JPH0278528A - Technique of hard tube lining on inside of pipe - Google Patents

Technique of hard tube lining on inside of pipe

Info

Publication number
JPH0278528A
JPH0278528A JP1061220A JP6122089A JPH0278528A JP H0278528 A JPH0278528 A JP H0278528A JP 1061220 A JP1061220 A JP 1061220A JP 6122089 A JP6122089 A JP 6122089A JP H0278528 A JPH0278528 A JP H0278528A
Authority
JP
Japan
Prior art keywords
tube
hard
heating
pipe
lining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1061220A
Other languages
Japanese (ja)
Other versions
JPH0565336B2 (en
Inventor
Yasuo Miyazaki
宮崎 康雄
Akira Kamiide
明 神出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Bousui Construction Co Ltd
Original Assignee
Osaka Bousui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Bousui Construction Co Ltd filed Critical Osaka Bousui Construction Co Ltd
Priority to JP1061220A priority Critical patent/JPH0278528A/en
Publication of JPH0278528A publication Critical patent/JPH0278528A/en
Publication of JPH0565336B2 publication Critical patent/JPH0565336B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable the title technique to form efficiently hard tube lining without generating trouble from a view point of execution by a method wherein a large number of through holes, which are pierced through in an axial direction and arranged in a row at intervals in a circumferential direction, are formed in a thick part of a tube and a heating fluid is circulated within the through holes. CONSTITUTION:A large number of through holes 1a, which are pierced through in an axial direction and arranged in a row at intervals in a circumferential direction, are formed in a thick part of a hard plastic tube 1, the hard plastic tube 1 is inserted into an object pipe (a) for lining and a front and rear plugs 2, 3 are plugged into both and parts of the tube 1. Steam is fed within through holes 1a... of the thick part of the tube 1 through a conduit 9 and passage 6 and the tube 1 is heated from the thick part. After an internal and external surface temperatures of the tube 1 are attained to at least the softening point, pressurized air is fed within the tube 1 through a conduit 11 and passage 7 while continuing heating operation and the hard tube 1 is lined to the pipe (a) by expanding the hard tube 1.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は管内面の硬質チューブライニング工法、詳しく
は水道本管、都市ガス本管、下水本管などのような比較
的大口径管の内面に、比較的厚肉の硬質プラスチックチ
ューブを用いて硬質チューブライニングを形成するため
の工法に関する。
[Detailed Description of the Invention] Industrial Field of Application The present invention is directed to a hard tube lining method for the inner surface of pipes, specifically for the inner surface of relatively large diameter pipes such as water mains, city gas mains, sewage mains, etc. The present invention relates to a method for forming a hard tube lining using a relatively thick hard plastic tube.

背景技術 従来、管内面ライニング工法として、管内に挿入した硬
質プラスチックチューブを該チューブ内からの加熱加圧
により管半径方向に膨脂し、管内面にライニングする、
所謂硬質チューブライニング工法が提案されている(例
えば日本国特許公開公報No、88281/1983参
照)。
BACKGROUND ART Conventionally, as a pipe inner lining construction method, a hard plastic tube inserted into a pipe is heated and pressurized from inside the tube to expand fat in the pipe radial direction, and the inner surface of the pipe is lined.
A so-called hard tube lining construction method has been proposed (see, for example, Japanese Patent Publication No. 88281/1983).

上記工法により形成された硬質チューブライニングは硬
く内面ライニング状態を自己保持するので、内面ライニ
ング状態を接着剤の接着力に頼る軟質チューブライニン
グに比べ品質的に優れている。
The hard tube lining formed by the method described above is hard and self-maintains its inner lining state, and is therefore superior in quality to soft tube linings that rely on the adhesive force of an adhesive to maintain their inner lining state.

硬質チューブライニング工法に於ては、管内に挿入され
た硬質プラスチックチューブは、加圧膨張の可能な状態
とするために、加圧膨脂工程の全工程に於て、加熱軟化
せられる。
In the hard tube lining method, the hard plastic tube inserted into the pipe is heated and softened during the entire pressurized expansion process in order to make it possible to expand under pressure.

従来硬質プラスチックチューブの加熱軟化手段として、
チューブ内にスチーム等の加熱流体を供給する方法が提
案されている。この加熱流体による加熱軟化手段は電気
ヒータ内蔵の加熱用治具を用いる加熱手段に比べ、加熱
軟化を装置面並びに操作面に於て簡潔に行い得るという
利点を持っている。
As a means of heating and softening conventional hard plastic tubes,
A method of supplying a heating fluid such as steam into a tube has been proposed. This heating and softening means using heating fluid has the advantage that heating and softening can be performed more simply in terms of equipment and operation than heating means that uses a heating jig with a built-in electric heater.

