JPH0278846A - Defrosting circuit for air conditioner - Google Patents
Defrosting circuit for air conditionerInfo
- Publication number
- JPH0278846A JPH0278846A JP63195411A JP19541188A JPH0278846A JP H0278846 A JPH0278846 A JP H0278846A JP 63195411 A JP63195411 A JP 63195411A JP 19541188 A JP19541188 A JP 19541188A JP H0278846 A JPH0278846 A JP H0278846A
- Authority
- JP
- Japan
- Prior art keywords
- defrosting
- circuit
- relay
- indoor
- fan motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010257 thawing Methods 0.000 title claims description 54
- 239000003507 refrigerant Substances 0.000 claims abstract description 12
- 238000001514 detection method Methods 0.000 claims description 12
- 230000006835 compression Effects 0.000 abstract description 4
- 238000007906 compression Methods 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract 1
- 238000011022 operating instruction Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 3
- 235000014676 Phragmites communis Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、空気調和機の除霜回路、特に、2台の室内
側ユニットと1台の室外側ユニットとを組合せた空気調
和機の除霜電気回路に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a defrosting circuit for an air conditioner, and particularly to a defrosting circuit for an air conditioner that combines two indoor units and one outdoor unit. It concerns frost electrical circuits.
第3図は、例えば、特開昭62−186157号明細書
に開示された従来のこの種の実施例を示す回路構成図で
ある。FIG. 3 is a circuit configuration diagram showing a conventional embodiment of this type disclosed in, for example, Japanese Patent Laid-Open No. 62-186157.
(構成)
図において、11は交流電源、12は、全体の制御手段
であるマイクロコンピュータで、小形トランス13を介
して交tfn電源11から電源が入力され、入力回路1
4.出力回路15.メモリ16、CPU17及び不図示
のタイマを有している。18は、室内温度を検知するた
めの室温センサ、19は、不図示の室内側熱交換器の温
度を検知するサーミスタ、20は、冷媒を圧縮する圧縮
機モータ、21は、その冷媒の流路を切換えるための四
方′#−(ソレノイド切換弁)のコイル、22は室内側
ファンモータ、23は室外側ファンモータ、24は、除
霜時に室外側ファンモータ23に流わる電流を検出する
ためのカレントトランス(電流検出手段)、25は、不
図示の室外側熱交換器の温度を検知するためのサーマル
リードスイッチ等の温度検知器で、検知温度が設定値以
下で開となり、他の所定の設定値以上で閉となる。(Configuration) In the figure, 11 is an AC power supply, 12 is a microcomputer that is the overall control means, and power is input from the AC TFN power supply 11 via a small transformer 13, and the input circuit 1
4. Output circuit 15. It has a memory 16, a CPU 17, and a timer (not shown). 18 is a room temperature sensor for detecting the indoor temperature; 19 is a thermistor for detecting the temperature of an indoor heat exchanger (not shown); 20 is a compressor motor that compresses the refrigerant; and 21 is a flow path for the refrigerant. 22 is the indoor fan motor, 23 is the outdoor fan motor, and 24 is a coil for detecting the current flowing to the outdoor fan motor 23 during defrosting. A current transformer (current detection means) 25 is a temperature detector such as a thermal reed switch for detecting the temperature of an outdoor heat exchanger (not shown), and is opened when the detected temperature is below a set value, and other predetermined Closes when the set value is exceeded.
