JPH0277731A - Optical inverter - Google Patents

Optical inverter

Info

Publication number
JPH0277731A
JPH0277731A JP22961488A JP22961488A JPH0277731A JP H0277731 A JPH0277731 A JP H0277731A JP 22961488 A JP22961488 A JP 22961488A JP 22961488 A JP22961488 A JP 22961488A JP H0277731 A JPH0277731 A JP H0277731A
Authority
JP
Japan
Prior art keywords
light
optical
inverter
optical inverter
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22961488A
Other languages
Japanese (ja)
Inventor
Koji Yamazaki
康二 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP22961488A priority Critical patent/JPH0277731A/en
Publication of JPH0277731A publication Critical patent/JPH0277731A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject inverter with high response speed by multiplying an input light and a bias light, and making the multiplied light incident to an optical inverter element which is changed nonlinearly the intensity of the light, and then being taken out an inverted exit light. CONSTITUTION:A waveguide type optical inverter element 104 is mounted on a GaAs substrate plate 101. The ZnSe optical inverter element has a characteristic of changing nonlinearly the intensity of the exit light when the intensity of an incident light exceeds a prescribed value. The waveguide is constituted by interposing a ZnS clad layer 102 between a substrate 101 and the inverter element, and the incident light constituted of a signal light and the bias light are multiplied in the incident side of the waveguide, followed by being wave- guided to the optical inverter element. The exiting side of the waveguide is led to a following photodiode. The switching performance of the optical inverter is max. 10musec at the time of using Ar laser beams to the inverter, and the invertor is operated with high speed of about 1,000 times as much as the speed of a computing element used an usual twisted nematic liquid crystal cell.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光コンピュータ等の構成要素として用いられる
光論理演算素子の光インバータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical inverter of an optical logic operation element used as a component of an optical computer or the like.

[従来の技術] 従来の光論理演算では、滝沢國治、菊池宏、曾田田人、
岡田正勝、第35回応用物理学関係連合講演会講演予稿
集30P−ZF−9(19,88)に記載されている様
に互いに直交する2つの直線偏波光が論理値0、lに対
応する光論理演算法が用いられていた。この演算法にお
いて光インバータはツイストネマチック液晶セルを用い
ることにより容易に構成することができる。この場合の
演算速度はツイストネマチック液晶の応答速度に律速さ
れる為10m5ec程度となる。
[Prior art] In conventional optical logic operations, Kuniharu Takizawa, Hiroshi Kikuchi, Tato Soda,
As described in Masakatsu Okada, Proceedings of the 35th Applied Physics Association Conference 30P-ZF-9 (19, 88), two linearly polarized lights that are perpendicular to each other correspond to the logical values 0 and l. Optical logic arithmetic method was used. In this calculation method, the optical inverter can be easily constructed by using a twisted nematic liquid crystal cell. The calculation speed in this case is about 10 m5ec because it is limited by the response speed of the twisted nematic liquid crystal.

〔発明が解決しようとする課題1 しかしながら前述の従来技術では演算速度はツイストネ
マチック液晶の応答速度で律速されている為10m5e
c程度と電子回路における演算速度よりも非常に遅いと
いう課題があった。本発明はこの様な課題を解決するも
のでその目的とするところは応答速度の速い光インバー
タを提供するところにある。
[Problem to be Solved by the Invention 1] However, in the prior art described above, the calculation speed is limited by the response speed of the twisted nematic liquid crystal;
The problem was that it was much slower than the calculation speed of electronic circuits. The present invention is intended to solve these problems, and its purpose is to provide an optical inverter with a high response speed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の光インバータは、信号光で入力光とバイアス光
を合波する手段を有し、該合波された光を入射光強度に
透過光強度が非線形的に変化する光インバータ素子に入
射させる手段を有し、該光インバー゛り素子からの出射
光を取り出す手段を有することを特徴とする。
The optical inverter of the present invention has means for combining input light and bias light with signal light, and makes the combined light enter an optical inverter element whose transmitted light intensity changes nonlinearly with the incident light intensity. The device is characterized in that it has a means for extracting the light emitted from the light inverting element.

