JPH0278441A - Catalyst for hydrogenation of hydrocarbon and production thereof - Google Patents

Catalyst for hydrogenation of hydrocarbon and production thereof

Info

Publication number
JPH0278441A
JPH0278441A JP63229246A JP22924688A JPH0278441A JP H0278441 A JPH0278441 A JP H0278441A JP 63229246 A JP63229246 A JP 63229246A JP 22924688 A JP22924688 A JP 22924688A JP H0278441 A JPH0278441 A JP H0278441A
Authority
JP
Japan
Prior art keywords
group
catalyst
metal
periodic table
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63229246A
Other languages
Japanese (ja)
Other versions
JPH0549341B2 (en
Inventor
Yasuto Takahashi
康人 高橋
Shigeru Sakai
茂 酒井
Tomio Kawaguchi
川口 富男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP63229246A priority Critical patent/JPH0278441A/en
Priority to EP89308329A priority patent/EP0357295B1/en
Priority to DE68926764T priority patent/DE68926764T2/en
Priority to CA000608541A priority patent/CA1332934C/en
Priority to US07/394,560 priority patent/US4992403A/en
Publication of JPH0278441A publication Critical patent/JPH0278441A/en
Publication of JPH0549341B2 publication Critical patent/JPH0549341B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To make the heat treatment of a catalyst molded body unnecessary by molding a catalyst from a mixture of an Al oxide and/or hydroxide carrier with a group VI metal of the periodic table and amino-substd. mercaptan of hydrocarbon. CONSTITUTION:A soln. contg. at least one of water soluble compds. of groups VI and VIII metals of the periodic table and amino-substd. mercaptan of 1-15C hydrocarbon is prepd. A carrier material based on Al oxide and/or hydroxide is kneaded with the soln., molded and dried to produce a catalyst for hydrogenation of hydrocarbon. Otherwise the carrier material may be kneaded with a soln. of at least one of the water soluble compds., molded and impregnated with a soln. of the amino substd. mercaptan.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭化水素油の水素化処理用触媒とその製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a catalyst for hydrotreating hydrocarbon oil and a method for producing the same.

〔従来の技術〕[Conventional technology]

炭化水素油を水素の存在下で水添、脱硫、脱窒素、分解
等を行なう所謂水素化処理には、アルミナ、シリカ−ア
ルミナ、チタニア等の無機酸化物担体に、周期律表第6
族金属、及び第8族金圀から選ばれる少なくとも一種の
金属を水素化活性成分として担持した触媒が用いられ、
第6族金属としてはMo及びW1第8族金属としてはC
O及びN1がよく用いられている。
In so-called hydrogenation treatment, in which hydrocarbon oil is hydrogenated, desulfurized, denitrified, decomposed, etc. in the presence of hydrogen, inorganic oxide carriers such as alumina, silica-alumina, titania, etc.
A catalyst supporting at least one metal selected from group metals and group 8 metals as a hydrogenation active component is used,
Group 6 metals are Mo and W1 Group 8 metals are C.
O and N1 are commonly used.

これらの金属は、通常酸化物態で担持されておリ、その
ま\の状態では活性を示さないため、水素化処理反応に
供するには酸化物態から硫化物態に変換して活性化する
予備硫化が必要である。
These metals are usually supported in an oxide state and do not show activity in that state, so they must be activated by converting from an oxide state to a sulfide state in order to be subjected to a hydrogenation reaction. Pre-sulfurization is required.

この予備硫化は従来、炭化水素油の水素化処理を行なう
反応器に触媒を充填した後、この触媒層に硫化剤を水素
と共に通過させ行なうのが一般的である。予備硫化の操
作条件は、水素化処理プロセスによって、また使用する
硫化剤によって種々異なるが、硫化水素による場合には
水素中に0.5〜5gfi%程度含有させ、これ号触媒
11当り標準温度、圧力に換算して1000〜3000
 l、温度180C(通常は250C以上)で行なって
おり、二硫化炭素、ノルマルブチルメルカプタン、硫化
ジメチル、二硫化ジメチル等を用いる場合は、これらを
軽質炭化水素油で希釈して供し、温度250〜3501
Z’1圧力20〜100勢伽、液空間速度0.5〜2 
hr”−’、水素/油比200〜1000 Nl/lで
行なっている。
Conventionally, this pre-sulfurization is generally carried out by filling a catalyst in a reactor for hydrogenating hydrocarbon oil, and then passing a sulfurizing agent together with hydrogen through the catalyst bed. The operating conditions for pre-sulfiding vary depending on the hydrotreating process and the sulfurizing agent used, but when hydrogen sulfide is used, it is contained in hydrogen at about 0.5 to 5 gfi%, the standard temperature per catalyst No. 11, 1000-3000 converted to pressure
The temperature is 180C (usually 250C or higher), and when carbon disulfide, n-butyl mercaptan, dimethyl sulfide, dimethyl disulfide, etc. are used, they are diluted with light hydrocarbon oil and used at a temperature of 250 to 250C. 3501
Z'1 pressure 20~100seg, liquid space velocity 0.5~2
hr"-' and a hydrogen/oil ratio of 200 to 1000 Nl/l.

このような予備硫化操作を行なった後、実際に処理すべ
き原料油に切り替え、水素化処理操業が開始される。予
備硫化操作は、以後の水素化処理の成否を左右するので
、使用資材の適切な選択と慎重な操作が要求される。例
えば希釈剤を用いる場合、希釈剤にオレフィン類が含有
されていると、重合生成物が触媒な被毒するためにオレ
フィン類を含有しない炭化水素油を用いる必要がある。
After performing such a pre-sulfiding operation, the raw material oil to be actually treated is switched to, and the hydrotreating operation is started. The presulfiding operation determines the success or failure of the subsequent hydrotreating process, so appropriate selection of materials and careful operation are required. For example, when using a diluent, if the diluent contains olefins, the polymerization product will be poisoned by the catalyst, so it is necessary to use a hydrocarbon oil that does not contain olefins.

又、触媒金属が高温で水素と反応して還元されると不働
態化するので、これご防止するため硫化剤を多めに用い
る必要があり、硫化剤と水素の割合?適正に維持しなけ
ればならない。更に、このような予備硫化は数日間に亘
って行なうのが通常であるが、この操作は一時的なもの
であるため自動化されていないことが多く、通常と異な
る煩雑な操作が要求されるため、操作員の負担が極めて
太さい。
Also, when the catalytic metal reacts with hydrogen at high temperatures and is reduced, it becomes passivated, so to prevent this, it is necessary to use a large amount of sulfurizing agent, and the ratio of sulfurizing agent and hydrogen is important. Must be maintained properly. Furthermore, although such presulfurization is normally carried out over several days, this operation is temporary and is often not automated, requiring unusually complicated operations. , the burden on the operator is extremely heavy.

このため予備硫化を省略するか、少なくとも操作の煩雑
さを軽減することが課題となっていた。
Therefore, it has been a challenge to omit pre-sulfurization or at least reduce the complexity of the operation.

最近に至り、このような要請に応えうる方法が提案され
た。
Recently, a method has been proposed that can meet these demands.

その方法は活性金属が担持された触媒に、一般式 R−
5(n)−R’ (nは3〜20の整数、RSR’は水
素原子又は1分子当り1〜150個の炭素原子を有する
有機基)で表される多硫化物を含浸し、水素ガスの不存
在下、65〜275C1o、5〜70バールの圧力下で
前記触媒な熱処理するものである(特開昭61−111
144号公報)。
In this method, a catalyst having the general formula R-
5(n)-R' (n is an integer of 3 to 20, RSR' is a hydrogen atom or an organic group having 1 to 150 carbon atoms per molecule) is impregnated with a polysulfide, and hydrogen gas The catalyst is heat-treated under a pressure of 65 to 275 C1o and 5 to 70 bar in the absence of
Publication No. 144).

この方法によれば、触媒に含浸された多硫化物が熱処理
によって活性金属を硫化するので、反応器内で予備硫化
する場合は硫化剤及び希釈剤が不要となるため操作が容
易となり、又反応器外での予備硫化も可能で、その場合
は予備硫化した触媒を反応器に充填すれば直ちに水素化
処理操業を開始でさる。
According to this method, the polysulfide impregnated in the catalyst sulfurizes the active metal through heat treatment, so when pre-sulfiding is performed in the reactor, a sulfurizing agent and a diluent are not required, making the operation easier. Pre-sulfurization outside the reactor is also possible, in which case the pre-sulfurized catalyst can be loaded into the reactor and the hydrotreating operation can be started immediately.

上記の多硫化物の使用量は、後で触媒中の活性金属酸化
物(例えばCoo、MoO)全体を硫化するために必要
な化学量論量であり、適切な有機溶媒に希釈して含浸す
る。しがし上記多硫化物は高粘度であるため、有機溶媒
で希釈しても粘度が高い傾向があり、触媒細孔内部への
浸透が困難になるという問題がある。
The amount of polysulfide used above is the stoichiometric amount required to later sulfurize the entire active metal oxide (e.g. Coo, MoO) in the catalyst, diluted in a suitable organic solvent and impregnated. . However, since the above-mentioned polysulfide has a high viscosity, the viscosity tends to be high even when diluted with an organic solvent, and there is a problem that it becomes difficult to penetrate into the inside of the catalyst pores.

又、予備硫化に供する触媒は、アルミン酸ナトリウムを
原料として作ったアルミナ水和物を成形乾燥し、焼成し
て、アルミニウムをγ−アルミナとした後、活性金属の
水溶性化合物の水溶液を含浸し、乾燥してから、加熱処
理して、活性金属?酸化物態とする方法や、アルミナ水
和物と、活性金属の水溶性化合物の水溶液とを混合して
成形し、乾燥、焼成してγ−アルミナからなる担体に活
性金属を酸化物態で担持させるという方法で作られてい
る。
In addition, the catalyst used for presulfidation is prepared by molding and drying alumina hydrate made from sodium aluminate as a raw material, baking it to turn aluminum into γ-alumina, and then impregnating it with an aqueous solution of a water-soluble compound of an active metal. , dried, then heat treated, active metal? The active metal is supported in the oxide form on a support made of γ-alumina by mixing alumina hydrate and an aqueous solution of a water-soluble compound of the active metal, forming it, drying, and firing it. It is made in a way that

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記の従来方法によるよりも簡易、安価に製
造でさ、予備硫化処理を要することなく、水素化処理に
使用でき、熱処理することなく、そのまま水素化処理に
供することのでさる、炭化水素の水素化処理用触媒と、
その製造方法2提供することを課題とする。
The present invention can be produced more easily and inexpensively than the conventional methods described above, can be used for hydrotreating without requiring pre-sulfurization treatment, and can be directly subjected to hydrotreating without heat treatment. A catalyst for hydrotreating hydrogen;
An object of the present invention is to provide a manufacturing method 2 thereof.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による課題を解決するための手段は、下記すると
ころにある。
Means for solving the problems according to the present invention are as follows.