26は、温度検知器25と直列に接続された除霜用リレ
ーで、その接点26aは室外側ファンモータ23と直列
に接続され、前記温度検知器25が除霜開始温度を検知
した時に室外側ファンモータ23はオフする。27は、
マイクロコンピュータ12の出力回路15に接続された
ソリッドステートリレーで、室内側ファンモータ22と
直列に接続されている。28は圧縮機用リレー、29は
四方弁用リレーで、これらのリレー28゜29の各接点
28a、29aはそれぞれ圧縮機モータ20.四方弁の
コイル21と直列に接続されている。Reference numeral 26 denotes a defrosting relay connected in series with the temperature sensor 25, whose contact 26a is connected in series with the outdoor fan motor 23, and when the temperature sensor 25 detects the defrosting start temperature, the defrosting relay 26 is connected in series with the temperature sensor 25. Fan motor 23 is turned off. 27 is
This is a solid state relay connected to the output circuit 15 of the microcomputer 12 and connected in series with the indoor fan motor 22. 28 is a compressor relay, 29 is a four-way valve relay, and the contacts 28a and 29a of these relays 28 and 29 are respectively connected to the compressor motor 20. It is connected in series with the coil 21 of the four-way valve.
(動作)
次に動作について説明する。上記除霜用リレー26は通
常は閉で通電されており、この時その接点26aは温度
検知器25と並列回路を形成する側にある。そして、除
霜時にはリレー26がオフするので、その接点26aは
四方弁のコイル21と並列回路を形成する側にある。(Operation) Next, the operation will be explained. The defrosting relay 26 is normally closed and energized, and at this time its contact 26a is on the side forming a parallel circuit with the temperature sensor 25. Since the relay 26 is turned off during defrosting, its contact 26a is on the side forming a parallel circuit with the coil 21 of the four-way valve.
また、電流変成器(カレントトランス)24の検出値は
マイクロコンピュータ12に人力され、設定値と比較さ
れる。そして、その比較結果に基づいてマイクロコンピ
ュータ12は除霜開始及び終了の信号を出力し、それぞ
れ圧縮機20.四方弁のコイル21及び室内側ファンモ
タ22の駆動を制御する。Further, the detected value of the current transformer 24 is manually input to the microcomputer 12 and compared with a set value. Based on the comparison results, the microcomputer 12 outputs defrosting start and end signals to the compressors 20 and 20, respectively. Controls the driving of the four-way valve coil 21 and indoor fan motor 22.
そして暖房運転中に外気温が低くなっていると、不図示
の室外側熱交換器に霜が付着し、その温度が低下してく
る。そして、室外側熱交換器に設置された温度検知器2
5の検知温度がある設定温度Ta以下となると、該検知
器25は開状態となる。この時、除霜用リレー26への
通電がなくなり、そのリレー接点26aは、四方弁のコ
イル21と並列回路を形成するように入り、室外側ファ
ンモータ23の電流が四方弁用リレー29の接点29a
を経由して流れる。このため、カレントトランス24の
検出電流lはI<Ia(所定の電流設定値)となる。If the outside temperature is low during the heating operation, frost will adhere to the outdoor heat exchanger (not shown) and the temperature will drop. Then, a temperature sensor 2 installed on the outdoor heat exchanger
When the detected temperature of No. 5 becomes lower than a certain set temperature Ta, the detector 25 becomes open. At this time, the defrosting relay 26 is de-energized, its relay contact 26a enters to form a parallel circuit with the coil 21 of the four-way valve, and the current of the outdoor fan motor 23 is transferred to the contact of the four-way valve relay 29. 29a
flows through. Therefore, the detected current l of the current transformer 24 satisfies I<Ia (predetermined current setting value).
ここで、マイクロコンピュータ12の内蔵タイマによっ
て積算された暖房積算時間T1≧Tds(除霜禁止時間
、すなわち最低必要暖房時間)でかつ上記検出電流1<
I aになると、除霜切換信号が出力されるとともに上
記タイマ時間T1ガクリアされる。そして、この条件以
外の時は暖房運転が継続される。Here, the cumulative heating time T1≧Tds (defrosting prohibition time, that is, the minimum necessary heating time) accumulated by the built-in timer of the microcomputer 12 and the detected current 1<
When the time reaches Ia, the defrosting switching signal is output and the timer time T1 is cleared. The heating operation is continued except under these conditions.