加熱流体利用の加熱軟化手段は、硬質プラスチックチュ
ーブが比較的薄肉厚の場合は特に問題はない。ところが
水道本管などのように比較的大口径例えば200〜80
0mmφの管の内面ライニングに適用されるような、比
較的厚内例えば5〜20mm程度の厚肉を有するチュー
ブの加熱軟化に適用すると、問題を生ずる。即ち加熱流
体と直接接触する内周部の加熱軟化の状態と、直接接触
しない外周部の加熱軟化の状態を比較すると、外周部は
内周部に比べ相当に悪くなる。これは、プラスチックは
熱伝導性があまりよくなく、また外周面で熱の放散が生
ずるためである。内周部と外周部との加熱軟化状態の不
均一性は、加圧膨張時に膨脹不足や破裂を招き、トラブ
ル原因となる。
The heat softening means using a heating fluid does not pose any particular problem when the hard plastic tube has a relatively thin wall thickness. However, for relatively large diameter pipes such as water mains, for example 200 to 80
A problem arises when the method is applied to heat softening a tube having a relatively thick wall, for example, about 5 to 20 mm, such as the inner lining of a tube with a diameter of 0 mm. That is, when comparing the heat-softening state of the inner circumferential portion that is in direct contact with the heating fluid and the heat-softening state of the outer circumferential portion that is not in direct contact, the outer circumferential portion is considerably worse than the inner circumferential portion. This is because plastic does not have very good thermal conductivity, and heat dissipates at the outer circumferential surface. Non-uniformity in the heating and softening state between the inner circumferential portion and the outer circumferential portion may lead to insufficient expansion or rupture during pressurized expansion, causing trouble.

この場合、チューブ外周部の加熱不足を補うために、チ
ューブ内部からの加熱に加え、外部からの加熱を行うこ
とが考えられるが、チューブの外部では、ライニング対
象の管側への熱の放散が大きくなるためにあまり効果が
ない。
In this case, in order to compensate for the insufficient heating of the outer periphery of the tube, it is possible to heat the tube from the outside in addition to heating from inside the tube. It doesn't do much to make it bigger.

発明の開示 ′本発明の主たる目的は、管内挿入の厚肉硬質プラスチ
ックチューブの加熱軟化を内周部と外周部とで略々均一
な状態となるように行い、加熱膨脂を、膨脹不足や破裂
などの発生のおそれなしに充分確実に行い得るような管
内面の硬質チューブライニング工法を提供しようとする
にある。
DISCLOSURE OF THE INVENTION The main object of the present invention is to heat and soften a thick-walled hard plastic tube to be inserted into a pipe so that the inner and outer circumferences are almost uniform, and to heat and expand the fat to prevent insufficient expansion or The object of the present invention is to provide a hard tube lining method for the inner surface of a tube that can be carried out sufficiently reliably without fear of bursting or the like.

本発明のその他の特徴は、以下の記載により明かにする
Other features of the invention will become clear from the description below.

本発明は、管内挿入の硬質乃至半硬質プラスチックチュ
ーブを加熱加圧膨脹して管内面にライニングする工法に
おいて、上記チューブが厚肉で、肉厚部に、軸線方向に
貫通され且つ円周方向に間隔を持って並列された多数本
の貫通孔を有し、加熱工程に於て、上記貫通孔内に加熱
流体を流通させることを特徴とする管内面の硬質チュー
ブライニング工法を提供するものであ。
The present invention is a construction method in which a hard or semi-hard plastic tube inserted into a pipe is expanded under heat and pressure to line the inner surface of the pipe. This invention provides a hard tube lining method for the inner surface of a tube, which has a large number of through holes arranged in parallel at intervals, and in which a heated fluid flows through the through holes during the heating process. .

本発明工法は水道本管、都市ガス本管、下水本管などの
ような比較的大口径、例えば200〜800mmφ程度
の口径を持つ管の内面ライニングに適用される。ライニ
ング材としては、比較的厚肉、例えば5〜20mm程度
の肉厚の硬質乃至半硬質プラスチックチューブが用いら
れる。
The construction method of the present invention is applied to the inner lining of pipes having a relatively large diameter, for example, a diameter of about 200 to 800 mm, such as water mains, city gas mains, sewage mains, etc. As the lining material, a hard or semi-hard plastic tube with a relatively thick wall, for example, about 5 to 20 mm, is used.

硬質乃至半硬質プラスチックチューブは、加熱によって
軟化させる必要」−1熱可塑性であることが必要であり
、加熱流体による加熱という点を考慮し、比較的軟化点
の低いもの、例えば60〜100°C1好ましくは70
〜95℃程度の軟化点のものが用いられる。このような
低軟化点のプラスチックとして、ポリ塩化ビニル、ポリ
エチレン、ポリプロピレン等を例示できる。
Hard or semi-rigid plastic tubes need to be softened by heating (1) They need to be thermoplastic, and in consideration of heating with a heating fluid, they must be made of a material with a relatively low softening point, such as 60 to 100°C. Preferably 70
Those having a softening point of about 95° C. are used. Examples of such low softening point plastics include polyvinyl chloride, polyethylene, and polypropylene.