1 アルミニウムの酸化物、水和酸化物の一方又は両方
?主成分とする担体物質と、周期律表第6族金民、第8
族金属の水溶性化合物のうちの少なくとも一種と、炭素
数が1〜15の炭素と水素からなる炭化水素のアミノ置
換メルカプタンとの混合成形物からなる炭化水素の水素
化処理用触媒。
1 Aluminum oxide, hydrated oxide, or both? The carrier material as the main component and the metals of group 6 and 8 of the periodic table.
A catalyst for hydrotreating hydrocarbons, comprising a mixture of at least one water-soluble compound of group metals and an amino-substituted mercaptan of a hydrocarbon having 1 to 15 carbon atoms and hydrogen.

2 アルミニウムの酸化物、水和酸化物の一方又は両方
を主成分とする担体物質に、周期律表第6族金属、第8
族金属の水溶性化合物のうちの少なくとも一種と、炭素
数が1〜15の炭素と水素からなる炭化水素のアミノ置
換メルカプタンとの溶液を混練し、成形した後乾燥する
ことを特徴とする炭化水素の水素化処理用触媒の製造方
法。
2. A carrier material containing either or both of an oxide of aluminum and a hydrated oxide as a main component, a metal of group 6 of the periodic table, or a metal of group 8 of the periodic table.
A hydrocarbon characterized by kneading a solution of at least one water-soluble compound of group metal and an amino-substituted mercaptan of a hydrocarbon consisting of carbon and hydrogen having 1 to 15 carbon atoms, molding, and then drying. A method for producing a catalyst for hydrotreating.

3 アルミニウムの酸化物、水和酸化物の一方又は両方
を主成分とする担体物質に、周期律表第6族金属、第8
族金属の水溶性化合物のうちの少なくとも一種の水溶液
ご混練し成形して一旦乾燥し、該乾燥成形物に、炭素数
が1〜15の炭素と水素からなる炭化水素のアミノ置換
メルカプタンの溶液を含浸した後、再び乾燥することを
特徴とする炭化水素の水素化処理用触媒の製造方法。
3. A carrier material containing either or both of an oxide of aluminum and a hydrated oxide as a main component, a metal of group 6 of the periodic table, metal of group 8 of the periodic table, etc.
An aqueous solution of at least one of the water-soluble compounds of group metals is kneaded, molded and once dried, and a solution of an amino-substituted mercaptan, a hydrocarbon consisting of carbon and hydrogen having 1 to 15 carbon atoms, is added to the dried molded product. A method for producing a catalyst for hydrotreating hydrocarbons, which comprises impregnating and then drying again.

4 アルミニウムの酸化物、水和酸化物の一方又は両方
を主成分とする担体物質に、炭素数が1〜15の炭素と
水素からなる炭化水素のアミノ置換メルカプタンの溶液
ご混練し成形して一旦乾燥し、該乾燥成形物に、周期律
表第6族金属、第8族金属の水溶性化合物のうちの少な
くとも一種の水溶液を含浸した後、再び乾燥することを
特徴とする炭化水素の水素化処理用触媒の製造方法。
4. A solution of an amino-substituted mercaptan, a hydrocarbon consisting of carbon and hydrogen having 1 to 15 carbon atoms, is kneaded with a carrier material containing either or both of an oxide of aluminum and a hydrated oxide as a main component, and then formed. Hydrocarbon hydrogenation, characterized in that the dried molded product is impregnated with an aqueous solution of at least one of water-soluble compounds of Group 6 metals and Group 8 metals of the periodic table, and then dried again. Method for producing treatment catalyst.

5 アルミニウムの酸化物、水和酸化物の一方又は両方
を主成分とする担体物質と、周期律表第6族金属、第8
族金属の水溶性化合物のうちの少なくとも一種と、りん
酸と、炭素数が1〜15の炭素と水素からなる炭化水素
のアミノ置換メルカプタンとの混合成形物からなる炭化
水素の水素化処理用触媒。
5 A carrier material mainly composed of one or both of aluminum oxide and hydrated oxide, and a metal of group 6 of the periodic table, metal of group 8 of the periodic table.
A catalyst for hydrogenation of hydrocarbons, comprising a mixture of at least one water-soluble compound of group metal, phosphoric acid, and an amino-substituted mercaptan of a hydrocarbon having 1 to 15 carbon atoms and hydrogen. .

6 アルミニウムの酸化物、水和酸化物の一方又は両方
を主成分とする担体物質に、周期律表第6族金属、第8
族金属の水溶性化合物のうちの少なくとも一種と、りん
酸と、炭素数が1〜15の炭素と水素からなる炭化水素
のアミノ置換メルカプタンとの溶液を混練し、成形した
後乾燥することご特徴とする炭化水素の水素化処理用触
媒の製造方法。
6. A carrier material containing either or both of an oxide of aluminum and a hydrated oxide as a main component, a metal of group 6 of the periodic table, or a metal of group 8 of the periodic table.
A characteristic feature is that a solution of at least one water-soluble compound of a group metal, phosphoric acid, and an amino-substituted mercaptan of a hydrocarbon having 1 to 15 carbon atoms and hydrogen is kneaded, shaped, and then dried. A method for producing a catalyst for hydrotreating hydrocarbons.

7 アルミニウムの酸化物、水和酸化物の一方又は両方
を主成分とする担体物質に、周期律表第6族金属、第8
族金属の水溶性化合物のうちの少なくとも一種と、りん
酸との水溶液を混練し成形して一旦乾燥し、該乾燥成形
物に、炭素数が1〜15の炭素と水素からなる炭化水素
のアミノ置換メルカプタンの溶液を含浸した後、再び乾
燥すること?特徴とする炭化水素の水素化処理用触媒の
製造方法。
7. A carrier material mainly composed of one or both of aluminum oxide and hydrated oxide, a metal of group 6 of the periodic table, metal of group 8 of the periodic table, etc.
An aqueous solution of at least one of the water-soluble compounds of group metals and phosphoric acid is kneaded, molded and once dried, and the dried molded product is coated with a hydrocarbon amino acid consisting of carbon and hydrogen having 1 to 15 carbon atoms. Can it be dried again after impregnation with a solution of substituted mercaptans? A method for producing a catalyst for hydrotreating hydrocarbons.

8 アルミニウムの酸化物、水和酸化物の一方又は両方
を主成分とする担体物質に、周期律表第6族金属、第8
族金属の水溶性化合物のうちの少なくとも一種の水溶液
を混練し成形して一旦乾燥し、該乾燥成形物に、りん酸
と、炭素数が1〜15の炭素と水素からなる炭化水素の
アミノ置換メルカプタンとの溶液を含浸した後、再び乾
燥することを特徴とする炭化水素の水素化処理用触媒の
製造方法。
8. A carrier material mainly composed of one or both of aluminum oxides and hydrated oxides, and metals of group 6 of the periodic table and metals of group 8 of the periodic table.
An aqueous solution of at least one of the water-soluble compounds of group metals is kneaded, shaped and once dried, and the dried shaped product is treated with phosphoric acid and an amino-substituted hydrocarbon consisting of carbon and hydrogen having 1 to 15 carbon atoms. A method for producing a catalyst for hydrogenation of hydrocarbons, which comprises impregnating a catalyst with a mercaptan and then drying it again.

9 アルミニウムの酸化物、水和酸化物の一方又は両方
を主成分とする担体物質に、周期律表第6族金属、第8
族金属の水溶性化合物のうちの少なくとも一種と、炭素
数が1〜15の炭素と水素からなる炭化水素のアミノ置
換メルカプタンとの溶液を混練し成形して一旦乾燥し、
該乾燥成形物に、りん酸の水溶液を含浸した後、再び乾
燥することを特徴とする炭化水素の水素化処理用触媒の
製造方法。
9 A carrier material mainly composed of one or both of an oxide and a hydrated oxide of aluminum, a metal of group 6 of the periodic table, a metal of group 8 of the periodic table, etc.
A solution of at least one water-soluble compound of group metal and an amino-substituted mercaptan of a hydrocarbon consisting of carbon and hydrogen having 1 to 15 carbon atoms is kneaded, shaped and once dried,
A method for producing a catalyst for hydrogenation of hydrocarbons, which comprises impregnating the dried molded product with an aqueous solution of phosphoric acid and then drying it again.

10  アルミニウムの酸化物、水和酸化物の一方又は
両方を主成分とする担体物質に、りん酸と、炭素数が1
〜15の炭素と水素からなる炭化水素のアミノ置換メル
カプタンとの溶液を混練し成形して一旦乾燥し、該乾燥
成形物に、周期律表第6族金属、第8族金属の水溶性化
合物のうちの少なくとも一種の水溶液を含浸した後、再
び乾燥することを特徴とする炭化水素の水素化処理用触
媒の製造方法。
10 A carrier material containing one or both of aluminum oxide and hydrated oxide as a main component, phosphoric acid and carbon number 1
A solution of a hydrocarbon amino-substituted mercaptan consisting of ~15 carbons and hydrogen is kneaded, molded and once dried, and the dried molded product is injected with water-soluble compounds of Group 6 metals and Group 8 metals of the periodic table. 1. A method for producing a catalyst for hydrotreating hydrocarbons, which comprises impregnating with an aqueous solution of at least one of the above and then drying the catalyst again.

11  アルミニウムの酸化物、水和酸化物の一方又は
両方を主成分とする担体物質に、炭素数が1〜15の炭
素と水素からなる炭化水素のアミノ置換メルカプタンの
溶液を混練し成形して一旦乾燥し、該乾燥成形物に、周
期律表第6族金属、第8族金属の水溶性化合物のうちの
少なくとも一種と、りん酸との溶液を含浸した後、再び
乾燥することを特徴とする炭化水素の水素化処理用触媒
の製造方法。
11 A solution of an amino-substituted mercaptan, a hydrocarbon consisting of carbon and hydrogen having 1 to 15 carbon atoms, is kneaded and shaped into a carrier material containing either or both of an oxide of aluminum and a hydrated oxide as a main component. The dried molded product is impregnated with a solution of phosphoric acid and at least one of water-soluble compounds of Group 6 metals and Group 8 metals of the periodic table, and then dried again. A method for producing a catalyst for hydrotreating hydrocarbons.