上記除霜切換信号が出力されると、先ずソリッドステー
トリレー27が切となり室内側ファンモータ22が停止
され、また圧縮機用リレー28が切となり、圧縮機モー
タ20が停止される。そして、所定時間t1秒後に四方
弁用リレー29が切となフて四方弁が切換えられ、その
後所定時間t2秒後に圧縮機用リレー28が人となり除
霜運転が行われる。When the defrosting switching signal is output, first the solid state relay 27 is turned off to stop the indoor fan motor 22, and the compressor relay 28 is turned off to stop the compressor motor 20. Then, after a predetermined time t1 seconds, the four-way valve relay 29 is turned off and the four-way valve is switched, and then, after a predetermined time t2 seconds, the compressor relay 28 is switched on and defrosting operation is performed.
除霜運転が行われると、しだいに室外側熱交換器の温度
が上昇し、温度検知器25の検知温度がTa以上となる
と、該検知器25は閉状態となる。この時、除霜用リレ
ー26への通電が復活し、そのリレー接点26aは温度
検知器25と並列回路を形成するように入り、室外側フ
ァンモータ23の電流がカレントトランス24の回路を
流れる。このため、カレントトランス24の検出電流■
はI≧Iaとなり、ここで除霜解除信号が出力される。When the defrosting operation is performed, the temperature of the outdoor heat exchanger gradually rises, and when the temperature detected by the temperature detector 25 becomes Ta or higher, the detector 25 enters the closed state. At this time, the defrosting relay 26 is energized again, its relay contact 26a enters to form a parallel circuit with the temperature sensor 25, and the current of the outdoor fan motor 23 flows through the current transformer 24 circuit. Therefore, the detection current of the current transformer 24 is
I≧Ia, and a defrost release signal is output here.
なお、この条件以外の時は除霜運転が継続される。この
除霜解除信号が出力されると、先ず圧縮機用ツレ−28
が切となり、圧縮機モータ20が停止され、その後所定
時間t3秒後に四方弁用リレー29が人となり四方弁が
切換えられ、その後所定時間t4秒後に圧縮機用リレー
28が人となり、圧縮機モータ20が運転され、通常暖
房運転が再開される。そして、しだいに不図示の室内側
熱交換器の温度が上昇し、室内側熱交換器の温度検知用
サーミスタ19の検知温度が所定温度に達した時点でソ
リッドステートリレー27を人にし、室内側ファンモー
タ22を運転再開させる。Note that the defrosting operation is continued under conditions other than these. When this defrosting release signal is output, first the compressor tree 28
is turned off, the compressor motor 20 is stopped, and then, after a predetermined time t3 seconds, the four-way valve relay 29 is activated and the four-way valve is switched, and then, after a predetermined time t4 seconds, the compressor relay 28 is activated, and the compressor motor 20 is operated, and normal heating operation is resumed. Then, the temperature of the indoor heat exchanger (not shown) gradually rises, and when the temperature detected by the temperature detection thermistor 19 of the indoor heat exchanger reaches a predetermined temperature, the solid state relay 27 is turned on and the indoor heat exchanger is turned on. The fan motor 22 is restarted.
さらに、除霜開始時と除霜終了時の各室温TS+ 、T
s2を室温センサ18により検知し、この室温変化値Δ
Tr+と許容室温変化値ΔTrとを比較した結果がΔT
r、>ΔTrである時、次回の除霜禁止時間Tdsを最
初の除霜禁止時間Tds、より短く設定することにより
、効率の良い運転制御が可能となる。例えば、αを志願
の定数として、
ΔTr、>ΔTrの時、Tds=Tds+ −aΔTr
、=ΔTrの時、Tds=Tds。Furthermore, each room temperature TS+, T at the start of defrosting and at the end of defrosting
s2 is detected by the room temperature sensor 18, and this room temperature change value Δ
The result of comparing Tr+ and the allowable room temperature change value ΔTr is ΔT
When r,>ΔTr, efficient operation control is possible by setting the next defrosting prohibition time Tds shorter than the first defrosting prohibition time Tds. For example, when α is a desired constant and ΔTr,>ΔTr, Tds=Tds+ −aΔTr
, = ΔTr, Tds=Tds.