硬質プラスチックチューブは、ライニング対象管内に挿
入する必要上、読管の内径(直径)よりも小さい外径(
直径)を有し、通常は管の内径の50〜90%程度に相
当する外径を持っている。
Hard plastic tubes must be inserted into the pipe to be lined, so the outer diameter (
diameter), and usually has an outer diameter equivalent to about 50 to 90% of the inner diameter of the tube.

チューブの断面形状は管の断面と相似形が好ましく、通
常は円形である。
The cross-sectional shape of the tube is preferably similar to the cross-section of the tube, and is usually circular.

硬質プラスチックチューブの肉厚部には、軸線方向に貫
通され円周方向に間隔を持って並列された多数本の貫通
孔が形成されている。貫通孔は肉厚部の中心を通る同心
円上に並列されていることが好ましい。
A large number of through holes are formed in the thick portion of the hard plastic tube, passing through them in the axial direction and arranged in parallel at intervals in the circumferential direction. It is preferable that the through holes are arranged in parallel on a concentric circle passing through the center of the thick part.

貫通孔の断面形状は任意であり、例えば円、三角形、四
角形等を例示できる。三角形の場合は、向きを相互に換
えて並列することができる。
The cross-sectional shape of the through hole is arbitrary, and examples thereof include a circle, a triangle, and a quadrangle. In the case of triangles, they can be arranged in parallel by changing their directions.

貫通孔の総開口面積は、チューブの総断面積のうちの2
0〜50%程度の範囲を占めていることが好ましく、こ
れより大きいと、チューブの強度の面で、また小さいと
チューブ加熱の面であまり好ましくない。また貫通孔の
直径は、チューブ強度面への悪影響を考慮し、チューブ
の厚みの40〜70%程度の範囲内から適宜選択決定さ
れる。
The total opening area of the through holes is 2 of the total cross-sectional area of the tube.
It is preferable that it occupies a range of about 0 to 50%; if it is larger than this, it is not very preferable in terms of the strength of the tube, and if it is smaller than this, it is not very preferable in terms of tube heating. Further, the diameter of the through hole is appropriately selected from within a range of about 40 to 70% of the thickness of the tube, taking into consideration the adverse effect on the strength of the tube.

また貫通孔相互の間隔は、あまり大きいと加熱の面で、
また小さいと強度の面で好ましくない結果を招く虞れが
あるので、チューブの肉厚より小さいことが好ましく、
通常はチューブ肉厚の50〜100%の範囲から適宜選
択決定される。
Also, if the distance between the through holes is too large, it will cause heating problems.
Also, if it is too small, there is a risk of unfavorable results in terms of strength, so it is preferable that it is smaller than the wall thickness of the tube.
Usually, it is appropriately selected from a range of 50 to 100% of the tube wall thickness.

このような貫通孔付硬質プラスチックチューブは、例え
ば日本国特許公開公報No、7052/1982、No
、18333/1987などに開示されている製造技術
を適用して製造される。
Such a hard plastic tube with through holes is disclosed in, for example, Japanese Patent Publication No. 7052/1982, No.
, 18333/1987 and the like.

施工に際し、貫通孔付硬質プラスチックチューブは、ラ
イニング対象管内に口径差を利用して全長に亘り挿入さ
れる。
During construction, the hard plastic tube with through holes is inserted over its entire length into the pipe to be lined, making use of the difference in diameter.

次に上記チューブは、貫通孔内を流通される加熱流体に
より加熱される。
The tube is then heated by a heating fluid flowing through the through hole.

加熱流体としては、スチーム、加熱空気など各種の加熱
流体を用い得るが、特にスチームは熱容量が大きく、ま
た凝縮すると純水となり、チューブを汚染したり、その
まま排出しても公害を招く虞れがないので、適している
Various heating fluids such as steam and heated air can be used as the heating fluid, but steam in particular has a large heat capacity and becomes pure water when condensed, so there is a risk of contaminating the tube or causing pollution if it is discharged as is. There is no such thing, so it is suitable.

貫通孔内を流通する加熱流体の圧力があまり大きいと、
チューブが貫通孔部分で部分的に膨脹する虞れがあるの
で、加熱流体の圧力は、0〜2.0kg/cm2 (ゲ
ージ圧)程度の範囲内ニすることが好ましい。
If the pressure of the heated fluid flowing through the through hole is too high,
Since there is a risk that the tube may partially expand in the through hole portion, the pressure of the heating fluid is preferably within a range of about 0 to 2.0 kg/cm 2 (gauge pressure).

