) Motor and air conditioner
WO2020129210A1 (en) Rotor, electric motor, fan, air conditioner, and method for manufacturing rotor
JP2011239508A (en) Rotator of electromotor and electromotor and method for manufacturing rotator of electromotor, and air conditioner
CN109314447B (en) Rotor, motor, air conditioner, and method for manufacturing rotor
AU2020431615B2 (en) Motor, fan, and air conditioner
CN104753218A (en) Rotor component and motor with same
JPH11146583A (en) Rotor and motor
US20220271634A1 (en) Insulator and motor
US11811265B2 (en) Motor, fan, air conditioner, and manufacturing method of motor
CN112398303B (en) Linear motor rotor, linear motor and compressor
JPH0349544A (en) Resin-molded rotor
JPWO2021019592A1 (en) Manufacturing methods for motors, blowers, air conditioners and motors
WO2023195076A1 (en) Electric motor, blower, and air conditioning device
JP2017051033A (en) Rotor and rotary electric machine