12  アルミニウムの酸化物、水和酸化物の一方又は
両方ご主成分とする担体物質に、りん酸の水溶液な混練
し成形して一旦乾燥し、該乾燥成形物に、周期律表第6
族金属、第8族金属の水溶性化合物のうちの少なくとも
一種と、炭素数が1〜15の炭素と水素からなる炭化水
素のアミノ置換メルカプタンとの溶液を含浸した後、再
び乾燥すること分特徴とする炭化水素の水素化処理用触
媒の製造方法0 本発明で使用するアルミニウムの酸化物を主成分とする
担体物質としては、アルミニウムの水和物を加熱処理し
て得られるγ−アルミナやベーマイトを用いる。ベーマ
イトはAlo (OH)で示される構造式を有するアル
ミニウムの水和酸化物で、化学的にはアルミン酸ナトリ
ウムを加水分解して得たゲル状物質をフィルタープレス
で脱水してベーマイトゲルとするか、脱水ベーマイトゲ
ルを噴霧乾燥したものが用いられる。ベーマイトはまた
天然にベーム石として産出し、この中には、S10、F
eO、?e O、MgO,C!aOなどが不純物として
含まれている。ベーマイトを加熱すると脱水してr−ア
ルミナ→δ−アルミナ→θ−アルミナの順に変化し、1
000C以上でα−アルミナ(フランダム)となる。こ
のようにベーマイトは水酸化アルミニウムと酸化アルミ
ニウムとの中間物であるので、活性?有するr−アルミ
ナと混合して用いてもよいし、γ−アルミナだけ分担体
物質としても良い。
12 Knead an aqueous solution of phosphoric acid into a carrier material containing either or both of an oxide of aluminum and a hydrated oxide as a main component, mold the mixture, dry it once, and apply the formula 6 of the periodic table to the dried molded product.
It is characterized by being impregnated with a solution of at least one water-soluble compound of a group metal or a group 8 metal and an amino-substituted mercaptan of a hydrocarbon consisting of carbon and hydrogen having 1 to 15 carbon atoms, and then drying again. Method for producing a catalyst for hydrogenation of hydrocarbons 0 The carrier material containing aluminum oxide as a main component used in the present invention may be γ-alumina or boehmite obtained by heat treating aluminum hydrate. Use. Boehmite is a hydrated oxide of aluminum with the structural formula Alo (OH). Chemically speaking, boehmite gel is obtained by dehydrating a gel-like substance obtained by hydrolyzing sodium aluminate using a filter press. , spray-dried dehydrated boehmite gel is used. Boehmite also occurs naturally as boehmite, which includes S10, F
eO,? e O, MgO, C! Contains aO and the like as impurities. When boehmite is heated, it dehydrates and changes in the order of r-alumina → δ-alumina → θ-alumina, and 1
At temperatures above 000C, it becomes α-alumina (furundum). In this way, boehmite is an intermediate between aluminum hydroxide and aluminum oxide, so is it active? It may be used in combination with r-alumina, or only γ-alumina may be used as the carrier material.

又シリカやチタニア2これらと混合して用いても良い。Further, silica or titania 2 may be used in combination with these.

周期律表の第6族金属の水溶性化合物としては、一般に
触媒の活性金属として用いられているモリブデン、タン
グステンのモリブデン酸アンモニウム、タングステン酸
アンモニウムを、第8族の水溶性化合物としては、一般
に触媒の活性金属として用いられているコバルト、ニッ
ケルの硝酸コバルト、炭酸コバルト、硝酸ニッケル、炭
酸ニッケルを用いる。三酸化モリブデン、三酸化タング
ステンは、アンモニアガスを用いて、モリブデン酸アン
モニウム、タングステン酸アンモニウムとし、これの水
溶液として用いることが出来る。
Water-soluble compounds of group 6 metals in the periodic table include ammonium molybdate and ammonium tungstate of molybdenum and tungsten, which are generally used as active metals in catalysts, and water-soluble compounds of group 8 metals that are generally used as active metals in catalysts. Cobalt, nickel, cobalt nitrate, cobalt carbonate, nickel nitrate, and nickel carbonate are used as active metals. Molybdenum trioxide and tungsten trioxide can be converted into ammonium molybdate and ammonium tungstate using ammonia gas, and used as an aqueous solution thereof.

炭素数が1〜15の炭素と水素からなる炭化水素のアミ
ノ置換メルカプタンの使用量は、周期律表第6族金属、
第8族金属が水素化尺応において高活性を示す硫化物形
態(例えばMoS % WS s C0FJsNiS 
)を形成するのに必要な硫黄量の1〜3当量倍がよい。
The usage amount of the amino-substituted mercaptan, which is a hydrocarbon consisting of carbon and hydrogen having 1 to 15 carbon atoms, is based on a group 6 metal of the periodic table,
Group 8 metals exhibit high activity in hydrogenation scales in sulfide forms (e.g. MoS%WSsC0FJsNiS
) is preferably 1 to 3 times the amount of sulfur required to form.

使用量が1当量未満では活性が充分生かされず、3当量
を超えても活性がもはや向上しないので、この割合の使
用量で充分である。
If the amount used is less than 1 equivalent, the activity will not be fully utilized, and if it exceeds 3 equivalents, the activity will no longer be improved, so the amount used in this ratio is sufficient.

上記のアミ7置換メルカプタンは活性金属の硫化剤とし
て作用する部分が、該アミノ置換メルカプタンの分子中
の一8H基であるので、炭化水素基の炭素数が多くなる
と、分子中の硫化剤とじて作用する部分が相対的に少な
くなるので、不経済となるだけでなく、余分な炭素や水
素?触媒中に含有せしめることになるので好ましくない
。従って、2−アミノエタンチオ−k (HN(!HC
!HSH)や4−アミノチオフェノール(HNo HS
H)のような炭素数の少ないアミノ置換メルカプタンを
用いることが好ましく、炭素数は多くても15迄のもの
を用いるのが良い。
In the above amino-7-substituted mercaptan, the moiety that acts as a sulfurizing agent for the active metal is the 18H group in the molecule of the amino-substituted mercaptan, so when the number of carbon atoms in the hydrocarbon group increases, the sulfurizing agent in the molecule acts as a sulfurizing agent. Since there are relatively fewer active parts, it is not only uneconomical, but also excess carbon and hydrogen. This is not preferable since it will be included in the catalyst. Therefore, 2-aminoethanethio-k (HN(!HC
! HSH) and 4-aminothiophenol (HNo HS
It is preferable to use an amino-substituted mercaptan having a small number of carbon atoms such as H), and it is preferable to use a mercaptan having at most 15 carbon atoms.

りん酸は触媒中に、POに換算して3重冊%程度ご含有
せしめるのが良い。
It is preferable that phosphoric acid is contained in the catalyst in an amount of about 3% in terms of PO.

本発明製造法で製造された触媒は、乾燥したままの触媒
?、そのま−反応塔に充填し、炭化水素油の水素化処理
に供される。触媒の製造過程で使用した水分は反応塔に
入れてから乾燥して除去してもよい。
Is the catalyst produced by the production method of the present invention a dry catalyst? The raw material is packed into a reaction tower and subjected to hydrotreating of hydrocarbon oil. The water used in the process of producing the catalyst may be removed by entering the reaction tower and then drying it.

(作用〕 本発明による触媒は、硫化剤として作用する一3H基を
有する2−アミノエタンチオールや4−アミノチオフェ
ノールが、活性金属の水溶性化合物と共に担体物質に担
持されているので、炭化水素泊の水素化脱硫反応温度へ
の湿度上昇過程で活性金属が硫化物に変換し、特に予備
硫化処理を行なわなくても、そのま\炭化水素油の水素
化脱硫反応に供することが出来る。又、本発明触媒は優
れた活性?示す。その理由は定かではないが、2−アミ
ノエタンチオールや4−アミノチオフェノールが活性金
属の水溶性化合物と溶解性の配位化合物(金属メルカプ
チド)を形成し、担体物質に高分散状態で担持されるこ
とによる為と考えられる。
(Function) In the catalyst of the present invention, 2-aminoethanethiol or 4-aminothiophenol having a 13H group, which acts as a sulfiding agent, is supported on a carrier material together with a water-soluble compound of an active metal, so that hydrocarbon In the process of increasing the humidity to the hydrodesulfurization reaction temperature of Tomari, the active metal is converted to sulfide, and it can be directly subjected to the hydrodesulfurization reaction of hydrocarbon oil without any special preliminary sulfurization treatment. , the catalyst of the present invention exhibits excellent activity.The reason is not clear, but 2-aminoethanethiol and 4-aminothiophenol form a soluble coordination compound (metal mercaptide) with a water-soluble active metal compound. This is thought to be due to the fact that it is supported on the carrier material in a highly dispersed state.

〔実施例〕〔Example〕

以下の実施例では、すべて触媒は押し出し成形により、
直径1.5鴎、長さ3〜5I1111のシリンダー形に
成形した。
In all of the following examples, the catalyst was extruded.
It was molded into a cylinder shape with a diameter of 1.5 mm and a length of 3 to 5 mm.

又、活性評価はクェート常圧軽油の水素化脱硫反応によ
り求めた。
In addition, activity evaluation was determined by hydrodesulfurization reaction of Kuwait atmospheric gas oil.

反応に用いた常圧軽油の性状は次の通りであった。The properties of the atmospheric gas oil used in the reaction were as follows.

比  重 (15/4C)    0.844硫 黄 
(重量%)      1.13窒  素 (重量p’
9m)    162蒸留性状(初留点、C)   2
03.3〃(50容量%点、2m’)   299.0
〃   (終点、C)    391.8反応は流通式
反応装置ひ用い、次の反応条件で行なった。
Specific gravity (15/4C) 0.844 sulfur
(Weight %) 1.13 Nitrogen (Weight p'
9m) 162 Distillation properties (initial boiling point, C) 2
03.3 (50 volume % point, 2m') 299.0
(End point, C) 391.8 The reaction was carried out using a flow reactor under the following reaction conditions.

触媒量       3 ml 原料油液空間速度   2.Ohr−’反応圧力(水素
圧)30臀伽2 反応温度      330C 水素/油化     300 Nt/1通油時間   
   8hr 処理油は2時間毎にサンプリングし、硫黄含有量を測定
し、脱硫率を求めた。以下の実施例で示す脱硫率は4時
間目、6時間目、8時間目にサンプリングした処理油の
硫黄含有量から求めた脱硫率の平均値を示す。
Catalyst amount 3 ml Raw material oil liquid hourly space velocity 2. Ohr-' Reaction pressure (hydrogen pressure) 30°2 Reaction temperature 330C Hydrogen/oil conversion 300 Nt/1 oil passage time
The oil treated for 8 hours was sampled every 2 hours, the sulfur content was measured, and the desulfurization rate was determined. The desulfurization rate shown in the following examples is the average value of the desulfurization rate determined from the sulfur content of the treated oil sampled at the 4th hour, 6th hour, and 8th hour.