貫通孔内を流通する加熱流体はチューブを肉厚部から加
熱するので、熱が肉厚部の全体に行きとどき易くなり、
また熱エネルギーの外部への放散ロスが少くなるので、
加熱が効率的に行なわれることになる。よってチューブ
は厚肉であるにかかわらず、比較的短時間で肉厚全体が
均一な加熱軟化状態となる。
The heating fluid flowing through the through-hole heats the tube from the thick part, making it easier for heat to reach the entire thick part.
In addition, the loss of heat energy dissipated to the outside is reduced,
Heating will be performed efficiently. Therefore, even though the tube has a thick wall, the entire wall thickness becomes uniformly heated and softened in a relatively short time.

チューブの加熱軟化工程に於ては、チューブの形状保持
を目的として、チューブ内を膨脹を伴わないような圧力
、例えば0〜0.5kg/cm2(ゲージ圧)に保持す
ることができる。この場合形状保持流体として加熱流体
、例えば50〜100℃程度に予熱された加熱空気を用
い、貫通孔内よりの加熱に加え、チューブ内よりの加熱
を行うようにしてもよい。
In the process of heating and softening the tube, in order to maintain the shape of the tube, the inside of the tube can be maintained at a pressure that does not cause expansion, for example, 0 to 0.5 kg/cm2 (gauge pressure). In this case, a heating fluid such as heated air preheated to about 50 to 100° C. may be used as the shape-retaining fluid, and in addition to heating from inside the through hole, heating may be performed from inside the tube.

チューブの加熱軟化工程を終えた後は、貫通孔内よりの
加熱を、好ましくは継続した状態のままで、チューブ内
に加圧流体が供給される。加圧流体の種類は特に制限は
なく、通常は加圧空気が用いられる。チューブ内に供給
された加圧空気はチューブを内部より加圧して膨脹させ
、管内面に硬質チューライニングを形成する。
After the heating and softening process of the tube is completed, pressurized fluid is supplied into the tube while heating from the inside of the through hole is preferably continued. The type of pressurized fluid is not particularly limited, and pressurized air is usually used. The pressurized air supplied into the tube pressurizes the tube from the inside and causes it to expand, forming a hard tube lining on the inner surface of the tube.

加圧空気の圧力は、チューブを膨脹せしめ得る範囲であ
ればよく通常は、0.5〜2.0kg/cm2 (ゲー
ジ圧)程度であれば充分である。加圧空気は50〜10
0℃程度の温度に加熱して用いてもよい。
The pressure of the pressurized air may be within a range that can inflate the tube, and usually a pressure of about 0.5 to 2.0 kg/cm2 (gauge pressure) is sufficient. Pressurized air is 50-10
It may be used after being heated to a temperature of about 0°C.

このようなチューブの加圧膨脹は、均一な加熱軟化状態
のちとに行なわれるので、膨張不足や破裂などのトラブ
ルの発生はなくなる。
Since such pressure expansion of the tube is carried out after uniform heating and softening, troubles such as insufficient expansion and rupture will not occur.

チューブの加圧膨脹を終えた後は、チューブ内を加圧状
態に保持した状態のままで、チューブの冷却固化を計る
ことにより、全ての作業を終了する。冷却工程に於て、
チューブの貫通孔内に冷却流体例えば水、エアー等を流
通させてもよい。
After completing the pressurized expansion of the tube, all operations are completed by cooling and solidifying the tube while keeping the inside of the tube in a pressurized state. In the cooling process,
A cooling fluid such as water, air, etc. may be passed through the through hole of the tube.

本発明工法によれば比較的厚肉の硬質プラスチックチュ
ーブを用いて、管内面に比較的厚肉の硬質チューブライ
ニングを施工上トラブルの発生なしに能率よく形成する
ことができる。
According to the construction method of the present invention, a relatively thick hard plastic tube can be used to efficiently form a relatively thick hard tube lining on the inner surface of the tube without causing any trouble during construction.

実施例 以下に本発明工法の1実施状況を添付図面にもとづき説
明する。
EXAMPLE Below, one implementation of the construction method of the present invention will be explained based on the accompanying drawings.

第1〜3図は、断面円形の貫通孔(1a)の多数本を形
成した厚肉硬質プラスチックチューブ(1)を用いて本
発明工法を実施した場合の1例を示している。硬質チュ
ーブ(1)は第2図に示されるようにライニング対象管
(a)よりも小さい口径と、比較的大きい肉厚を持って
いる。
Figures 1 to 3 show an example of the construction method of the present invention using a thick hard plastic tube (1) in which a large number of through holes (1a) having a circular cross section are formed. As shown in FIG. 2, the hard tube (1) has a smaller diameter and a relatively larger wall thickness than the tube to be lined (a).