〔作 用] 第1図は本発明の光インバータの基本構成を示している
。Zn5e光インバータ素子104は、ビー・ジー・キ
ム(B、G、Kim)、アプライド・フィジックス・レ
ター(Alll)1.Phys、Lett、)、Vol
、51.No、7 1987に記載されている様な第5
図に示した特性を有する。第1図の光インバータの動作
原理を第5図を用いて以下に説明する。第1図中のバイ
アス光の強度は第5図中に示しであるPlとする。入力
光が入らない場合出力光強度はPHとなる。又、(p3
 p+)の強度の入力光が入射しZn5e光インバータ
素子に入射する光の強度がP3となった場合出射光強度
はP2となる。PHとP、の中間に光強度の閾値を設定
し、該閾値以下の強度の光を信号の0に、又該閾値以上
の強度の光を信号の1に割り当てると上記の動作はイン
バータそのものである。
[Function] FIG. 1 shows the basic configuration of the optical inverter of the present invention. The Zn5e optical inverter element 104 is described in B.G. Kim, Applied Physics Letters (All) 1. Phys, Lett, ), Vol.
, 51. No. 5 as set forth in No. 7 1987
It has the characteristics shown in the figure. The operating principle of the optical inverter shown in FIG. 1 will be explained below using FIG. 5. The intensity of the bias light in FIG. 1 is assumed to be Pl shown in FIG. When no input light enters, the output light intensity becomes PH. Also, (p3
When input light with an intensity of p+) is incident and the intensity of the light that enters the Zn5e optical inverter element becomes P3, the output light intensity becomes P2. If you set a light intensity threshold between PH and P, and assign light with an intensity below the threshold to signal 0, and light with an intensity above the threshold to signal 1, the above operation will be performed by the inverter itself. be.

〔実施例11 第1図は本発明の実施例における導波路型の光インバー
タの構成概略図である。本実施例においては導波路型の
光インバータをGaAs基板lOI上に作製した。発光
素子及び受光素子もGaAs基板上に容易に作製できる
為これらの素子と本発明の光インバータを用いた光論理
演算素子を同一基板上に作製することができ集積化が容
易である。104はZn5e光インバータ素子であり、
第5図に示した様な入射光強度に対して非線形的に透過
光強度が変化する特性を有している。
[Embodiment 11] FIG. 1 is a schematic diagram of the configuration of a waveguide type optical inverter in an embodiment of the present invention. In this example, a waveguide type optical inverter was fabricated on a GaAs substrate IOI. Since the light emitting element and the light receiving element can also be easily fabricated on a GaAs substrate, these elements and the optical logic operation element using the optical inverter of the present invention can be fabricated on the same substrate, making integration easy. 104 is a Zn5e optical inverter element,
It has a characteristic that the transmitted light intensity changes nonlinearly with respect to the incident light intensity as shown in FIG.