実施例1 三酸化モリブデン37.0g、炭酸コバルト(CO含有
量49.1重量%)15.8g、アンモニアガス及び水
から調製した溶液3oomtに、2−アミノエタンチオ
ール74.6gを添′加し金属メルカプチドの溶液とし
た。
Example 1 74.6 g of 2-aminoethanethiol was added to 3 oomt of a solution prepared from 37.0 g of molybdenum trioxide, 15.8 g of cobalt carbonate (CO content 49.1% by weight), ammonia gas and water. A solution of metal mercaptide was prepared.

この金属メルカプチドの溶液と噴霧乾燥ベーマイト形ア
ルミナ粉末(AIO73,5重量%)の272g、l!
:Tr:ニーグーに入れニーディングを行ないアルミナ
と金属メルカプチドの混和物を得た後、成、形した。
272 g of this metal mercaptide solution and spray-dried boehmite-type alumina powder (AIO 73.5% by weight), l!
:Tr: After kneading was performed in a Ni-Goo to obtain a mixture of alumina and metal mercaptide, it was molded and shaped.

この成形体を1000で16時間乾燥し触媒1を得た。This molded body was dried at 1000C for 16 hours to obtain Catalyst 1.

触媒1の破壊強度は1.5臀−以上であった。The breaking strength of Catalyst 1 was 1.5 or more.

触媒1の金属含有量はモリブデンがMoOに換算して1
5重量%、コバルトがCooに換算して4it%であり
、2−アミノエタンチオールの使用量はMOlOOがM
oS s C+O3になるのに必要な硫黄の理論量に換
算して1.5倍であった。
The metal content of catalyst 1 is molybdenum converted to MoO.
5% by weight, cobalt is 4it% in terms of Coo, and the amount of 2-aminoethanethiol used is
It was 1.5 times the theoretical amount of sulfur required to form oS s C+O3.

この触媒1の脱硫率は81.8%であった。The desulfurization rate of this catalyst 1 was 81.8%.

実施例2 三酸化タングステン37.0gs炭酸コバルト(CO含
有量49.1重量%)15.8g、アンモニアガス及び
水から調製した溶液300rntに、2−アミノエタン
チオール52.1gを添加し金属メルカプチドの溶液と
した。
Example 2 To 300rnt of a solution prepared from 37.0gs of tungsten trioxide, 15.8g of cobalt carbonate (CO content 49.1% by weight), ammonia gas and water, 52.1g of 2-aminoethanethiol was added to form a metal mercaptide. It was made into a solution.

この金属メルカプチドの溶液と実施例1で使用したベー
マイト形アルミナ粉末の272gとをニーグーに入れニ
ーディングを行ないアルミナと金属メルカプチドの混和
物を得た後、成形した。
This metal mercaptide solution and 272 g of the boehmite-type alumina powder used in Example 1 were placed in a Neegu and kneaded to obtain a mixture of alumina and metal mercaptide, which was then molded.

この成形体を100Cで16時間乾燥し触媒2′f:得
た。
This molded body was dried at 100C for 16 hours to obtain catalyst 2'f.

触媒2の破壊強度は1.5 切物以上であった。The breaking strength of Catalyst 2 was 1.5 or more.

触媒2の金属含有量はタングステンがWOに換算して1
5重量%、コバルトがCooに換算して4重量%であり
、2−アミノエタンチオールの使用量はW、C,がそれ
ぞれWS 、 OoSになるのに必要な硫黄の理論量に
換算して1.5倍であった。
The metal content of catalyst 2 is tungsten converted to WO.
5% by weight, cobalt is 4% by weight when converted to Coo, and the amount of 2-aminoethanethiol used is 1% when converted to the theoretical amount of sulfur necessary for W, C, to become WS and OoS, respectively. It was .5 times as large.

この触媒2の脱硫率は81.5%であった。The desulfurization rate of this catalyst 2 was 81.5%.

実施例3 三酸化モリブデン37.0 g 、 炭酸フバル)(c
Example 3 37.0 g of molybdenum trioxide, fval carbonate (c
.

含有ff149.1重量%)15.8g、アンモニアガ
ス及び水から水溶液300 mlを調製した。
300 ml of an aqueous solution was prepared from 15.8 g of FF (containing 149.1% by weight), ammonia gas and water.

この溶液と実施例1で使用したベーマイト形アルミナ粉
末の272gとをニーダーに入れニーディングを行ない
アルミナと金]水溶液の混和物を得た後、成形した。
This solution and 272 g of the boehmite-type alumina powder used in Example 1 were placed in a kneader and kneaded to obtain a mixture of alumina and gold aqueous solution, which was then molded.

この成形体”t 100 Cで16時間乾燥した。This molded body was dried at t100C for 16 hours.

次c、: 該乾燥物に2−アミノエタンチオール74.
6g?含むエタノール溶液120m1全量を含浸した後
100 ′cで16時間乾燥し触媒3を得た。
Next c.: 2-aminoethanethiol 74.
6g? After impregnating the entire amount of the ethanol solution (120 ml), it was dried at 100'C for 16 hours to obtain Catalyst 3.

触媒3の破壊強度は1.5φm以上であった。The breaking strength of catalyst 3 was 1.5φm or more.

触媒3の金属含有量はモリブデンがMoOに換算して1
5重置火、コバルトがcoOに換算して4重量%であり
、2−アミノエタンチオールの使用前はMOlcoがそ
れぞれMo52、CoSになるのに必要な硫黄の理論量
に換算して1.5倍であった。
The metal content of catalyst 3 is molybdenum converted to MoO.
Cobalt is 4% by weight in terms of coO, and before using 2-aminoethanethiol, MOLco is 1.5% in terms of the theoretical amount of sulfur required to become Mo52 and CoS, respectively. It was double that.

この触媒3の脱硫率は81.5%であった。The desulfurization rate of this catalyst 3 was 81.5%.

実施例4 実施例1で使用したベーマイト形アルミナ粉末の272
gと、4−アミノチオフェノール121.1 gを含む
水溶液300m1とをニーダーに入れニーディングを行
ない混和物を得た後、成形した。
Example 4 272 of the boehmite type alumina powder used in Example 1
g and 300 ml of an aqueous solution containing 121.1 g of 4-aminothiophenol were placed in a kneader and kneaded to obtain a mixture, which was then molded.

この成形体を100Cで16時間乾燥した。This molded body was dried at 100C for 16 hours.

この乾燥成形物全量に三酸化モリブデン37.0g、炭
酸コバルト(Co含有量49.1重量%)15.8g、
アンモニアガス及び水から調製した溶液150m/!(
PH7,5)f全量含浸して、100c、16時間乾燥
する操作号2回繰返して触媒4を得た。
The total amount of this dry molded product includes 37.0 g of molybdenum trioxide, 15.8 g of cobalt carbonate (Co content 49.1% by weight),
150 m/! of a solution prepared from ammonia gas and water! (
A catalyst 4 was obtained by impregnating the entire amount of PH7,5)f and drying at 100c for 16 hours.The procedure was repeated twice.

触媒4の破壊強度は1.5φ篤以上であった。The breaking strength of Catalyst 4 was 1.5φ or more.

触媒4の金属含有量はモリブデンがMoOに換算゛して
15重量%、コバルトがCooに換算して4Mftk%
であり、4−アミノチオフェノールの使用量はMo、C
oがMoS 5CoSになるのに必要な硫黄の理論量に
換算して1.5倍であった。
The metal content of catalyst 4 is 15% by weight of molybdenum in terms of MoO and 4Mftk% of cobalt in terms of Coo.
The amount of 4-aminothiophenol used is Mo, C
o was 1.5 times the theoretical amount of sulfur required to form MoS 5CoS.

この触媒4の脱硫率は81.3%であった。The desulfurization rate of this catalyst 4 was 81.3%.

実施例5 三酸化モリブデン38.5g、炭酸コバルト(c。Example 5 38.5 g of molybdenum trioxide, cobalt carbonate (c.

含有量49.1重量%) 16.4 g 、 85重量
%のりん酸12.5g及び水から調製した溶液300 
mlに、2−アミノエタンチオール77.6 gを添加
し、りん酸を含む金属メルカプチドの溶液とした。
300 g of a solution prepared from 12.5 g of 85 wt. % phosphoric acid and water
ml, 77.6 g of 2-aminoethanethiol was added to prepare a solution of metal mercaptide containing phosphoric acid.

この金属メルカプチドの溶液と、脱水ベーマイト形アル
ミナゲル(AIO29,7重量%)(7)673gとを
加熱ニーグーに入れ余分の水分を蒸発させるために95
 rで加熱ニーディングを行ないアルミナと金属メルカ
プチドの混和物な得た後、成形した。
This metal mercaptide solution and 673 g of dehydrated boehmite-type alumina gel (AIO 29.7% by weight) (7) were placed in a heated niegu to evaporate excess water.
A mixture of alumina and metal mercaptide was obtained by heating and kneading at a temperature of 100 mL, and then molded.

この成形体を100Cで16時間乾燥し触媒5を得た。This molded body was dried at 100C for 16 hours to obtain catalyst 5.

触媒5の破壊強度は1.5に9Al1以上であった。The breaking strength of Catalyst 5 was 1.5 to 9Al1 or more.

触媒5の金属含有量はモリブデンがMoOに換算して1
5重量%、コバルトがcooに換算して4重量%、りん
がpo に換算して3重量%であり、2−アミノエタン
チオールの使用量はMo SOOがそれぞれMoS %
 CoSになるのに必要な硫黄の理論量に換算して1.
5倍であった。
The metal content of catalyst 5 is molybdenum converted to MoO.
5% by weight, cobalt is 4% by weight in terms of coo, phosphorus is 3% by weight in terms of po, and the amount of 2-aminoethanethiol used is MoSOO, respectively.
The theoretical amount of sulfur required to form CoS is 1.
It was 5 times more.

この触媒5の脱硫率は81.8%であった。The desulfurization rate of this catalyst 5 was 81.8%.

実施例6 三酸化モリブデン38.5 g 、 炭eフバル)((
!0含有量49.1重量%) 16.4 g 、 85
重量%のりん酸12.5g及び水から調製した溶液30
0m1に、2−アミノエタンチオール77.6gを添加
し、りん酸を含む金属メルカプチドの溶液とした。
Example 6 38.5 g of molybdenum trioxide, charcoal (((
! 0 content 49.1% by weight) 16.4 g, 85
A solution prepared from 12.5 g of phosphoric acid and water 30% by weight
77.6 g of 2-aminoethanethiol was added to 0 ml to prepare a solution of metal mercaptide containing phosphoric acid.