施工に際しては、硬質チューブ(1)が口径差を利用し
てライニング対象管(a)内に全長に亘り挿入され、次
に一ト記チューブ(1)の両端部に前衿(2)及び後枠
(3)が施される。 前衿(2)及び後枠(3)は、内
面に環状凹溝(4)及び(5)を有し、これら凹溝(4
)、(5)内に」1記チューブ(1)の端部が挿着固定
されている。上記凹溝(4)、(5)は深部に小径溝部
(4a)(5a)を有し、この溝部(4a)、(5a)
内にチューブ(1)肉厚部の通孔(1a)・・・が、そ
の両端に於て開口されている。
During construction, the hard tube (1) is inserted over its entire length into the pipe to be lined (a) using the diameter difference, and then the front collar (2) and rear collar are inserted at both ends of the tube (1). A frame (3) is applied. The front collar (2) and the rear frame (3) have annular grooves (4) and (5) on their inner surfaces, and these grooves (4)
), (5) the end of the tube (1) is inserted and fixed. The grooves (4) and (5) have small diameter grooves (4a) and (5a) in their deep parts, and these grooves (4a) and (5a)
Inside the tube (1), through holes (1a) in the thick part are opened at both ends thereof.

更に前衿(2)は、環状凹溝(4)の深部の小径溝部(
4a)を通じて通孔(1a)・・・内に加熱流体例えば
スチームを供給するための通路(6)と、チューブ(1
)内に加圧流体例えば加圧空気を供給するための通路(
7)を具備し、前者通路(6)の供給口は、バルブ(8
)付導管(9)を介してボイラ(図示せず)に、また後
者通路(7)の供給口は、バルブ(10)付導管(11
)を介してコンプレッサ(図示せず)にそれぞれ接続さ
れている。
Furthermore, the front collar (2) has a small diameter groove (
a passageway (6) for supplying a heating fluid, for example steam, into the through hole (1a)... through the tube (1a);
) for supplying pressurized fluid, e.g. pressurized air, into the passage (
7), and the supply port of the former passage (6) is equipped with a valve (8).
) to the boiler (not shown) through a conduit (9) with a valve (10), and the supply port of the latter passage (7) is connected to a conduit (11) with a valve (10).
) are each connected to a compressor (not shown).

後枠(3)は上記通孔(1a)・・・内より小径溝部(
5a)を通じてスチームを排出するための通路(12)
と、チューブ(1)内より加圧空気を排出するための通
路(13)を具備し、各通路(12)、(13)の排出
口に、バルブ(14)、(15)付導管(16)、(1
7)が、それぞれ備え・られている。
The rear frame (3) has the through hole (1a)...a smaller diameter groove (
passage (12) for discharging steam through 5a);
and a passage (13) for discharging pressurized air from inside the tube (1), and a conduit (16) with valves (14), (15) is provided at the outlet of each passage (12), (13). ), (1
7) are prepared for each.

施工に際し、スチームをその供給系即ち導管(9)、通
路(6)及び小径溝部(4a)を順次経てチューブ(1
)の肉厚部の通孔(1a)・・・内に供給すると、スチ
iムは通孔(1a)・・・内を流通し、この間チューブ
(1)を肉厚部から加熱しつつ、排出系即ち小径溝部(
5a)、通路(12)及び排出管(16)を経て外部に
排出されて行く。
During construction, steam is supplied to the tube (1
), the steam flows through the through holes (1a), heating the tube (1) from the thick part, while heating the tube (1) from the thick part. Exhaust system, i.e. small diameter groove (
5a), is discharged to the outside through the passage (12) and the discharge pipe (16).

このようなスチームによる加熱操作は通常は常圧下で行
われるが、場合によっては、通孔(1a)部分の膨脹を
伴なわないような低圧下、たとえば0、 5kg/cm
”  (ゲージ圧)程度の加圧下で行なってもよい。ま
た通孔(1a)よりのスチーム加熱を継続しつつ、加圧
空気の供給系を利用して、チューブ(1)内部よりの加
熱を併用してもよい。
Such heating operation using steam is usually performed under normal pressure, but in some cases, it may be performed under low pressure that does not involve expansion of the through hole (1a), for example, 0.5 kg/cm.
The heating may be carried out under a pressure of about 100% (gauge pressure).Also, while continuing steam heating from the through hole (1a), heating from inside the tube (1) is carried out using a pressurized air supply system. May be used together.

チューブ(1)は通孔(1a)・・・内、即ち肉厚部内
より加熱されるので、厚肉であるに拘らず、厚み方向の
加熱は、全体が略々均一となる。
Since the tube (1) is heated from the inside of the through hole (1a), that is, from the inside of the thick wall, the heating in the thickness direction is approximately uniform throughout, regardless of the thickness.