Zn5e光インバータ素子とGaAs基板との間にはZ
nSクラッド層102が存在し導波路型の素子を形成し
ている。しかしながらZnSクラッド層が存在しない反
導波型の構成においても同様の動作を得ることができる
。光インバータ素子としてはZn5eの他にCdS等の
II −Vl族化合物半導体、I nSb等のIII 
−V族化合物半導体、GeSe等のIV −Vl族化合
物半導体或いはこれ等の物質より成る超格子等の入射光
強度に対して透過光量が非線形的に変化する物質も同様
に用いることができる。光インバータ素子への入射光及
び光インバータ素子からの出射光は、ZnSSe導波路
層103及びZnSクラッド層により構成された光導波
路により導波される。光インバータ素子への入射側の光
導波路において、信号光である入力光とバイアス光が合
波された後光インバータ素子へ導波される。光インバー
タ素子の出射側の光導波路は、光インバータ素子がらの
出射光を次段の光論理演算素子或いはフォトダイオード
等へ導く役割を有する。
There is a Z layer between the Zn5e optical inverter element and the GaAs substrate.
An nS cladding layer 102 is present to form a waveguide type element. However, a similar operation can also be obtained in an anti-waveguide configuration in which no ZnS cladding layer is present. As an optical inverter element, in addition to Zn5e, II-Vl group compound semiconductors such as CdS, III-Vl group compound semiconductors such as InSb, etc.
-V group compound semiconductors, IV-Vl group compound semiconductors such as GeSe, or materials whose transmitted light amount changes nonlinearly with respect to the incident light intensity, such as superlattices made of these materials, can also be used. Light incident on the optical inverter element and light emitted from the optical inverter element are guided by an optical waveguide constituted by the ZnSSe waveguide layer 103 and the ZnS cladding layer. In the optical waveguide on the input side to the optical inverter element, input light, which is signal light, and bias light are combined and then guided to the optical inverter element. The optical waveguide on the output side of the optical inverter element has the role of guiding the output light from the optical inverter element to the next stage optical logic operation element, photodiode, or the like.

以上の様な構成の光インバータのスイッチング特性を波
長が488 n ’mの“Arレーザ光を用いて調べた
ところ、スイッチング時間は最大でJOμsecであり
従来のツイストネマチック液晶セルによる演算器よりも
1000倍程度高速に動作した。
When we investigated the switching characteristics of the optical inverter with the above configuration using Ar laser light with a wavelength of 488 nm, we found that the maximum switching time was JOμsec, which was 1000 times faster than that of a conventional arithmetic unit using twisted nematic liquid crystal cells. It worked about twice as fast.

上記の様な光、インバータを用いて論理演算のNAND
を実行する光論理演算素子を構成した例を第2図に示ず
。入力光A及び入力光Bを本発明の光インバータに入力
して反転出力を得た後、該2つの出力光を合流して論理
演算のORを実行することにより全体として論理演算の
NANDの動作が得られる。又、本発明の光インバータ
及び合波による論理演算のORを組み合せることにより
全ての論理演算素子を構成することができる。
Logical operation NAND using light and inverter as above
FIG. 2 does not show an example of the configuration of an optical logic operation element that executes. After inputting the input light A and the input light B to the optical inverter of the present invention to obtain an inverted output, the two output lights are combined and a logical operation of OR is performed, resulting in a logical NAND operation as a whole. is obtained. Further, all logical operation elements can be constructed by combining the optical inverter of the present invention and the OR of logical operation by multiplexing.

〔実施例2〕 第2図は本発明の実施例における空間光変調型の光イン
バータの構成概略図である。この場合Zn5e光インバ
ータ素子302は信号光を透過するZnS基板301上
に形成される。入力光及びバイアス光はハーフミラ−3
03によって合波されZnS基板を透過した後光インバ
ータ素子302へ入射する。この為Zn5e光インバー
タ素子を形成しない側のZnS基板面も散乱損失を減少
する為に鏡面にしてお(必要があり、又ZnS基板内で
の信号光の伝搬損失を最小限に抑える為ZnS基板をな
るべく薄くする必要がある。この様な構成においては入
力光は2次元的な広がりを持つことが可能であり画像情
報或いはマトリクスの並列演算を行うことが可能である
。又、光インバータ素子は単結晶のバルクから薄板状の
形状に加工したものを用いることもできる。
[Embodiment 2] FIG. 2 is a schematic diagram of the configuration of a spatial light modulation type optical inverter in an embodiment of the present invention. In this case, the Zn5e optical inverter element 302 is formed on a ZnS substrate 301 that transmits signal light. Input light and bias light are half mirror 3
After being multiplexed by 03 and transmitted through the ZnS substrate, it enters the optical inverter element 302. Therefore, it is necessary to make the ZnS substrate surface on the side where the Zn5e optical inverter element is not formed mirror-finished to reduce scattering loss. It is necessary to make the optical inverter element as thin as possible.In such a configuration, the input light can have a two-dimensional spread, and it is possible to perform parallel operations on image information or matrices.In addition, the optical inverter element It is also possible to use a single crystal bulk processed into a thin plate shape.