ΔTr、<ΔTrの時、Tds=Tdsl+aとなるよ
うに設定する。すなわち、除霜開始時と除霜後の室温変
化の度合(室温低下度)を算出し、この度合に基づいて
次回の除霜禁止時間を適切に設定する。これにより、室
内の快適性を損うことなく効率の良い運転制御を行うこ
とができる。また、不必要な除霜、除霜前後の室温低下
。When ΔTr, <ΔTr, the setting is made so that Tds=Tdsl+a. That is, the degree of room temperature change (degree of room temperature decrease) between the time at the start of defrosting and after defrosting is calculated, and the next defrosting prohibition time is appropriately set based on this degree. As a result, efficient operation control can be performed without impairing indoor comfort. Also, unnecessary defrosting and lowering of room temperature before and after defrosting.
除霜後の冷風吹出等を最小限に抑制できるとともに、四
方弁の切換音も低減でき、しかも簡単な回路構成にて可
能である。The blowing of cold air after defrosting can be suppressed to a minimum, and the switching noise of the four-way valve can also be reduced, and this can be done with a simple circuit configuration.
第4図は、上述した除霜運転の動作シーケンスを示すフ
ローチャートであり、また第5図はその除霜時における
各部品の動作タイミングチャートを示す。FIG. 4 is a flowchart showing the operation sequence of the above-mentioned defrosting operation, and FIG. 5 shows an operation timing chart of each component during the defrosting operation.
(発明が解決しようとする課題〕
しかしながら、従来例の空気調和機の除霜制御装置は以
上のように構成されていたため、室外側ファンモータ2
3に流れる電流を検知する回路が必要であり、室内側ユ
ニット2台を交互に切換えて使用する場合、圧縮機モー
タ20.四方弁コイル21はリレーを用いた別回路を構
成できるが、電流検出は別回路にすることができず、室
内外側ユニットをセットにする必要があり、室内側ユニ
ット2台を別々の電源を取り、独立した電源回路を構成
することが困難であった。(Problem to be Solved by the Invention) However, since the defrosting control device of the conventional air conditioner was configured as described above, the outdoor fan motor 2
A circuit is required to detect the current flowing through the compressor motor 20. The four-way valve coil 21 can be configured as a separate circuit using a relay, but the current detection cannot be configured as a separate circuit, so the indoor and outdoor units must be combined as a set, and the two indoor units must be connected to separate power sources. , it was difficult to configure an independent power supply circuit.
この発明は、以上のような従来例の問題点を解消するた
めになされたもので、室内側ユニット2台と室外側ユニ
ット1台との組合せを行い、それぞれ独立した電源回路
を構成することを目的としている。This invention was made in order to solve the problems of the conventional example as described above, and it is possible to combine two indoor units and one outdoor unit to form independent power supply circuits. The purpose is
このため、この発明においては、室内側から室外側へ供
給される電源回路を分岐して、2台の室内側ユニットに
接続するよう構成することにより、前記目的を達成しよ
うとするものである。Therefore, the present invention attempts to achieve the above object by configuring the power circuit supplied from the indoor side to the outdoor side to be branched and connected to two indoor units.
以上のような構成により、室外側ユニットの電源回路を
2つに分岐させたため、2合の室内側ユニットが、別々
の電源回路で構成するこができる。With the above configuration, since the power supply circuit of the outdoor unit is branched into two, the two indoor units can be configured with separate power supply circuits.
(実施例) 以下に、この発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.