上記加熱操作によりチューブ(1)の内外の表面温度が
軟化点以上(但し融点は超えない)に達した後は、通孔
(1a)内よりの加熱操作を継続しつつ、加圧空気好ま
しくは80〜100℃程度に予熱された加圧空気を、そ
の供給系即ち導管(11)及び通路(7)を経てチュー
ブ(1)内に供給し、チューブ(1)内の圧力を、その
膨脹に必要な圧力例えば0.5〜2. 0kg/co+
”  (ゲージ圧)に昇圧すると、硬質チューブ(1)
は常法通り膨脹されて管(a)にライニングされる。
After the inner and outer surface temperatures of the tube (1) reach the softening point or higher (but not exceeding the melting point) by the above heating operation, pressurized air is preferably used while continuing the heating operation from inside the through hole (1a). Pressurized air preheated to about 80 to 100°C is supplied into the tube (1) through the supply system, that is, the conduit (11) and the passage (7), and the pressure inside the tube (1) is controlled by the expansion. Necessary pressure, e.g. 0.5-2. 0kg/co+
” (gauge pressure), the hard tube (1)
is expanded and lined in tube (a) in the conventional manner.

このライニング状態が第1図及び第3図に示されている
。硬質チューブ(1)は先に述べたように厚み方向の温
度が均一となるように加熱されているので、厚肉に拘ら
ず全長に亘り均一に且つ破裂などの危険性なしに膨脹さ
れライニングされる。
This lining condition is shown in FIGS. 1 and 3. As mentioned above, the hard tube (1) is heated so that the temperature in the thickness direction is uniform, so regardless of the thickness, the hard tube (1) is expanded and lined uniformly over its entire length without the risk of bursting. Ru.

第1図に示されるように加熱加圧膨脹操作を終えた後は
、スチーム加熱を停止し、更に加圧空気を利用してその
冷却固化を計ることにより、厚内の硬質チューブライニ
ング(1′)が得られる。
As shown in Fig. 1, after completing the heating, pressurizing and expansion operation, the steam heating is stopped and the compressed air is used to cool and solidify the hard tube lining (1' ) is obtained.

第1〜3図め実施例より得られた硬質チューブライニン
グ(1′)の表面平滑性につき検討した所、第4図の拡
大断面図に誇張して示されるように、貫通孔(1a)の
形成部が凹部(18a)、非形成部が凸部(18b)と
なるような僅かな凹凸が認められた。硬質チューブライ
ニング(1′)の表面平滑性は、第5図に示されるよう
な断面構造の硬質プラスチックチューブ(19)を用い
ることにより向上できる。
When examining the surface smoothness of the hard tube lining (1') obtained in the examples shown in Figures 1 to 3, it was found that the through holes (1a) were exaggerated as shown in the enlarged cross-sectional view of Figure 4. Slight unevenness was observed, with the formed portion being a concave portion (18a) and the non-forming portion being a convex portion (18b). The surface smoothness of the hard tube lining (1') can be improved by using a hard plastic tube (19) with a cross-sectional structure as shown in FIG.

第5図に示された硬質チューブ(19)は、貫通孔(1
9a)が断面三角形状を有する点及び向きが交互に逆と
なるように並列されている点で、第1〜3図に示された
硬質チューブ(1)と構造を相違している。三角状貫通
孔(19a)の斜辺部分を形成する仕切り壁(19b)
(19b)と、底辺部分を形成する底壁(19C)は、
肉厚が略々等しく、直径方向のどこの断面をとっても、
空隙部と非空隙部の占める割合が略々等しくなるような
構成になっている。而して加圧膨張時に於ては、内部よ
り負荷される膨張圧に対し、360°の全周面が同じよ
うな抵抗力を示し、全体が過不足なしに膨張され、表面
平滑性のよい内面ライニングが得られる。
The hard tube (19) shown in FIG.
The structure is different from the rigid tube (1) shown in FIGS. 1 to 3 in that the tubes 9a) have a triangular cross section and are arranged in parallel in alternately opposite directions. Partition wall (19b) forming the oblique side of the triangular through hole (19a)
(19b) and the bottom wall (19C) forming the bottom part,
The wall thickness is approximately the same, no matter which cross section you take in the diametrical direction.
The structure is such that the proportions occupied by the void portion and the non-void portion are approximately equal. Therefore, during pressurized expansion, the entire 360° circumferential surface exhibits a similar resistance to the expansion pressure applied from the inside, and the entire surface is expanded without excess or deficiency, resulting in a surface with good surface smoothness. An inner lining is obtained.

以下に本発明工法の特徴とする所を、より一層明らかと
するために、本発明工法に従って行った各種実験例を掲
げる。
In order to further clarify the characteristics of the method of the present invention, various experimental examples conducted according to the method of the present invention are listed below.