上記の様な光インバータを用いて論理演算のANDを実
行する光論理演算器を構成した例を第4図に示す。入力
光A及び入力光Bを本発明の光インバータに入力して反
転出力を得た後、該2つの出力光をハーフミラ−により
合流して論理演算のORを実行し、さらに該出力光を本
発明の光インバータにより反転出力を得ることにより全
体として論理演算のANDの動作が得られる。又、本発
明の光インバータ及びハーフミラ−による論理演算のO
Rを組み合せることにより全ての論理演算器を構成する
ことができる。
FIG. 4 shows an example of an optical logic arithmetic unit configured to perform AND of logic operations using the above-mentioned optical inverter. After inputting the input light A and the input light B to the optical inverter of the present invention to obtain an inverted output, the two output lights are combined by a half mirror to perform a logical operation, and then the output light is By obtaining an inverted output using the optical inverter of the invention, a logical AND operation can be obtained as a whole. Also, the optical inverter and half mirror of the present invention can perform logical operations.
By combining R, all logical arithmetic units can be constructed.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に本発明によれば従来技術のツイストネマ
チック液晶セルを用いた光論理演算器では得ることので
きない約1000倍の速度で動作する光インバータを作
製することができるという効果を有する。又本発明の光
インバータを用いることにより全ての光論理演算を高速
に、又実施例2て述べた様な構成をとることにより高い
並列性をもって実行することができる。
As described above, the present invention has the advantage that it is possible to fabricate an optical inverter that operates at a speed approximately 1000 times faster than that which could be obtained with optical logic arithmetic units using conventional twisted nematic liquid crystal cells. Furthermore, by using the optical inverter of the present invention, all optical logic operations can be executed at high speed, and by adopting the configuration described in the second embodiment, it is possible to execute them with high parallelism.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における導波路型の光インバー
タの構成概略図。 第2図は本発明の導波路型の光インバータを構成要素と
して用いて論理演算のNANDを実行する光論理演算素
子の構成概略図。 第3図は本発明の実施例における空間光変調型の光イン
バータの構成概略図。 第4図は本発明の空間光変調型の光インバータを構成要
素として用いて論理演算のANDを実行する光論理演算
器の構成概略図。 第5図は本発明の光インバータの原理を説明する為のZ
n5e光インバータ素子の入射光強度と出射光強度の関
係を示す図。 101・・・GaAS基板 102・・・ZnSクラッド層 103−  ・ZZnS5e波路層 104・・・Zn5e光インバータ素子301 ・−・
ZnS基板 302・・・Zn5e光インバータ素子303・・・ハ
ーフミラ− 以  」二 出願人 セイコーエプソン株式会社 代理人 弁理士 上 柳 雅 誉(他1名)ムカ光 10112,0υA/、1鈑 1o2・・・Z気Sクラヅ←パ漕 10φ ・・・ZhSc来スンハ″−タネを出力光。 j 人汐先 3=1.・・lns基叛 302、、、Z杓SらメLイΔぐ一夕秦シタう・・・ 
ハーフミラ− 入咬九A リ 1、;n RP3
FIG. 1 is a schematic diagram of the configuration of a waveguide type optical inverter in an embodiment of the present invention. FIG. 2 is a schematic diagram of the configuration of an optical logic operation element that uses the waveguide type optical inverter of the present invention as a component to perform a logic operation of NAND. FIG. 3 is a schematic diagram of the configuration of a spatial light modulation type optical inverter in an embodiment of the present invention. FIG. 4 is a schematic diagram of the configuration of an optical logic operation unit that uses the spatial light modulation type optical inverter of the present invention as a component to perform AND of logic operations. FIG. 5 is a Z diagram for explaining the principle of the optical inverter of the present invention.
FIG. 3 is a diagram showing the relationship between the incident light intensity and the output light intensity of the N5E optical inverter element. 101...GaAS substrate 102...ZnS cladding layer 103-・ZZnS5e wave path layer 104...Zn5e optical inverter element 301...
ZnS substrate 302...Zn5e optical inverter element 303...Half mirror and above 2 Applicants: Seiko Epson Co., Ltd. Agent Patent attorney: Masa Homare Kamiyanagi (and 1 other person) Muka Hikari 10112, 0υA/, 1 plate 1o2...・Z Ki S Kuradzu ← Pa row 10φ...ZhSc coming Sunha''-seed output light. Qin Shita...
Half mirror inbite 9 A ri 1,;n RP3