この金属メルカプチドの溶液と、実施例1で使用したベ
ーマイト形アルミナ粉末の272gとをニーダ−に入れ
ニーディングを行ないアルミナと金属メルカプチドの混
和物を得た後、成形した。
This metal mercaptide solution and 272 g of the boehmite-type alumina powder used in Example 1 were put into a kneader and kneaded to obtain a mixture of alumina and metal mercaptide, which was then molded.

この成形体を10oCで16時間乾燥し触媒6?得た。This molded body was dried at 10oC for 16 hours and the catalyst 6? Obtained.

触媒6の破壊強度は1.5〜−以上であった。The breaking strength of catalyst 6 was 1.5 to - or more.

触媒6の金属含有量はモリブデンがMoOに換算して1
5重量%、コバルトがcOoに換算して4重量%、りん
がP2O3に換算して3重量%であり、2−アミノエタ
ンチオールの使用量はMo % CoがそれぞれMoS
 % OoSになるのに必要な硫黄の理論量に換算して
1.5倍であった。
The metal content of catalyst 6 is molybdenum converted to MoO.
5% by weight, cobalt is 4% by weight in terms of cOo, phosphorus is 3% by weight in terms of P2O3, and the amount of 2-aminoethanethiol used is MoS.
It was 1.5 times the theoretical amount of sulfur required to reach % OoS.

この触媒6の脱硫率は82.5%であった。The desulfurization rate of this catalyst 6 was 82.5%.

実施例7 三酸化モリブデン38.5 g 、 炭酸コバル) (
(1!。
Example 7 38.5 g of molybdenum trioxide, cobal carbonate) (
(1!

含有量49.1重量%) 16.4 g 、85重1%
のりん酸12.5 g及び水力ら調製した溶液3oor
nlニ、4−アミノチオフェノール125.9 gを添
加し、りん酸を含む金属メルカプチドの溶液とした。
Content 49.1% by weight) 16.4 g, 85% by weight
12.5 g of phosphoric acid and 3 oor of a solution prepared from hydrochloric acid
125.9 g of nl di,4-aminothiophenol was added to form a solution of metal mercaptide containing phosphoric acid.

この金属メルカプチドの溶液と、γ−アルミナ粉末20
0gとをニーダ−に入れ二−デイングヲ行ないアルミナ
と金属メルカプチドの混和物3得た後、成形した。
This metal mercaptide solution and γ-alumina powder 20
A mixture of alumina and metal mercaptide 3 was obtained by putting 0 g into a kneader and performing two-dimensional molding.

この成形体を100Cで16時間乾燥し触媒7を得た。This molded body was dried at 100C for 16 hours to obtain catalyst 7.

触媒7の破壊強度は1.5に9β焦以上であった。The breaking strength of Catalyst 7 was 1.5 to 9β fission or higher.

触媒7の金属含有量はモリブデンがMoOに換算して1
5重贋%、コバルトが000に換算して4重量%、りん
がPOに換算して3重量%であり、4−アミノチオフェ
ノールの使用量はMo s C!oがそれぞれMoS 
5CoSになるのに必要な硫黄の理論量に換算して1.
5倍であった。
The metal content of catalyst 7 is molybdenum converted to MoO.
Cobalt is 4% by weight in terms of 000, phosphorus is 3% by weight in terms of PO, and the amount of 4-aminothiophenol used is Mo s C! o is MoS
The theoretical amount of sulfur required to form 5CoS is 1.
It was 5 times more.

この触媒7の脱硫率は83.8%であった。The desulfurization rate of this catalyst 7 was 83.8%.

実施例8 三酸化モリブデン38.5 g 、 炭酸ツバ#)(C
Example 8 Molybdenum trioxide 38.5 g, carbonate collar #) (C
.

含有量49.1重量%) 16.4 g 、 85重量
%のりん酸12.5 g及び水から調製した溶液300
m/に、4−アミノチオフエツール125.9 gを添
加し、りん酸を含む金属メルカプチドの溶液とした。
300 g of a solution prepared from 16.4 g of phosphoric acid (49.1% by weight), 12.5 g of 85% by weight phosphoric acid and water
125.9 g of 4-aminothiophetool was added to m/ to prepare a solution of metal mercaptide containing phosphoric acid.

この金属メルカプチドの溶液と、実施例5で使用したベ
ーマイト形アルミナゲルの673gとご加熱ニーグーに
入れ余分の水分を蒸発させるために95 Cで加熱ニー
ディングを行ないアルミナと金属メルカプチドの混和物
を得た後、成形した。
This metal mercaptide solution and 673 g of the boehmite-type alumina gel used in Example 5 were placed in a heated knead and heated at 95 C to evaporate excess water to obtain a mixture of alumina and metal mercaptide. After that, it was molded.

この成形体を100Cで16時間乾燥し触媒8ご得た。This molded body was dried at 100C for 16 hours to obtain catalyst 8.

触媒8の破壊強度はl 、5 kg7hyn以上であっ
た。
The breaking strength of Catalyst 8 was 1,5 kg, 7 hyn or more.

触媒8の金属含有量はモリブデンがMOo  に換算し
て15重」LコバルトがCooに換算して4重量%、り
んがPOに換算して3重量%であり、4−アミノチオフ
ェノールの使用量はMOlCOがそれぞれMoS s 
CoSになるのに必要な硫黄の理論毒に換算して1.5
倍であった。
The metal content of catalyst 8 is molybdenum is 15% by weight in terms of MOo, L cobalt is 4% by weight in terms of Coo, phosphorus is 3% by weight in terms of PO, and the amount of 4-aminothiophenol used is are MOlCO and MoS s
The theoretical poison of sulfur required to become CoS is 1.5
It was double that.

この触媒8の脱硫率は82.6%であった。The desulfurization rate of this catalyst 8 was 82.6%.

実施例9 三酸化モリブデン38.5 g 、 炭酸コバル)(C
Example 9 Molybdenum trioxide 38.5 g, cobal carbonate) (C
.

含有量49.1重量%) 16.4 g 、 85重量
%のりん酸12.5g及び水から調製した溶液300 
mlに4−アミノチオフェノール125.9gを添加し
1りん酸を含む金属メルカプチドの溶液とした。
300 g of a solution prepared from 12.5 g of 85 wt. % phosphoric acid and water
ml was added with 125.9 g of 4-aminothiophenol to prepare a solution of metal mercaptide containing monophosphoric acid.

この金属メルカプチドの溶液と、実施例1で使用したベ
ーマイト形アルミナ粉末の272gとをニーダ−に入れ
ニーディングを行ないアルミナと金属メルカプチドの混
和物を得た後、成形した。
This metal mercaptide solution and 272 g of the boehmite-type alumina powder used in Example 1 were put into a kneader and kneaded to obtain a mixture of alumina and metal mercaptide, which was then molded.

この成形体を100Cで16時間乾燥し触媒9を得た。This molded body was dried at 100C for 16 hours to obtain catalyst 9.

触媒9の破壊強度は1.5勢−以上であった。The breaking strength of Catalyst 9 was 1.5 forces or more.

触媒9の金属含有量はモリブデンがMoOに換算して1
5重量%、コバルトがCoOに換算して4重量%、りん
がpo  に換算して3重量%であり、4−アミノチオ
フェノールの使用量はMo5CoがそれぞれMoS 、
 OO3になるのに必要な硫黄の理論量に換算して1.
5倍であった。
The metal content of catalyst 9 is molybdenum converted to MoO.
5% by weight, cobalt is 4% by weight in terms of CoO, phosphorus is 3% by weight in terms of po, and the amount of 4-aminothiophenol used is Mo5Co, respectively.
In terms of the theoretical amount of sulfur required to become OO3, it is 1.
It was 5 times more.

この触媒9の脱硫率は83.5%であった。The desulfurization rate of this catalyst 9 was 83.5%.

実施例1〇 三酸化モリブデン57.6g、炭酸ニッケル(N1含有
量43.3重量%) 20.9 g 、 85重量%の
りん酸30.4g及び水から調製した溶液300 ml
に、2−アミノエタンチオールIIQ、1gを添加し、
りん酸を含む金属メルカプチドの溶液とした。
Example 1 300 ml of a solution prepared from 57.6 g of molybdenum trioxide, 20.9 g of nickel carbonate (N1 content 43.3% by weight), 30.4 g of 85% by weight phosphoric acid and water
2-aminoethanethiol IIQ, 1 g was added to
A solution of metal mercaptide containing phosphoric acid was prepared.

この金属メルカプチドの溶液と、実施例1で使用したベ
ーマイト形アルミナ粉末の272gとをニーダ−に入れ
ニーディングを行ないアルミナとりん酸と金属メルカプ
チドの混和物を得た後、成形した。
This metal mercaptide solution and 272 g of the boehmite-type alumina powder used in Example 1 were put into a kneader and kneaded to obtain a mixture of alumina, phosphoric acid, and metal mercaptide, which was then molded.

この成形体を100Cで16時間乾燥し触媒10を得た
This molded body was dried at 100C for 16 hours to obtain catalyst 10.

触媒10の破壊強度は1.51c9Ats以上であった
The breaking strength of catalyst 10 was 1.51c9 Ats or more.

触媒10の金属含有量はモリブデンがMoOに換算して
20重量%、ニッケルがNiOに換算シティ重量%、り
んがPOに換算して6.5重量%であす、2−アミノエ
タンチオールの使用量はMOlNlがそれぞれMoS 
、 NiSになるのに必要な硫黄の理論量に換算して1
.5倍であった。
The metal content of catalyst 10 is molybdenum is 20% by weight in terms of MoO, nickel is 20% by weight in terms of NiO, phosphorus is 6.5% by weight in terms of PO, and the amount of 2-aminoethanethiol used. is MOlNl respectively MoS
, calculated as the theoretical amount of sulfur required to form NiS.
.. It was 5 times more.

この触媒10の脱硫率は77.8%であった。The desulfurization rate of this catalyst 10 was 77.8%.

実施例11 三酸化モリブデン38.5g、炭酸フバル) (G。Example 11 38.5 g of molybdenum trioxide, Hval carbonate) (G.

含有量49.1重量%) 16−4 g N 85重量
%のりん酸12.5g及び水から300 ml!の水溶
液ご調製した。
content 49.1% by weight) 16-4 g N 12.5 g of 85% by weight phosphoric acid and 300 ml from water! An aqueous solution of was prepared.

この溶液と、実施例1で使用したベーマイト形アルミナ
粉末の272gとをニーグーに入れニーディングを行な
いアルミナと金属水溶液とりん酸との混和物を得た後、
成形した。
This solution and 272 g of the boehmite-type alumina powder used in Example 1 were put into a nigu and kneaded to obtain a mixture of alumina, metal aqueous solution, and phosphoric acid.
Molded.