(構成)
第1図に、2台の室内側ユニットA、Bと、1台の室外
側ユニットとの組合せにおけるこの発明に係る一実施例
の除霜電気回路構成図を示す。図において、11.11
’はそれぞれ交流電源、31.32はそれぞれ全体の制
御手段である各室内制御回路、20は冷媒を圧縮するた
めるの圧縮機モータ、21は冷媒の流路を切換えるため
の四方弁(ソレノイド切換弁)のコイル、23は室外側
ファンモータ、24.24’ は除霜時にそれぞれ室外
側ファンモータ23に流れる電流を検出するだめの各カ
レントトランス(電流検出手段)である。(Structure) FIG. 1 shows a defrosting electric circuit configuration diagram of an embodiment of the present invention in a combination of two indoor units A and B and one outdoor unit. In the figure, 11.11
' are respectively AC power supplies, 31 and 32 are respective indoor control circuits that are overall control means, 20 is a compressor motor for compressing the refrigerant, and 21 is a four-way valve (solenoid switching valve) for switching the refrigerant flow path. ), 23 is the outdoor fan motor, and 24 and 24' are current transformers (current detection means) for detecting the current flowing through the outdoor fan motor 23 during defrosting.
また、25は不図示の室外側熱交換器の温度を検知する
ためのサーマルリードスイッチ等の温度検知器で、検知
温度が所定の設定値以下で開となり他の所定の設定値以
上で閑となる。26は、温度検知器25と直列に接続さ
れた除霜用リレーで、その接点26aは室外側ファンモ
ータ23と直接に接続され、前記温度検知器25が除霜
温度を検知した時に室外側ファンータ23の通電をオフ
する。30は圧縮機用リレー、1.3は四方弁用リレー
で、これらリレーの各接点30a。In addition, 25 is a temperature detector such as a thermal reed switch for detecting the temperature of the outdoor heat exchanger (not shown), which opens when the detected temperature is below a predetermined set value and turns off when the detected temperature exceeds another predetermined set value. Become. A defrosting relay 26 is connected in series with the temperature sensor 25, and its contact 26a is directly connected to the outdoor fan motor 23, so that when the temperature sensor 25 detects the defrosting temperature, the outdoor fan motor 23 is activated. 23 is turned off. 30 is a compressor relay, 1.3 is a four-way valve relay, and each contact 30a of these relays.
Ia、3aはそれぞれ圧縮機モータ20.四方弁コイル
21と直列に接続されている。Ia and 3a are compressor motors 20. It is connected in series with the four-way valve coil 21.
前記除霜用リレー26は、通常は通電されており、この
時その接点26aは温度検知器25と並列回路を形成す
る側にある。そして、除霜時にはリレー26が通電され
なくなるので、その接点26aは四方弁のコイル21と
並列回路を形成する側にある。The defrosting relay 26 is normally energized, and at this time its contact 26a is on the side forming a parallel circuit with the temperature sensor 25. Since the relay 26 is not energized during defrosting, its contact 26a is on the side forming a parallel circuit with the coil 21 of the four-way valve.
また、カレントトランス24.24’の検出値はそれぞ
れ室内制御回路31.32に人力され、設定値と比較さ
れる。そして、その比較した結果に基づいて各室内制御
回路31.32は除霜開始及び終了の信号を出力し、そ
れぞれ圧縮機20゜四方弁のコイル21等の駆動を制御
する。Further, the detected values of the current transformers 24 and 24' are input to the indoor control circuits 31 and 32, respectively, and compared with set values. Then, based on the comparison results, each indoor control circuit 31, 32 outputs a signal to start and end defrosting, and respectively controls the drive of the coil 21 of the compressor 20° square valve.
28a、、28a2は、それぞれ圧縮機用リレー30を
通電させるための圧縮機用運転指令中継リレー2.4を
通電させる各圧縮機運転指令リレー接点、29a、、2
9a2はそれぞれ四元弁リレー1,3を通電させるため
の四方弁切換指令リレー接点である。40は、2台の室
内側ユニットA、Bのうち入室内側ユニットAに冷媒の
流れを切換えるための冷媒2室切換弁で、圧縮機リレー
30及び接点2aと直列に、また、接点4aと並列に接
続されている。28a, 28a2 are compressor operation command relay contacts 29a, 2, which respectively energize the compressor operation command relay relay 2.4 for energizing the compressor relay 30.