Claims (1)

【特許請求の範囲】[Claims] 信号光である入力光とバイアス光を合波する手段を有し
、該合波された光を入射光強度に透過光強度が非線形的
に変化する光インバータ素子に入射させる手段を有し、
該光インバータ素子からの出射光を取り出す手段を有す
ることを特徴とする光インバータ。
It has means for multiplexing input light, which is signal light, and bias light, and means for inputting the multiplexed light into an optical inverter element whose transmitted light intensity changes non-linearly with the incident light intensity,
An optical inverter comprising means for extracting light emitted from the optical inverter element.
JP22961488A 1988-09-13 1988-09-13 Optical inverter Pending JPH0277731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22961488A JPH0277731A (en) 1988-09-13 1988-09-13 Optical inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22961488A JPH0277731A (en) 1988-09-13 1988-09-13 Optical inverter

Publications (1)

Publication Number Publication Date
JPH0277731A true JPH0277731A (en) 1990-03-16

Family

ID=16894942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22961488A Pending JPH0277731A (en) 1988-09-13 1988-09-13 Optical inverter

Country Status (1)

Country Link
JP (1) JPH0277731A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029905A1 (en) * 2000-10-05 2002-04-11 Aligned Technologies Incorporated Optical mode size converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002029905A1 (en) * 2000-10-05 2002-04-11 Aligned Technologies Incorporated Optical mode size converter

Similar Documents

Publication Publication Date Title
US5020050A (en) Cascadable optical combinatorial logic gates
US7755821B2 (en) Photon logic gates
US20030002797A1 (en) All optical logic using cross-phase modulation amplifiers and mach-zehnder interferometers with phase-shift devices
US4630898A (en) Etalon optical logic gate apparatus and method
US4751378A (en) Optical device with quantum well absorption
US4701030A (en) Thermal stable optical logic element
US5485014A (en) Multiple quantum well birefringent spatial light modulator
CA1270674A (en) Optical logic arrangement
CA1270673A (en) Method and apparatus for making a reflection hologram to interconnect nonlinear optical elements
US4549788A (en) Intensity of a light beam applied to a layered semiconductor structure controls the beam
US6091536A (en) Optical processing device
EP0105319B1 (en) An optical switch and a time division optical demultiplexer using such switch
US20060158716A1 (en) Apparatus and method for realizing all-optical nor logic device using gain saturation characteristics of a semiconductor optical amplifier
JPH0277731A (en) Optical inverter
JPH0625836B2 (en) Programmable optical logic device
JPH08160367A (en) Opticla limiter circuit
JP3974905B2 (en) Apparatus and method for realizing all-optical NOR logic device using gain saturation of semiconductor optical amplifier
KR0155529B1 (en) Parallel optical logic operator
McCormick et al. Simultaneous parallel operation of an array of symmetric self-electrooptic effect devices
JPH04270324A (en) Optical computing element
JPH01152403A (en) Semiconducting device
Golshan et al. Generalized pipeline cellular array using reversible nonlinear interface devices
Wherrett et al. Optical components for digital optical circuits
JPH03127020A (en) Optical modulator
Ceipidor et al. Logic functions, devices, and circuits based on parametric nonlinear processes