この成形体を100 Uで16時間乾燥した。This molded body was dried at 100 U for 16 hours.

次に該乾燥物に2−アミノエタンチオール77.6gを
含むエタノール溶液115m/全量を含浸した後100
 rで16時間乾燥し触媒11を得た。
Next, the dried product was impregnated with 115 m/total amount of an ethanol solution containing 77.6 g of 2-aminoethanethiol.
After drying at r for 16 hours, catalyst 11 was obtained.

触媒11の破壊強度は1.5 Ta)/km以上であっ
た。
The breaking strength of catalyst 11 was 1.5 Ta)/km or more.

触媒11の金属含有量はモリブデンがMOOに換算して
15重量%、コバルトがCoOに換算して4重量%、り
んがpo に換算して3重量%であり、2−アミノエタ
ンチオールの使用量はMo5CoがそれぞれMoS 5
CoSになるのに必要な硫黄の理論債に換算して1.5
倍であった。
The metal content of catalyst 11 is molybdenum 15% by weight in terms of MOO, cobalt 4% by weight in terms of CoO, phosphorus 3% by weight in terms of po, and the amount of 2-aminoethanethiol used. are Mo5Co and MoS5 respectively.
The theoretical bond of sulfur required to become CoS is 1.5
It was double that.

この触媒11の脱硫率は82.0%であった。The desulfurization rate of this catalyst 11 was 82.0%.

実施例12 三酸化モリブデン3s、s g % 炭Hコバルト(C
o含有量49.1重量%)16.4g、アンモニアガス
及び水とから調製した溶液300 mlと、実施例1で
使用したベーマイト形アルミナ粉末の272gと全ニー
グーに入れニーディングを行ない混和物を得た後、成形
した。
Example 12 Molybdenum trioxide 3s, s g % Charcoal H Cobalt (C
300 ml of a solution prepared from 16.4 g (O content 49.1% by weight), ammonia gas and water, and 272 g of the boehmite-type alumina powder used in Example 1 were placed in a whole nigu and kneaded to form a mixture. After obtaining, it was molded.

この成形体を100Cで16時間乾燥した。This molded body was dried at 100C for 16 hours.

次に該乾燥物に、85重量%のりん酸12.5gと、2
−アミノエタンチオール77.6gを含むエタノール溶
液120 ml全量号含浸した後100Cで16時間乾
燥し触媒12を得た。
Next, 12.5 g of 85% by weight phosphoric acid and 2
The catalyst was impregnated with 120 ml of an ethanol solution containing 77.6 g of -aminoethanethiol and then dried at 100C for 16 hours to obtain catalyst 12.

触媒12の破壊強度は1.51=9.Al1以上であっ
た。
The breaking strength of the catalyst 12 is 1.51=9. It was Al1 or more.

触媒12の金属含有量はモリブデンがMoOに換算して
15重量%、コバルトがCooに換算して4重量%、り
んがPOに換算して3重量%であす、2−アミノエタン
チオールの使用量はMOlCOがそれぞれMoS 、 
C!asになるのに必要な硫黄の理論量に換算して1.
5倍であった。
The metal content of catalyst 12 is molybdenum is 15% by weight in terms of MoO, cobalt is 4% by weight in terms of Coo, phosphorus is 3% by weight in terms of PO, and the amount of 2-aminoethanethiol used is are MOlCO and MoS, respectively.
C! In terms of the theoretical amount of sulfur required to become as, it is 1.
It was 5 times more.

この触媒12の脱硫率は81.9%であった。The desulfurization rate of this catalyst 12 was 81.9%.

実施例13 三酸化モリブデン38.5 g % 炭eコバルト(c
Example 13 Molybdenum trioxide 38.5 g % Charcoal e Cobalt (c
.

含有量49.1重量%)16.4g、アンモニアガス及
び水とから調製した溶液300 mlに、4−アミノチ
オフェノール125.9 gを添加し、金属メルカプチ
ドの溶液とした。
125.9 g of 4-aminothiophenol was added to 300 ml of a solution prepared from 16.4 g (content 49.1% by weight), ammonia gas, and water to obtain a solution of metal mercaptide.

この金属メルカプチドの溶液と、実施例1で使用したベ
ーマイト形アルミナ粉末の272gとをニーグーに入れ
ニーディングを行ない混和物を得た後、成形した。
This metal mercaptide solution and 272 g of the boehmite-type alumina powder used in Example 1 were placed in a Neegu and kneaded to obtain a mixture, which was then molded.

この成形体をioo、Cで16時間乾燥した。次に該乾
燥物に、85重量%のりん酸12.5gを含む水溶液5
0m1全量を含浸した後100Cで16時間乾燥し触媒
13を得た。
This molded body was dried at ioo, C for 16 hours. Next, add 5 g of an aqueous solution containing 12.5 g of 85% by weight phosphoric acid to the dried product.
After impregnating a total amount of 0 ml, it was dried at 100 C for 16 hours to obtain catalyst 13.

触媒13の破壊強度は1.5に9/gILs以上であっ
た。
The breaking strength of Catalyst 13 was 1.5 to 9/gILs or higher.

触媒13の金属含有量は、モリブデンがMoOに換算し
て15重量%、コバルトがCOOに換算して4重量%、
りんがPOに換算して3重量%であす、4−アミノチオ
フェノールの使用量はMOlcoがそれぞれMoS 1
CoSになるのに必要な硫黄の理論量に換算して1.5
倍であった。
The metal content of the catalyst 13 is as follows: molybdenum is 15% by weight in terms of MoO, cobalt is 4% by weight in terms of COO,
The amount of phosphorus used is 3% by weight calculated as PO, and the amount of 4-aminothiophenol used is MoS 1.
The theoretical amount of sulfur required to form CoS is 1.5
It was double that.

この触媒13の脱硫率は83.2%であった。The desulfurization rate of this catalyst 13 was 83.2%.

実施例14 実施例1で使用したベーマイト形アルミナ粉末の272
gと、2−アミノエタンチオール77.6gと85重量
%のりん酸12.5g’含む水溶液3oomgとを、ニ
ーグーに入れニーディングを行ない成形した。
Example 14 272 of the boehmite type alumina powder used in Example 1
g, and 3 oomg of an aqueous solution containing 77.6 g of 2-aminoethanethiol and 12.5 g' of 85% by weight phosphoric acid were placed in a niegu and kneaded to form a mold.

この成形体F 100 rで16時間乾燥した。This molded body F was dried at 100 rpm for 16 hours.

この乾燥成形体全量に、三酸化モリブデン38.5g1
炭酸フバルト(Co含有量49.1重量%) 16.4
 g 。
38.5 g of molybdenum trioxide was added to the entire dry molded body.
Fuvalt carbonate (Co content 49.1% by weight) 16.4
g.

アンモニアガス及び水とから調製した溶液150m/を
全量含浸して100Cで16時間乾燥する操作を2回繰
返して触媒14を得た。
Catalyst 14 was obtained by repeating twice the operation of impregnating the entire amount of 150ml of a solution prepared from ammonia gas and water and drying at 100C for 16 hours.

触媒14の破壊強度は1.5ψ篇以上であった。The breaking strength of catalyst 14 was 1.5ψ or more.

触媒14の金属含有量は、モリブデンがMOOに換算し
て15重量%、コバルトがCoOに換算して4重量%、
りんがpo  に換算して3重量%であす、2−アミノ
エタンチオールの使用量はMo。
The metal content of the catalyst 14 is as follows: molybdenum is 15% by weight in terms of MOO, cobalt is 4% by weight in terms of CoO,
The amount of phosphorus is 3% by weight calculated as po, and the amount of 2-aminoethanethiol used is Mo.

COがそれぞれMoS 5OoSになるのに必要な硫黄
の理論量に換算して1.5倍であった。
The amount was 1.5 times the theoretical amount of sulfur required for each CO to become MoS 5OoS.

この触媒14の脱硫率は81.8%であった。The desulfurization rate of this catalyst 14 was 81.8%.

実施例15 実施例1で使用したベーマイト形アルミナ粉末の272
gと、2−アミノエタンチオール77.6gを含む水溶
液115m1とをニーグーに入れニーディングを行ない
成形した。この成形体を100Cで16時間乾燥した。
Example 15 272 of the boehmite type alumina powder used in Example 1
g and 115 ml of an aqueous solution containing 77.6 g of 2-aminoethanethiol were placed in a Neegoo and kneaded to form a mold. This molded body was dried at 100C for 16 hours.

この乾燥成形体全景に、三酸化モリブデン38.5g1
炭酸コバルト(co含有量49.1重量%)16.4g
The entire view of this dry molded body shows 38.5 g of molybdenum trioxide.
Cobalt carbonate (co content 49.1% by weight) 16.4g
.

85重量%のりん酸12.5g、及び水とから調製しだ
溶液100m1l!を全量含浸した後、100Cで16
時間乾燥して触媒15を得た。
100 ml of a solution prepared from 12.5 g of 85% by weight phosphoric acid and water! After impregnating the entire amount, 16 at 100C
After drying for hours, catalyst 15 was obtained.

触媒15の破壌強度はl、 5 kg、As以上であっ
た。
The crushing strength of catalyst 15 was 1.5 kg or more than As.

触媒15の金属含有量は、モリブデンがMOO34こ換
算して15重量%、フノクルトがC!oo Gこ換算し
て4重機%、りんがpo  に換算して3重量%であす
、2−アミノエタンチオールの使用量はMOlGoがそ
れぞれMO3SCoSになるのに必要な硫黄の理論量に
換算して1.5倍であった。
The metal content of the catalyst 15 is molybdenum is 15% by weight calculated as MOO34, and funocult is C! The amount of 2-aminoethanethiol used is converted to the theoretical amount of sulfur required for MOlGo to become MO3SCoS. It was 1.5 times.

この触媒15の脱硫率は81.6%であった。The desulfurization rate of this catalyst 15 was 81.6%.

実施例16 実施例1で使用したベーマイト形アルミナ粉末の272
gと、85重@%のりん酸12.5gを含む水溶液30
0 ml トを、ニーグーに入れニーディングを行ない
成形した。
Example 16 272 of the boehmite type alumina powder used in Example 1
g and 30 g of an aqueous solution containing 12.5 g of 85w@% phosphoric acid.
A 0 ml sample was placed in a niigoo and kneaded to form a shape.

この成形体を100Cで16時間乾燥した。This molded body was dried at 100C for 16 hours.

この乾燥成形体全量に、三酸化モリブデン38.5g1
炭酸フパルト(Co含有@49.1重量%)16.4g
38.5 g of molybdenum trioxide was added to the entire dry molded body.
Hupart carbonate (Co content @ 49.1% by weight) 16.4g
.