9a2 is a four-way valve switching command relay contact for energizing the four-way valve relays 1 and 3, respectively. 40 is a refrigerant two-chamber switching valve for switching the flow of refrigerant to the entry side unit A of the two indoor units A and B, and is connected in series with the compressor relay 30 and contact 2a, and in parallel with contact 4a. It is connected to the.
5は室外ファンモータの電流検知回路の2台の室内側ユ
ニットA、Bと1台の室外側ユニットを結ぶ分岐点にあ
る接点5aを切換えるための各電流検知切換用リレーで
あり、通常は、圧縮機運転指令中継リレー2と並列に接
続されるが、四方弁リレー1かオンされると、その接点
1bにより、四方弁リレー1と並列に接続されるよう構
成しである。Reference numeral 5 denotes each current detection switching relay for switching the contact 5a at the branch point connecting the two indoor units A and B and one outdoor unit of the outdoor fan motor current detection circuit, and usually, It is connected in parallel with the compressor operation command relay relay 2, but when the four-way valve relay 1 is turned on, it is configured to be connected in parallel with the four-way valve relay 1 through its contact 1b.
(動作/作用)
以上のように構成された1台の室外側ユニットに対して
2台の室内側ユニットA、Bの切換えて使う空気調和機
において、実質的に圧縮用モータ20と四方弁コイル2
1の切換えを行うための各リレー接点である28a+
、28a2 。(Operation/Function) In the air conditioner configured as described above, in which two indoor units A and B are used by switching between one outdoor unit, the compression motor 20 and the four-way valve coil are substantially connected to each other. 2
28a+, which is each relay contact for switching 1.
, 28a2.
29a、、29a2と上記圧縮用モータ20.四方弁コ
イル21回路との間に各リレーを介し別口路を構成した
ことにより、2台の室内側ユニットA、Hのうちいずれ
からも室外側ユニットの制御が可能である。また室内側
ユニットA、室内側ユニットBの双方から運転指令が出
た場合、冷媒2室切換弁40が作動し、冷媒は室内側ユ
ニットAへ流れ、2室同時運転による能力低下を防止す
る。29a, 29a2 and the compression motor 20. By configuring a separate outlet path between the four-way valve coil 21 circuit and the four-way valve coil 21 circuit via each relay, it is possible to control the outdoor unit from either of the two indoor units A and H. Further, when an operation command is issued from both the indoor unit A and the indoor unit B, the refrigerant two-chamber switching valve 40 is activated, and the refrigerant flows to the indoor unit A, thereby preventing a decrease in performance due to simultaneous operation of the two compartments.
また、電流検知切換用リレー5により、接点5aが2台
の室内側ユニットA、Bのうち、運転中のユニット側へ
入り、電源回路、電流検知回路が構成されるため、2台
の室内側ユニットA、 Hの交流電源回路は完全に分t
1/独立して、この発明の目的を達成することかできる
。In addition, the current detection switching relay 5 causes the contact 5a to enter the operating unit of the two indoor units A and B, forming a power supply circuit and a current detection circuit. The AC power circuits of units A and H are completely
1/The objectives of this invention can be achieved independently.
(他の実施例)
第2図に、第1図の室内側ユニットAの電源回路に、前
記電流検知リレー5の室内側ユニットを結ぶ分岐点にあ
る切換用接点5aに加えて各接点5b、5bを配設して
、さらに前記安全性を向上させたものであり、他は第1
実施例第1図と全く同様であるため、重複説明は省略す
る。(Other Embodiments) In FIG. 2, in addition to the switching contact 5a at the branch point connecting the indoor unit of the current detection relay 5 to the power supply circuit of the indoor unit A of FIG. 1, each contact 5b, 5b to further improve the safety mentioned above, and the others are the first
Since this embodiment is exactly the same as the embodiment shown in FIG. 1, repeated explanation will be omitted.