[実験例1] (I)実験条件 ■ ライニング対象管 口径(内径)・・・・・・250mmφ長      
さ  ・・・・・・50m■ 硬質プラスチックチュー
ブ 材   質 ・・・・・・ポリ塩化ビニル口径(外径)
・・・・・・200mm 肉    厚 ・・・・・・10mm 軟化点・・・・・・72℃ [相] 貫通孔 断面形状・・・・・・円 口     径  ・・・・・・φ6mm相互間隔・・
・・・・9mm 本  数 ・・・・・・66本 総開口面積 ・・・・・・28%(但しチューブ断面積
に対し) 形成位置  ・・・・・・肉厚部中心 ■ 加熱流体 種  類  ・・・・・・スチーム 供給量  ・・・・・・100kg/時間供給圧力  
−・−0,3〜0. 5kg/cm2(ゲージ圧) 供給時間  ・・・・・・5分 加熱条件  ・・・・・・貫通孔内のみ■ 加圧流体 種    類・・・・・・加熱空気 温     度・・・・・・20℃ 供給圧力・・・・・・0.5kg/cm2 (ゲージ圧
) 加圧膨脂時間・・・・・・約3分 冷却時間・・・・・・約30分 上記の実験条件で、本発明工法を第1図の実施例に従い
実施したところ、トラブルの発生なしに、第3図に示さ
れた硬質チューブライニング(1′)と同様の品質のよ
いライニングが得られた。筒管(a)の設置゛雰囲気は
常温(18℃)に保持した。
[Experiment example 1] (I) Experimental conditions■ Pipe diameter (inner diameter) to be lined...250mmφ length
......50m■ Hard plastic tube material...Polyvinyl chloride Diameter (outer diameter)
...200mm Wall thickness ...10mm Softening point ...72℃ [Phase] Through-hole cross-sectional shape ...Circular diameter ......φ6mm mutual interval··
...9mm Number of tubes ...66 Total opening area ...28% (relative to tube cross-sectional area) Formation position ...center of thick wall ■ Type of heated fluid Type: Steam supply amount: 100 kg/hour supply pressure
-・-0,3~0. 5kg/cm2 (gauge pressure) Supply time: 5 minutes Heating conditions: Only in the through hole■ Pressurized fluid type: Heated air temperature:・20℃ Supply pressure: 0.5 kg/cm2 (gauge pressure) Pressure expansion time: Approx. 3 minutes Cooling time: Approx. 30 minutes Under the above experimental conditions When the method of the present invention was carried out according to the embodiment shown in FIG. 1, a lining of good quality similar to the hard tube lining (1') shown in FIG. 3 was obtained without any trouble. The atmosphere during installation of the tube (a) was maintained at room temperature (18° C.).

[実験例2コ 硬質プラスチックチューブの材質をポリエチレーンと、
ポリプロピレンに変えた以外は、実験例1と同じ実験条
件で実施した所、実験例1と同様の好結果を得た。
[Experiment Example 2 The material of the hard plastic tube is polyethylene,
The experiment was carried out under the same experimental conditions as in Experimental Example 1 except that polypropylene was used, and the same good results as in Experimental Example 1 were obtained.

[実験例3] 硬質プラスチックチューブとして、第5図に示され、た
断面積のものを用いた以外は、実験例1と同じ実験条件
で実施した所、表面平滑な硬質チューブライニングが得
られた。貫通孔の条件は次の通りである。
[Experimental Example 3] The experiment was carried out under the same experimental conditions as Experimental Example 1, except that the hard plastic tube with the cross-sectional area shown in Fig. 5 was used, and a hard tube lining with a smooth surface was obtained. . The conditions for the through hole are as follows.

断面形状 ・・・・・・正三角形 1辺の長さ ・・・・・・12mm 間隔部の厚み ・・・・・・2.5mm総開口面積 ・
・・・・・38%(チューブ断面積に対し)
Cross-sectional shape: Length of one side of equilateral triangle: 12mm Thickness of interval: 2.5mm Total opening area ・
...38% (relative to tube cross-sectional area)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明工法の1実施状況を概略的に示す縦断面
図、第2図は第1図における膨張操作前の状況を示す縦
断面図、第3図は、同膨張操作後の状況を示す縦断面図
、第4図は、同内面ライニング状況を拡大して示す縦断
面図、第5図は本発明工法に用いられる硬質プラスチッ
クチューブの他の好ましい1例を示す縦断面図である。 図に於て、(1)は硬質チューブ、(1a)はその貫通
孔、(2)は前衿、(3)は後枠、(4)、 (5)は
環状凹溝、(6)、(7)は通路である。 (以 上)
Fig. 1 is a vertical cross-sectional view schematically showing one implementation state of the construction method of the present invention, Fig. 2 is a longitudinal cross-sectional view showing the situation before the expansion operation in Fig. 1, and Fig. 3 is the situation after the same expansion operation. FIG. 4 is a vertical cross-sectional view showing an enlarged view of the inside lining, and FIG. 5 is a vertical cross-sectional view showing another preferred example of the hard plastic tube used in the construction method of the present invention. . In the figure, (1) is the hard tube, (1a) is the through hole, (2) is the front collar, (3) is the rear frame, (4), (5) is the annular groove, (6), (7) is a passage. (that's all)

Claims (1)

【特許請求の範囲】[Claims] (1)管内挿入の硬質乃至半硬質プラスチックチューブ
を加熱加圧膨脹して管内面にライニングする工法に於て
、上記チューブが厚肉で、厚肉の肉厚部内に、軸線方向
に貫通され且つ円周方向に間隔をもって並列された多数
本の貫通孔を有し、加熱工程に於て上記貫通孔内に加熱
流体を流通させることを特徴とする管内面の硬質チュー
ブライニング工法。
(1) In the method of heating and pressurizing and expanding a hard or semi-hard plastic tube inserted into a pipe to line the inner surface of the pipe, the tube is thick-walled, and the tube is passed through the thick part of the pipe in the axial direction. A hard tube lining method for the inner surface of a tube, characterized in that the tube has a large number of through holes arranged in parallel at intervals in the circumferential direction, and a heating fluid is caused to flow through the through holes during a heating process.
JP1061220A 1988-04-12 1989-03-13 Technique of hard tube lining on inside of pipe Granted JPH0278528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1061220A JPH0278528A (en) 1988-04-12 1989-03-13 Technique of hard tube lining on inside of pipe

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9077188 1988-04-12
JP63-90771 1988-04-12
JP63-141178 1988-06-07
JP1061220A JPH0278528A (en) 1988-04-12 1989-03-13 Technique of hard tube lining on inside of pipe

Publications (2)

Publication Number Publication Date
JPH0278528A true JPH0278528A (en) 1990-03-19
JPH0565336B2 JPH0565336B2 (en) 1993-09-17

Family

ID=26402266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1061220A Granted JPH0278528A (en) 1988-04-12 1989-03-13 Technique of hard tube lining on inside of pipe

Country Status (1)

Country Link
JP (1) JPH0278528A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006052539A3 (en) * 2004-11-03 2007-02-01 Insituform Netherlands Bv Installation of cured in place liners with air and flow-through steam to cure
CN106195458A (en) * 2015-04-29 2016-12-07 天津市英坦圣纸制品有限责任公司 A kind of water pipe for steam condensate recovering device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006052539A3 (en) * 2004-11-03 2007-02-01 Insituform Netherlands Bv Installation of cured in place liners with air and flow-through steam to cure
JP2008518820A (en) * 2004-11-03 2008-06-05 アイエヌエイ アクイジション コーポレーション Installation of an on-site curing liner that cures with air and once-through steam.
US7766048B2 (en) 2004-11-03 2010-08-03 Ina Acquisition Corp. Installation of cured in place liners with air and flow-through steam to cure
JP4777997B2 (en) * 2004-11-03 2011-09-21 アイエヌエイ アクイジション コーポレーション Installation of an on-site curing liner that cures with air and once-through steam.
CN106195458A (en) * 2015-04-29 2016-12-07 天津市英坦圣纸制品有限责任公司 A kind of water pipe for steam condensate recovering device

Also Published As

Publication number Publication date
JPH0565336B2 (en) 1993-09-17

Similar Documents

Publication Publication Date Title
CN105216294B (en) A kind of expanding device and flared method of PVC O tubing
CN108027094A (en) Lock pipe joint component, apparatus and method
JPS60131233A (en) Manufacture of composite pipe
US4965036A (en) Method of lining a pipe with a tube including passing heated fluid through the bores of the tube
US4340344A (en) Apparatus for manufacture of thermoplastics pipe
JPH0278528A (en) Technique of hard tube lining on inside of pipe
JP2007030273A (en) Manufacturing method of rubber cylindrical body
JPH0556254B2 (en)
JP3042880B2 (en) Method and apparatus for mounting an inner tube to an existing pipeline and a pipeline having a thermoplastic stretched inner tube mounted therein
US5863569A (en) Apparatus for forming bellings on thermoplastic pipes
JPH0556253B2 (en)
JPH09193250A (en) Method for connecting synthetic resin pipe
JP4754132B2 (en) Mold for transmission belt and the like and vulcanizing apparatus using the same
JPH03281328A (en) Manufacture of composite pipe
JPH01263029A (en) Rigid tube lining method for inner face of conduit with branch
JP2002086563A (en) Method for setting thermoplastic resin cylinder in pipe
JPH03151225A (en) Lining technique
JP2001009910A (en) In-pipe lining method
KR20130084757A (en) Outer pipe for heat exchanger system with helical, protrusive face formed on outer peripheral surface thereof, heat exchanger system using the same, device for preparing the same and method for preparing the same
JPH01253425A (en) Method for lining inner face of pipe with hard tube
JPH0556252B2 (en)
JPH0510552B2 (en)
JPH08127069A (en) Lining of inner surface of pipe
JPH07167584A (en) Cleaning method of heat exchanger and double tube
JP2000254972A (en) Heating device