アンモニアガス及び水とから調製した溶液に2−アミノ
エタンチオール77.6gを添加して得た金属メルカプ
チドの溶液250−me 号全量含浸した後、100C
で16時間乾燥して触媒16を得た。
After impregnating the entire amount of metal mercaptide solution No. 250-me obtained by adding 77.6 g of 2-aminoethanethiol to a solution prepared from ammonia gas and water, 100C
After drying for 16 hours, catalyst 16 was obtained.

触媒16の破壊強度は1.5ψ篇以上であった。The breaking strength of catalyst 16 was 1.5ψ or more.

触媒16の金属含有量は、モリブデンがMoOに換算し
て15重量%、コバルトが000に換算して4重量%、
りんがPOに換算して31景%であす、2−アミノエタ
ンチオールの使用量はMo、C。
The metal content of the catalyst 16 is as follows: molybdenum is 15% by weight in terms of MoO, cobalt is 4% by weight in terms of 000,
Phosphorus is 31% in terms of PO, and the amount of 2-aminoethanethiol used is Mo and C.

がそれぞれMo5SCO8になるのに必要な硫黄の理論
偕に換算して1.5倍であった。
was 1.5 times the theoretical amount of sulfur required to form Mo5SCO8.

この触媒16の脱硫率は81.5%であった。The desulfurization rate of this catalyst 16 was 81.5%.

従来例 (1)  γ−アルミナを担体としMoOを15重1%
、Cooを4重層%含有する市販触媒(日本ケッチエン
■社製KF−742)。
Conventional example (1) γ-alumina is used as a carrier and MoO is 15% by weight.
A commercially available catalyst (KF-742 manufactured by Nippon Ketchien Co., Ltd.) containing 4% of Coo.

この触媒に次の予備硫化処理を施した。This catalyst was subjected to the following pre-sulfurization treatment.

硫化油  3重量%n−ブチルメルカプタン/クェート
常圧軽油触媒量       3 ml 原料油液空間速度   2.Ohr−”反応圧力(水素
圧)30◆伽2 反応温度      316 tl’ 水素/油比油化   300 Ml/1通油時間   
   g hr この予備硫化を施した触媒について実施例と同様にして
活性評価した結果、脱硫率は82.4%であった。
Sulfurized oil 3% by weight n-butyl mercaptan/Kuwaite normal pressure gas oil Catalyst amount 3 ml Raw material oil liquid hourly space velocity 2. Ohr-" Reaction pressure (hydrogen pressure) 30◆K2 Reaction temperature 316 tl' Hydrogen/oil ratio 300 Ml/1 oil passage time
g hr The activity of this pre-sulfurized catalyst was evaluated in the same manner as in the examples, and the desulfurization rate was 82.4%.

(2)  比表面積280 m’/g %細孔容積0.
75m/7gのT−アルミナ成形担体100 gに、三
酸化モリブデン19.2 g 、 Co含有率49.1
重量%の炭酸コバルト8.2g、85重最多のりん酸6
.2g及び水から調製した含浸液80m1を含浸し、1
10C,16時間乾燥した後、500C,2時間焼成し
てMO0315重量%、0004重量%、PO3重量%
含有する触媒を得た。
(2) Specific surface area 280 m'/g % Pore volume 0.
Molybdenum trioxide 19.2 g, Co content 49.1 to 100 g T-alumina molded carrier of 75 m/7 g.
Weight% cobalt carbonate 8.2g, 85% phosphoric acid 6
.. Impregnated with 80ml of impregnating solution prepared from 2g and water,
After drying at 10C for 16 hours, baking at 500C for 2 hours to obtain 15% by weight of MO0, 4% by weight of 0004, and 3% by weight of PO.
A containing catalyst was obtained.

この触媒について、上記(+1と同様に予備硫化を施し
、実施例と同様にして活性評価した結果脱硫率は80.
4%であった。
This catalyst was subjected to pre-sulfurization in the same manner as (+1) above, and its activity was evaluated in the same manner as in the example. As a result, the desulfurization rate was 80.
It was 4%.

〔発明の効果〕 上記従来の触媒では、予備硫化処理に8時間を要し、前
記特公昭61−11044号公報に記載の触媒において
も、硫化剤を含浸したあと少なくとも1時間の焼成処理
を必要とするが、本発明触媒並びにその製造方法による
触媒は、予備硫化を必要とせず、又焼成な要することな
くそのま一水素化処理に用いることができ、従来よりも
経済的な触媒を提供でさる。
[Effect of the invention] The above conventional catalyst requires 8 hours for pre-sulfurization treatment, and the catalyst described in Japanese Patent Publication No. 61-11044 also requires at least 1 hour of calcination treatment after being impregnated with a sulfurizing agent. However, the catalyst of the present invention and the catalyst produced by the method for producing the same do not require presulfidation and can be used directly for hydrogenation treatment without the need for calcination, providing a more economical catalyst than conventional catalysts. Monkey.

出願人  住友金属鉱山株式会社 、−8 、ノ ゝ−−7Applicant: Sumitomo Metal Mining Co., Ltd. , -8 ,of ゝ--7

Claims (1)