(発明の効果)
以上、説明したように、この発明によれば、空気調和機
を2台の室内側ユニットと1台の室外側ユニットとで使
用した場合でも、2台の室内側ユニットの電源回路が完
全に独立するよう構成したため、例えば、2合の室内側
ユニットの交流電源が異相であっても、室外側ユニット
の除霜回路を通して、上記2台の回路が短絡を生ずる可
能性等の問題が解消する。(Effects of the Invention) As explained above, according to the present invention, even when an air conditioner is used with two indoor units and one outdoor unit, the power supply for the two indoor units is Because the circuits are configured to be completely independent, for example, even if the AC power supply of the two indoor units is out of phase, there is a possibility that the circuits of the two units will short circuit through the defrosting circuit of the outdoor unit. The problem is resolved.
第1図は、この発明の一実施例を示す電気回路の構成図
、第2図は、他の実施例の第1図相当図、第3図は、従
来のこの種の電気回路の一例の構成図、第4図は、その
除霜動作を示すシーケンスフローチャート、第5図は、
除霜時の各部の動作タイミングチャートである。
5・・・・・・室内ユニット切換用リレー20−−−−
−−圧縮機モータ
22・・・・・・室内側ファンモータ
23・・・・・・室外用ファンモータ
24.24’ −−−−−−カレントトランス25・・
・・・・温度検知器
26・・・・・・除霜用リレー
30−・・・・・圧縮機用リレー
31 、32−−−−−−室内制御回路40−−−−−
−冷媒2室切換弁
なお、各図中同一符号は同一または相当構成要素を示す
。
第4図
第5図Fig. 1 is a block diagram of an electric circuit showing one embodiment of the present invention, Fig. 2 is a diagram corresponding to Fig. 1 of another embodiment, and Fig. 3 is an example of a conventional electric circuit of this type. The configuration diagram, FIG. 4 is a sequence flowchart showing the defrosting operation, and FIG. 5 is a sequence flowchart showing the defrosting operation.
It is an operation timing chart of each part during defrosting. 5...Indoor unit switching relay 20---
--Compressor motor 22...Indoor fan motor 23...Outdoor fan motor 24.24' ----Current transformer 25...
...Temperature detector 26...Defrosting relay 30...Compressor relay 31, 32--Indoor control circuit 40--
- Refrigerant two-compartment switching valve Note that the same reference numerals in each figure indicate the same or equivalent components. Figure 4 Figure 5
Claims (2)
とを有し、室内側2台と室外側1台にそれぞれ熱交換器
及びファンを備えたヒートポンプ式空気調和機の除霜制
御装置において、室外側熱交換器の温度を検知しその温
度が異なる設定値をそれぞれ超えた時に開及び閉となる
温度検出器を設けるとともに、この温度検知器と直列に
除霜用リレーを接続し、該リレーの接点を前記室外側フ
ァンモータと直列に接続して該温度検知器が除霜温度を
検知した時に該室外側ファンモータの通電を停止するよ
うにし、除霜時に該室外側ファンモータまたは前記除霜
用リレーに流れる電流を検出するための電流検出手段を
設け、その検出値を設定値と比較した結果に基づいて除
霜開始及び終了の信号を出力し前記圧縮機、切換弁及び
室内側ファンモータを制御するための制御手段を設けた
空気調和機の除霜回路において、前記室外側ファンモー
タの電源回路を前記2台の室内側ユニットに接続し、該
各室内側ユニットが独立した交流電源回路を構成するこ
とを特徴とする空気調和機の除霜回路。(1) Defrosting control of a heat pump air conditioner that has a compressor and a switching valve that switches the flow path of the compressed refrigerant, and has two indoor and one outdoor heat exchangers and fans, respectively. The device is equipped with a temperature detector that detects the temperature of the outdoor heat exchanger and opens and closes when the temperature exceeds different set values, and a defrosting relay is connected in series with this temperature detector. , a contact point of the relay is connected in series with the outdoor fan motor to stop energization of the outdoor fan motor when the temperature sensor detects the defrosting temperature, and the outdoor fan motor is connected during defrosting. Alternatively, a current detection means is provided for detecting the current flowing through the defrosting relay, and the detected value is compared with a set value, and based on the result, a defrosting start and end signal is outputted, and the defrosting start and end signals are outputted to In a defrosting circuit of an air conditioner provided with a control means for controlling an indoor fan motor, the power supply circuit of the outdoor fan motor is connected to the two indoor units, and each of the indoor units is independent. A defrosting circuit for an air conditioner, comprising an AC power circuit.
ニットに設け、それぞれ前記室外側ファンモータ、圧縮
機、四方弁等の電源回路を前記2台の室内側ユニットに
接続するとともに、少くともその分岐点にリレー接点を
設けたことを特徴とする請求項1記載の空気調和機の除
霜回路。(2) A current transformer for current detection is provided in the two indoor units, and the power circuits for the outdoor fan motor, compressor, four-way valve, etc. are connected to the two indoor units, and at least 2. The defrosting circuit for an air conditioner according to claim 1, further comprising a relay contact at the branch point.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63195411A JPH0278846A (en) | 1987-08-06 | 1988-08-05 | Defrosting circuit for air conditioner |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62-120587 | 1987-05-18 | ||
JP12058787 | 1987-08-06 | ||
JP63195411A JPH0278846A (en) | 1987-08-06 | 1988-08-05 | Defrosting circuit for air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0278846A true JPH0278846A (en) | 1990-03-19 |
Family
ID=26458133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63195411A Pending JPH0278846A (en) | 1987-08-06 | 1988-08-05 | Defrosting circuit for air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0278846A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5017259U (en) * | 1973-06-09 | 1975-02-24 | ||
JPS5621152B2 (en) * | 1973-11-17 | 1981-05-18 |
-
1988
- 1988-08-05 JP JP63195411A patent/JPH0278846A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5017259U (en) * | 1973-06-09 | 1975-02-24 | ||
JPS5621152B2 (en) * | 1973-11-17 | 1981-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900005979B1 (en) | Air conditioning apparatus | |
US4102390A (en) | Control system for heat pump and furnace combination | |
JPH0481095B2 (en) | ||
JPH0769087B2 (en) | Operation control device for air conditioner | |
US3273352A (en) | Refrigeration system defrost control | |
JPH05264113A (en) | Operation control device of air conditioner | |
JPH0278846A (en) | Defrosting circuit for air conditioner | |
JPS62186157A (en) | Defrosting control unit of air conditioner | |
JPH0618103A (en) | Air conditioner | |
JPH08271100A (en) | Air conditioner | |
JPS63273751A (en) | Control of difrosting for air conditioner | |
JPH10160302A (en) | Air conditioner | |
JPH05157431A (en) | Control device for refrigerator | |
JPS6132302Y2 (en) | ||
KR830001525B1 (en) | Multiple compressor heat pump with coordinated defrost | |
JPS62116843A (en) | Air-conditioning device | |
JP2567710B2 (en) | Cooling device operation control device | |
JP3855662B2 (en) | Control device for defrosting operation of air conditioner | |
JPH09152169A (en) | Multi-type air conditioner | |
JPS6236043Y2 (en) | ||
JPH04155140A (en) | Control method of air conditioning system | |
JP4504504B2 (en) | Multi air conditioner | |
KR0111693Y1 (en) | Circuits controlling for removing frost of airconditioner | |
JPS5920581Y2 (en) | Control circuit for heat pump air conditioner | |
JPH03177744A (en) | Air conditioner |