【特許請求の範囲】 1 アルミニウムの酸化物、水和酸化物の一方又は両方
を主成分とする担体物質と、周期律表第6族金属、第8
族金属の水溶性化合物のうちの少なくとも一種と、炭素
数が1〜15の炭素と水素からなる炭化水素のアミノ置
換メルカプタンとの混合成形物からなる炭化水素の水素
化処理用触媒。 2 アルミニウムの酸化物、水和酸化物の一方又は両方
を主成分とする担体物質に、周期律表第6族金属、第8
族金属の水溶性化合物のうちの少なくとも一種と、炭素
数が1〜15の炭素と水素からなる炭化水素のアミノ置
換メルカプタンとの溶液を混練し、成形した後乾燥する
ことを特徴とする炭化水素の水素化処理用触媒の製造方
法。 3 アルミニウムの酸化物、水和酸化物の一方又は両方
を主成分とする担体物質に、周期律表第6族金属、第8
族金属の水溶性化合物のうちの少なくとも一種の水溶液
を混練し成形して一旦乾燥し、該乾燥成形物に、炭素数
が1〜15の炭素と水素からなる炭化水素のアミノ置換
メルカプタンの溶液を含浸した後、再び乾燥することを
特徴とする炭化水素の水素化処理用触媒の製造方法。 4 アルミニウムの酸化物、水和酸化物の一方又は両方
を主成分とする担体物質に、炭素数が1〜15の炭素と
水素からなる炭化水素のアミノ置換メルカプタンの溶液
を混練し成形して一旦乾燥し、該乾燥成形物に、周期律
表第6族金属、第8族金属の水溶性化合物のうちの少な
くとも一種の水溶液を含浸した後、再び乾燥することを
特徴とする炭化水素の水素化処理用触媒の製造方法。 5 アルミニウムの酸化物、水和酸化物の一方又は両方
を主成分とする担体物質と、周期律表第6族金属、第8
族金属の水溶性化合物のうちの少なくとも一種と、りん
酸と、炭素数が1〜15の炭素と水素からなる炭化水素
のアミノ置換メルカプタンとの混合成形物からなる炭化
水素の水素化処理用触媒。 6 アルミニウムの酸化物、水和酸化物の一方又は両方
を主成分とする担体物質に、周期律表第6族金属、第8
族金属の水溶性化合物のうちの少なくとも一種と、りん
酸と、炭素数が1〜15の炭素と水素からなる炭化水素
のアミノ置換メルカプタンとの溶液を混練し、成形した
後乾燥することを特徴とする炭化水素の水素化処理用触
媒の製造方法。 7 アルミニウムの酸化物、水和酸化物の一方又は両方
を主成分とする担体物質に、周期律表第6族金属、第8
族金属の水溶性化合物のうちの少なくとも一種と、りん
酸との水溶液を混練し成形して一旦乾燥し、該乾燥成形
物に、炭素数が1〜15の炭素と水素からなる炭化水素
のアミノ置換メルカプタンの溶液を含浸した後、再び乾
燥することを特徴とする炭化水素の水素化処理用触媒の
製造方法。 8 アルミニウムの酸化物、水和酸化物の一方又は両方
を主成分とする担体物質に、周期律表第6族金属、第8
族金属の水溶性化合物のうちの少なくとも一種の水溶液
を混練し成形して一旦乾燥し、該乾燥成形物に、りん酸
と、炭素数が1〜15の炭素と水素からなる炭化水素の
アミノ置換メルカプタンとの溶液を含浸した後、再び乾
燥することを特徴とする炭化水素の水素化処理用触媒の
製造方法。 9 アルミニウムの酸化物、水和酸化物の一方又は両方
を主成分とする担体物質に、周期律表第6族金属、第8
族金属の水溶性化合物のうちの少なくとも一種と、炭素
数が1〜15の炭素と水素からなる炭化水素のアミノ置
換メルカプタンとの溶液を混練し成形して一旦乾燥し、
該乾燥成形物に、りん酸の水溶液を含浸した後、再び乾
燥することを特徴とする炭化水素の水素化処理用触媒の
製造方法。 10 アルミニウムの酸化物、水和酸化物の一方又は両
方を主成分とする担体物質に、りん酸と、炭素数が1〜
15の炭素と水素からなる炭化水素のアミノ置換メルカ
プタンとの溶液を混練し成形して一旦乾燥し、該乾燥成
形物に、周期律表第6族金属、第8族金属の水溶性化合
物のうちの少なくとも一種の水溶液を含浸した後、再び
乾燥することを特徴とする炭化水素の水素化処理用触媒
の製造方法。 11 アルミニウムの酸化物、水和酸化物の一方又は両
方を主成分とする担体物質に、炭素数が1〜15の炭素
と水素からなる炭化水素のアミノ置換メルカプタンの溶
液を混練し成形して一旦乾燥し、該乾燥成形物に、周期
律表第6族金属、第8族金属の水溶性化合物のうちの少
なくとも一種と、りん酸との水溶液を含浸した後、再び
乾燥することを特徴とする炭化水素の水素化処理用触媒
の製造方法。 12 アルミニウムの酸化物、水和酸化物の一方又は両
方を主成分とする担体物質に、りん酸の水溶液を混練し
成形して一旦乾燥し、該乾燥成形物に、周期律表第6族
金属、第8族金属の水溶性化合物のうちの少なくとも一
種と、炭素数が1〜15の炭素と水素からなる炭化水素
のアミノ置換メルカプタンとの溶液を含浸した後、再び
乾燥することを特徴とする炭化水素の水素化処理用触媒
の製造方法。
[Scope of Claims] 1. A carrier material containing either or both of an oxide and a hydrated oxide of aluminum as a main component, and a metal of group 6 of the periodic table, metal of group 8 of the periodic table.
A catalyst for hydrotreating hydrocarbons, comprising a mixture of at least one water-soluble compound of group metals and an amino-substituted mercaptan of a hydrocarbon having 1 to 15 carbon atoms and hydrogen. 2. A carrier material containing either or both of an oxide of aluminum and a hydrated oxide as a main component, a metal of group 6 of the periodic table, or a metal of group 8 of the periodic table.
A hydrocarbon characterized by kneading a solution of at least one water-soluble compound of group metal and an amino-substituted mercaptan of a hydrocarbon consisting of carbon and hydrogen having 1 to 15 carbon atoms, molding, and then drying. A method for producing a catalyst for hydrotreating. 3. A carrier material containing either or both of an oxide of aluminum and a hydrated oxide as a main component, a metal of group 6 of the periodic table, metal of group 8 of the periodic table, etc.
An aqueous solution of at least one of the water-soluble compounds of group metals is kneaded, shaped and once dried, and a solution of an amino-substituted mercaptan, a hydrocarbon consisting of carbon having 1 to 15 carbon atoms and hydrogen, is added to the dried shaped product. A method for producing a catalyst for hydrotreating hydrocarbons, which comprises impregnating and then drying again. 4. A solution of an amino-substituted mercaptan, a hydrocarbon consisting of carbon and hydrogen having 1 to 15 carbon atoms, is kneaded and formed into a carrier material containing either or both of an oxide of aluminum and a hydrated oxide as a main component. Hydrocarbon hydrogenation, characterized in that the dried molded product is impregnated with an aqueous solution of at least one of water-soluble compounds of Group 6 metals and Group 8 metals of the periodic table, and then dried again. Method for producing treatment catalyst. 5 A carrier material mainly composed of one or both of aluminum oxide and hydrated oxide, and a metal of group 6 of the periodic table, metal of group 8 of the periodic table.
A catalyst for hydrogenation of hydrocarbons, comprising a mixture of at least one water-soluble compound of group metal, phosphoric acid, and an amino-substituted mercaptan of a hydrocarbon having 1 to 15 carbon atoms and hydrogen. . 6. A carrier material containing either or both of an oxide of aluminum and a hydrated oxide as a main component, a metal of group 6 of the periodic table, or a metal of group 8 of the periodic table.
A solution of at least one water-soluble compound of group metal, phosphoric acid, and an amino-substituted mercaptan of a hydrocarbon having 1 to 15 carbon atoms and hydrogen is kneaded, shaped, and then dried. A method for producing a catalyst for hydrotreating hydrocarbons. 7. A carrier material mainly composed of one or both of aluminum oxide and hydrated oxide, a metal of group 6 of the periodic table, metal of group 8 of the periodic table, etc.
An aqueous solution of at least one of the water-soluble compounds of group metals and phosphoric acid is kneaded, molded and once dried, and the dried molded product is coated with a hydrocarbon amino acid consisting of carbon and hydrogen having 1 to 15 carbon atoms. 1. A method for producing a catalyst for hydrotreating hydrocarbons, which comprises impregnating with a solution of substituted mercaptan and then drying again. 8. A carrier material mainly composed of one or both of aluminum oxides and hydrated oxides, and metals of group 6 of the periodic table and metals of group 8 of the periodic table.
An aqueous solution of at least one of the water-soluble compounds of group metals is kneaded, shaped and once dried, and the dried shaped product is treated with phosphoric acid and an amino-substituted hydrocarbon consisting of carbon and hydrogen having 1 to 15 carbon atoms. A method for producing a catalyst for hydrogenation of hydrocarbons, which comprises impregnating a catalyst with a mercaptan and then drying it again. 9 A carrier material mainly composed of one or both of an oxide and a hydrated oxide of aluminum, a metal of group 6 of the periodic table, a metal of group 8 of the periodic table, etc.
A solution of at least one water-soluble compound of group metal and an amino-substituted mercaptan of a hydrocarbon consisting of carbon and hydrogen having 1 to 15 carbon atoms is kneaded, shaped and once dried,
A method for producing a catalyst for hydrogenation of hydrocarbons, which comprises impregnating the dried molded product with an aqueous solution of phosphoric acid and then drying it again. 10 A carrier material containing either or both of aluminum oxide and hydrated oxide as a main component, phosphoric acid, and a carbon atom having 1 to 1 carbon atoms.
A solution of amino-substituted mercaptan, a hydrocarbon consisting of 15 carbons and hydrogen, is kneaded, molded and once dried, and the dried molded product is injected with water-soluble compounds of Group 6 metals and Group 8 metals of the periodic table. 1. A method for producing a catalyst for hydrotreating hydrocarbons, which comprises impregnating with an aqueous solution of at least one type of catalyst and then drying the catalyst again. 11 A solution of an amino-substituted mercaptan, a hydrocarbon consisting of carbon and hydrogen having 1 to 15 carbon atoms, is kneaded and shaped into a carrier material containing either or both of an oxide of aluminum and a hydrated oxide as a main component. The dried molded product is impregnated with an aqueous solution of phosphoric acid and at least one of water-soluble compounds of Group 6 metals and Group 8 metals of the periodic table, and then dried again. A method for producing a catalyst for hydrotreating hydrocarbons. 12 An aqueous solution of phosphoric acid is kneaded into a carrier material containing either or both of an oxide of aluminum and a hydrated oxide as a main component, and the molded product is once dried. , impregnated with a solution of at least one water-soluble compound of a Group 8 metal and an amino-substituted mercaptan of a hydrocarbon consisting of carbon and hydrogen having 1 to 15 carbon atoms, and then drying again. A method for producing a catalyst for hydrotreating hydrocarbons.
JP63229246A 1988-08-19 1988-09-13 Catalyst for hydrogenation of hydrocarbon and production thereof Granted JPH0278441A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63229246A JPH0278441A (en) 1988-09-13 1988-09-13 Catalyst for hydrogenation of hydrocarbon and production thereof
EP89308329A EP0357295B1 (en) 1988-08-19 1989-08-15 Catalysts for hydrotreating of hydrocarbons and methods of preparing the same
DE68926764T DE68926764T2 (en) 1988-08-19 1989-08-15 Hydrocarbon treatment catalysts and process for their manufacture
CA000608541A CA1332934C (en) 1988-08-19 1989-08-16 Catalysts for hydrotreating of hydrocarbons and methods of preparing the same
US07/394,560 US4992403A (en) 1988-08-19 1989-08-16 Catalysts for hydrotreating hydrocarbons and methods of preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63229246A JPH0278441A (en) 1988-09-13 1988-09-13 Catalyst for hydrogenation of hydrocarbon and production thereof

Publications (2)

Publication Number Publication Date
JPH0278441A true JPH0278441A (en) 1990-03-19
JPH0549341B2 JPH0549341B2 (en) 1993-07-26

Family

ID=16889107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63229246A Granted JPH0278441A (en) 1988-08-19 1988-09-13 Catalyst for hydrogenation of hydrocarbon and production thereof

Country Status (1)

Country Link
JP (1) JPH0278441A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028491A (en) * 2000-07-12 2002-01-29 Catalysts & Chem Ind Co Ltd Formed catalyst for hydrogenation treatment and producing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310640A (en) * 1987-06-12 1988-12-19 Sumitomo Metal Mining Co Ltd Catalyst for hydrogenation of hydrocarbon and method for activating same
JPH01228549A (en) * 1988-03-10 1989-09-12 Sumitomo Metal Mining Co Ltd Catalyst for hydrogenation treatment of hydrocarbon and activation thereof
JPH01236943A (en) * 1988-03-15 1989-09-21 Sumitomo Metal Mining Co Ltd Catalyst for hydrotreating hydrocarbon and production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310640A (en) * 1987-06-12 1988-12-19 Sumitomo Metal Mining Co Ltd Catalyst for hydrogenation of hydrocarbon and method for activating same
JPH01228549A (en) * 1988-03-10 1989-09-12 Sumitomo Metal Mining Co Ltd Catalyst for hydrogenation treatment of hydrocarbon and activation thereof
JPH01236943A (en) * 1988-03-15 1989-09-21 Sumitomo Metal Mining Co Ltd Catalyst for hydrotreating hydrocarbon and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028491A (en) * 2000-07-12 2002-01-29 Catalysts & Chem Ind Co Ltd Formed catalyst for hydrogenation treatment and producing method thereof

Also Published As

Publication number Publication date
JPH0549341B2 (en) 1993-07-26

Similar Documents

Publication Publication Date Title
CA2563937C (en) Hydrotreating catalyst containing a group v metal
CA1332934C (en) Catalysts for hydrotreating of hydrocarbons and methods of preparing the same
JP4491677B2 (en) Hydroprocessing catalyst containing nitrogen organic compound and use thereof
JP4275526B2 (en) Hydrorefining catalyst, carrier used therefor and production method
US4113605A (en) Catalytic hydrofining process
US4444905A (en) Hydrotreating catalyst preparation and process
KR20030082547A (en) A new aluminum trihydroxide phase and catalysts made therefrom
US3963601A (en) Hydrocracking of hydrocarbons with a catalyst comprising an alumina-silica support, a group VIII metallic component, a group VI-B metallic component and a fluoride
JP2001506914A (en) Catalyst containing at least one element of group VII and its use in hydrotreating
EP0317034B1 (en) Process for the preparation of hydrotreating catalysts from hydrogels
US4716140A (en) Hydrotreating catalysts prepared from hydrogels
JPH0278441A (en) Catalyst for hydrogenation of hydrocarbon and production thereof
US4139492A (en) Hydrotreating catalysts
US5130285A (en) Preparation of catalyst for use in fuel oil hydrodesulfurization and hydrodenitrogenation and catalyst made by the preparation
JPH0256249A (en) Catalyst for hydrogenation treatment of hydrocarbon and its production
JP2920255B2 (en) Hydrodesulfurization catalyst
JP2000093811A (en) Sulfurization of catalyst in reducing medium
JP2575168B2 (en) Catalyst for hydrotreating hydrocarbons and method for producing the same
JP2531728B2 (en) Hydrocarbon hydrotreating catalyst and method for activating the same
JPH0549342B2 (en)
KR20140038529A (en) A hydroprocessing catalyst and methods of making and using such a catalyst
JP2531730B2 (en) Catalyst for hydrotreating hydrocarbons and method for producing the same
JPH0549343B2 (en)
US4832827A (en) Hydrotreating with catalysts prepared from hydrogels
JP2000126600A (en) Polymetallic sulfide catalyst and synthesis of the catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees