JPH0277297A - Operation control method for dewatering machine - Google Patents

Operation control method for dewatering machine

Info

Publication number
JPH0277297A
JPH0277297A JP22898288A JP22898288A JPH0277297A JP H0277297 A JPH0277297 A JP H0277297A JP 22898288 A JP22898288 A JP 22898288A JP 22898288 A JP22898288 A JP 22898288A JP H0277297 A JPH0277297 A JP H0277297A
Authority
JP
Japan
Prior art keywords
dehydration
dewatering
tank
motor
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22898288A
Other languages
Japanese (ja)
Inventor
Ichiro Yano
一朗 矢野
Takeshi Sugino
杉野 武嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kentetsu Co Ltd
Mitsubishi Electric Corp
Original Assignee
Nihon Kentetsu Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kentetsu Co Ltd, Mitsubishi Electric Corp filed Critical Nihon Kentetsu Co Ltd
Priority to JP22898288A priority Critical patent/JPH0277297A/en
Publication of JPH0277297A publication Critical patent/JPH0277297A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the movement of water in a tank from being made into an eccentric load in synchronizing with the rotating speed of a dewatering layer and to prevent the dewatering tank from being widely vibrated by intermittently rotating the dewatering tank at the rotating speed at a low speed equal to an inherent frequency or below in the early stage of a dewatering operation and discharging the water in the tank. CONSTITUTION:Based on the voltage waveform of a speed generator 13, a rotating speed W2 of a dewatering motor 7 is always detected, the rotating speed W2 is compared with an inherent frequency W1 by a controller 14, and when the rotating speed W2 reaches the vicinity of the inherent frequency W1, a current flowing to the dewatering motor 7 is automatically turned off. After a stop time set beforehand passes, the current flowing to the dewatering motor 7 is executed again, the dewatering tank is rotated at a low speed, and a drain is executed. the rotation and stop of the dewatering tank by the rotating speed W2 in a low speed equal to the inherent frequency W1 on below is repeated plural times, and the water in the dewatering tank is discharged in the early stage of the dewatering operation. After such an intermittent dewatering is executed, the dewatering motor 7 is successively energized, and a shift to a full speed dewatering is executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、洗濯槽と脱水槽とを備え、脱水槽で洗い運転
と脱水運転とを行う二槽式洗濯機の脱水機の運転制御方
法に関する9 〔従来の技術〕 洗濯機構と脱水機構とを併設しである二槽式洗濯機は、
第6図に示すように外箱(1)内に洗濯槽(2)と脱水
槽(3)とを隣接させて設けたもので、この脱水槽(3
)は第7図に示すように、脱水受槽(4)の内側に設置
されている。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for controlling the operation of a dehydrator in a two-tub washing machine, which is equipped with a washing tub and a dehydrating tub, and performs washing operation and dehydrating operation in the dehydrating tub. 9 [Prior art] A two-tub washing machine that is equipped with a washing mechanism and a dewatering mechanism is
As shown in Figure 6, a washing tub (2) and a dehydrating tub (3) are installed adjacent to each other in an outer box (1).
) is installed inside the dewatering tank (4) as shown in Fig. 7.

そして、底枠(5)に防振バネ(6)を介して取付けた
脱水モーター(7)の回転軸(8)と、脱水槽(3)の
下部に突出した脱水軸(9)とをカップリング(10)
を介して連結し、脱水モーター(7〕で脱水槽(3)を
回転させるようにしである。図中(11)は回転軸(8
)、脱水軸(9)をそれぞれカップリング(10)に固
定するためのネジであり、また、脱水槽(3)にはその
周囲側壁に排水用の脱水孔(12)が穿設しである。
Then, the rotation shaft (8) of the dehydration motor (7) attached to the bottom frame (5) via the vibration isolation spring (6) and the dehydration shaft (9) protruding from the bottom of the dehydration tank (3) are connected to the cup. ring (10)
The dehydration motor (7) rotates the dehydration tank (3). In the figure (11) is the rotation shaft (8).
) and are screws for fixing the dehydration shaft (9) to the coupling (10), respectively, and the dehydration tank (3) has a dehydration hole (12) for drainage in the side wall around it. .

かかる脱水槽(3)での脱水運転の制御方法として、従
来、例えば実公昭49−25491号公報に示されてい
るものがある。これは、脱水率の悪い布の場合は強い回
転力で脱水し、脱水率のよい布の場合は少ない回転数で
適当時間脱水して、常に布地に適した回転数で脱水しよ
うとするもので、その制御回路を第8図について説明す
る。
As a method of controlling the dehydration operation in the dehydration tank (3), there is a conventional method disclosed in, for example, Japanese Utility Model Publication No. 49-25491. This method uses a strong rotational force to dehydrate fabrics with a poor dehydration rate, and dehydrates fabrics with a good dehydration rate at a low rotational speed for an appropriate amount of time. , its control circuit will be explained with reference to FIG.

(7)は脱水モーター、(25)は誘電コイル、(26
)は誘電コイル(25)の一端に接続された起動用コン
デンサ、(27)はタイムスイッチ、(28)は電源(
29)に直列に接続されたタイムスイッチ(27)の時
限接点、(30)は時限接点(28)の固定接点側を分
岐して設けた時限接点で、これは円弧部と歯状部を有す
るカム(31)等からなる間欠連動機構と連動する。(
32)は制御回路の切換スイッチで時限接点(28)の
固定接点側で分岐して設けた固定接点Aと、時限接点(
30)と接続される固定接点Bとを選択するものである
(7) is the dehydration motor, (25) is the induction coil, (26
) is the starting capacitor connected to one end of the induction coil (25), (27) is the time switch, and (28) is the power supply (
29) is a time contact of the time switch (27) connected in series, and (30) is a time contact provided by branching off the fixed contact side of the time contact (28), which has an arcuate part and a toothed part. It is interlocked with an intermittent interlocking mechanism consisting of a cam (31) and the like. (
32) is a control circuit changeover switch that connects fixed contact A, which is branched on the fixed contact side of time contact (28), and time contact (28).
30) and the fixed contact B to be connected.

このような構造の脱水機で脱水運転を行うには脱水槽(
3)内に洗濯物を入れ、任意の時間を設定して時限接点
(28)を閉路し、切換スイッチ(32yを固定接点A
に接続して脱水モーター(7)に通電すれば、脱水槽(
3)は回転を開始し、その回転の遠心力によって脱水槽
(3)に設けである脱水孔(12)から洗濯物に含まれ
ている水分が脱水槽(3)外に飛び出して脱水される。
To perform dehydration operation with a dehydrator with this type of structure, a dehydration tank (
3) Place the laundry inside, set an arbitrary time, close the time contact (28), and connect the changeover switch (32y to the fixed contact A).
If you connect it to the dehydrating motor (7) and energize the dehydrating motor (7), the dehydrating tank (
3) starts to rotate, and due to the centrifugal force of the rotation, water contained in the laundry flows out of the dehydration tank (3) through the dehydration hole (12) provided in the dehydration tank (3) and is dehydrated. .

この時、第9図の曲線(イ)に示すように時間の経過と
ともに回転数が増加し、強い脱水力を得ることができる
。また、切換スイッチ(32)を固定接点Bに接続すれ
ば、カム(31)が駆動し連動機構が円弧部を摺動する
時限となる。すなわち、曲線(ロ)に示すように脱水モ
ーター(7)の回転数が0より約150Orpm程度に
達するまでは時限接点(3o)は閉路し、その後は歯状
部によって数秒間毎に時限接点の開閉を繰り返すことで
、ある一定の回転数に達したところで安定した低速回転
を続行し弱い回転力を得るようにしている。
At this time, as shown by curve (a) in FIG. 9, the rotational speed increases with the passage of time, and a strong dewatering force can be obtained. Further, when the changeover switch (32) is connected to the fixed contact B, the cam (31) is driven and the interlocking mechanism slides on the arc portion. That is, as shown in the curve (b), the time contact (3o) is closed until the rotation speed of the dehydration motor (7) reaches about 150 rpm from 0, and then the time contact (3o) is closed every few seconds by the teeth. By repeatedly opening and closing, it continues to rotate at a stable low speed once it reaches a certain number of rotations, producing a weak rotational force.

ところで、脱水槽(3)を回転させた時の、角速度と振
動量とは第10図に示すように、横軸に角速度W、縦軸
に振動量をとると、振動量は角速度Wと共に増大し、脱
水槽(3)、回転軸(8)、脱水軸(9)、脱水モータ
ー(7)、ネジ(11)、防振バネ(6)等全てを含ん
だ防振系の固を振動数W1の点で最大となり、その後下
降し、ある値で一定となる。
By the way, the angular velocity and the amount of vibration when rotating the dehydration tank (3) are as shown in Figure 10. If the horizontal axis is the angular velocity W and the vertical axis is the vibration amount, the amount of vibration increases with the angular velocity W. The frequency of the vibration isolation system, which includes the dehydration tank (3), rotating shaft (8), dehydration shaft (9), dehydration motor (7), screws (11), vibration isolating spring (6), etc. It reaches a maximum at point W1, then decreases, and becomes constant at a certain value.

かかる角速度と振vJ量の関係は、前記従来例において
もあてはまるもので、第9図に示すように、脱水槽(3
)が停止状態から回転を開始する初期の角加速度は(d
 Wl / d T1) =α、となっており、この角
加速度α1は脱水機を全速運転する場合も間欠運転する
場合も同様で、脱水機の固有振動数付近で最大の振動量
となっていう。
This relationship between the angular velocity and the amount of vibration vJ also applies to the conventional example, and as shown in FIG.
) starts rotating from a stopped state, the initial angular acceleration is (d
Wl/dT1) = α, and this angular acceleration α1 is the same whether the dehydrator is operated at full speed or intermittently, and the maximum amount of vibration occurs near the natural frequency of the dehydrator.

他方、洗濯物の量が少ないときは、この脱水槽(3)で
脱水運転のみならず洗い運転を行うこともあり、洗い運
転に続く脱水運転においては、洗いに使用した水をこの
脱水工程で排水するようにしており、排水の方法として
は、脱水と同様に、脱水モーター(7)に通電して脱水
槽(3)を回転させ、その回転の遠心力により、脱水槽
(3)に設けた脱水孔(12)から脱水槽(3)内の水
を外部に排出する。
On the other hand, when the amount of laundry is small, this dehydration tank (3) may perform not only dehydration operation but also washing operation, and in the dehydration operation that follows the washing operation, the water used for washing is used in this dehydration process. As with dewatering, the dehydrating motor (7) is energized to rotate the dehydrating tank (3), and the centrifugal force of the rotation is used to remove water from the dehydrating tank (3). The water in the dehydration tank (3) is discharged to the outside from the dehydration hole (12).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

洗濯槽で洗い運転を行い、その後、洗濯物を脱水槽で脱
水する場合は、脱水槽内には衣類が投入されるだけなの
で、脱水槽の重心は衣類を投入した時点である程度定ま
っており、脱水運転進行中もこの重心位置はほとんど変
わらない。よって、脱水運転開始後、脱水槽の回転数が
高くなるにしたがい、衣類に含まれている水分が徐々に
排出され、全速運転の場合は全回転に、間欠運転の場合
は所定の回転数にそれぞれスムーズに立上がることがで
きる。
When washing is performed in the washing tub and then the laundry is dehydrated in the spin-drying tank, the center of gravity of the spin-drying tank is determined to some extent when the clothes are placed in the spin-drying tank, as the clothes are simply thrown into the spin-drying tank. This center of gravity position hardly changes even during dehydration operation. Therefore, as the rotation speed of the dehydration tank increases after the start of dehydration operation, the moisture contained in the clothes is gradually discharged, and the rotation speed decreases to full rotation in the case of full-speed operation, or to a predetermined rotation speed in the case of intermittent operation. Each can stand up smoothly.

しかし、脱水槽側で洗い運転を行い、そのまま同じ脱水
槽で脱水運転を行って、この脱水工程で洗いに使用した
水を排水させようとする場合は、脱水槽を回転すると槽
内の水が回転により動き、この水の動きによって脱水槽
の重心位置が回転とともに大きく変わり、この重心変動
が偏芯荷重として脱水槽に作用することとなる。
However, if you perform washing operation on the dehydration tank side, then perform dehydration operation in the same dehydration tank, and then drain the water used for washing in this dehydration process, rotating the dehydration tank will drain the water in the tank. It moves due to rotation, and the movement of this water causes the position of the center of gravity of the dehydration tank to change significantly as it rotates, and this change in the center of gravity acts on the dehydration tank as an eccentric load.

その結果、脱水槽が揺れて脱水受槽にぶつかり、スムー
ズに全回転、あるいは所定の回転に達することができな
いという不都合が生じていた。
As a result, the dehydration tank shakes and collides with the dehydration receiving tank, resulting in an inconvenience in that the dehydration tank cannot smoothly reach a full rotation or a predetermined rotation.

この偏芯荷重は、脱水槽と内部の水とが滑っているとき
、すなわち脱水槽の加速に内部の水が追従しきれない間
はそれ程大きいものではないが、内部の水の回転速度が
脱水槽の回転速度に追いついた時にはかなり大きな偏芯
荷重となる。
This eccentric load is not so large when the dehydration tank and the water inside are slipping, that is, when the internal water cannot follow the acceleration of the dehydration tank, but the rotational speed of the internal water is When it catches up with the rotational speed of the aquarium, it becomes a fairly large eccentric load.

また、脱水槽の揺れは、前記のごとくその固有振動数で
最大となるが、脱水槽での洗い運転に続く脱水運転では
、槽内に入っている水によって脱水槽の全体重量が大き
くなっているために、固有振動数付近を通過するのにあ
る程度の時間を要する。その結果、この固有振動数付近
で脱水槽が特に大きく揺れて脱水受槽にぶつかるおそれ
があった。
Furthermore, as mentioned above, the shaking of the dehydration tank reaches its maximum at its natural frequency, but during the dehydration operation that follows the washing operation in the dehydration tank, the overall weight of the dehydration tank increases due to the water in the tank. Therefore, it takes a certain amount of time to pass around the natural frequency. As a result, there was a risk that the dehydration tank would shake particularly strongly around this natural frequency and collide with the dehydration receiving tank.

本発明の目的は前記従来例の不都合を解消し、脱水槽で
の洗い運転に続けて脱水運転を行う場合に、槽内の水の
動きが脱水槽の回転速度と同期して偏芯荷重となるのを
防止し、また固有振動数付近を早く通過するようにして
脱水槽が大きく揺れるのを防止し、所定の回転数による
回転にスムーズに達することのできる脱水機の運転制御
方法を提供することにある。
The purpose of the present invention is to eliminate the disadvantages of the conventional example, and to provide a system in which, when a dehydration operation is performed following a washing operation in a dehydration tank, the movement of water in the tank is synchronized with the rotational speed of the dehydration tank, resulting in an eccentric load. To provide a method for controlling the operation of a dehydrator, which prevents the dehydration tank from shaking significantly by causing the dehydration tank to quickly pass through the vicinity of the natural frequency, and can smoothly reach rotation at a predetermined rotation speed. There is a particular thing.

〔課題を解決するための手段] 本発明は前記目的を達成するため、洗濯槽と脱水槽とを
備え、脱水槽で洗い運転と脱水運転とを行う二槽式洗濯
機において、脱水運転時に初期の段階で電源周波数より
も低い疑似周波数で通電して脱水モーターを低速回転し
、該低速回転中に脱水モーターの回転数を検知する手段
により検知された脱水モーターの回転数が防振系全体の
固有振動数付近に達すると脱水モーターへの通電を停止
し、所定の停止時間経過後、再び低い疑似周波数で脱水
モーターに通電し、このザイクルを複数回繰返した後、
脱水モーターに全速通電することを要旨とするものであ
る。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention provides a two-tub washing machine that is equipped with a washing tub and a spin-drying tank and performs a washing operation and a spin-drying operation in the spin-drying tank. At this stage, the dehydration motor is rotated at a low speed by applying electricity at a pseudo frequency lower than the power supply frequency, and the rotation speed of the dehydration motor detected by the means for detecting the rotation speed of the dehydration motor during the low speed rotation is the rotation speed of the dehydration motor as a whole. When the frequency reaches around the natural frequency, the power to the dehydration motor is stopped, and after a predetermined stop time, the dehydration motor is energized again at a low pseudo frequency, and after repeating this cycle multiple times,
The gist of this is to energize the dewatering motor at full speed.

〔作用〕[Effect]

本発明によれば、脱水槽での洗い運転に続いて同種で脱
水運転を行う場合、脱水運転の初期の段階で、まず脱水
モーターに電源周波数よりも低い疑似周波数で短時間通
電して脱水モーターを低速回転して排水を行う。この低
速回転による排水中に、脱水モーターの回転数が振動系
全体の固有振動数付近に達するとこれが検知されて脱水
モーターへの通電が一時停止、その後再び低い疑似周波
数で脱水モーターに通電し、低速回転で排水を行う。よ
って、この低速回転による排水中には、脱水モーターの
回転数が固有振動数に達することはないから、排水中に
脱水槽が大きく振動することはない。かかる動作を複数
回繰返してから脱水モーターに連続全速通電して脱水を
行う。この時、脱水槽の回転数は固有振動数を通過する
が、脱水槽内の残水は前記排水により少なくなっている
ので、大きな振動が生ずることはない。
According to the present invention, when performing a dehydration operation of the same type after a washing operation in a dehydration tank, in the initial stage of the dehydration operation, the dehydration motor is first energized for a short time at a pseudo frequency lower than the power supply frequency. Rotate at low speed to drain water. During this low-speed rotation during drainage, when the rotational speed of the dehydration motor reaches around the natural frequency of the entire vibration system, this is detected and the energization to the dehydration motor is temporarily stopped, after which the dehydration motor is energized again at a low pseudo frequency. Drain water at low speed. Therefore, during drainage due to this low-speed rotation, the rotational speed of the dehydration motor does not reach the natural frequency, so the dehydration tank does not vibrate significantly during drainage. After repeating this operation several times, the dewatering motor is continuously energized at full speed to perform dewatering. At this time, the rotational speed of the dehydration tank passes through the natural frequency, but since the remaining water in the dehydration tank has been reduced by the drainage, large vibrations do not occur.

〔実施例〕〔Example〕

以下、図面について本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の脱水機の運転制御方法による場合の通
電時間と角速度との関係を示す特性曲線図で、本発明方
法で使用する脱水機の基本構造は第7図について既に説
明した従来例と同様であるから、ここでの詳細な説明は
省略する。
FIG. 1 is a characteristic curve diagram showing the relationship between energization time and angular velocity when using the dehydrator operation control method of the present invention, and the basic structure of the dehydrator used in the method of the present invention is the same as that of the conventional Since this is the same as the example, detailed explanation will be omitted here.

本発明方法では、かかる脱水機の構成に加えて、脱水モ
ーター(7)の回転数を検出する手段として第3図に示
したような速度発電機(13)を脱水モーター(7)の
反負荷側に取付ける。この速度発電i (13)はコイ
ル(13a)と磁石(13b)とで構成されるもので、
該速度発電機(13)の出力を後述するマイコン等を用
いる制御器(14)に導入した。
In the method of the present invention, in addition to the structure of the dehydrator, a speed generator (13) as shown in FIG. Attach to the side. This speed power generation i (13) is composed of a coil (13a) and a magnet (13b).
The output of the speed generator (13) was introduced into a controller (14) using a microcomputer, etc., which will be described later.

第4図は脱水の制御用回路図で、図中(15)は入スイ
ッチ、(16)は起動用コンデンサで、これにより脱水
モーター(7)を回転させる回転磁界を生じさせる。
FIG. 4 is a circuit diagram for controlling dehydration, in which (15) is an on switch and (16) is a starting capacitor, which generates a rotating magnetic field that rotates the dehydration motor (7).

図中(14)は制御器、(17)  (18)はそれぞ
れ制御器(14)の出力により作動する脱水モーター(
7)用の右回転スイッチ、左回転スイッチを示す。
In the figure, (14) is the controller, and (17) and (18) are the dewatering motors that are operated by the output of the controller (14), respectively.
7) shows the right rotation switch and left rotation switch.

ここで、制御器(14)への給電回路を説明すると、入
スイッチ(15)を押すと、商用交流電源(29)から
トランス(19)に交流電圧が印加され、このトランス
(19)によって約10分の1に降圧された電圧がダイ
オードブリッジ等による整流器(20)に供給され、こ
こで全波整流される。そして次に平滑コンデンサ(21
)により平滑されて安定した直流電圧として制御器(1
4)に供給される。
Here, to explain the power supply circuit to the controller (14), when the on switch (15) is pressed, AC voltage is applied from the commercial AC power supply (29) to the transformer (19), and this transformer (19) The voltage reduced to one-tenth is supplied to a rectifier (20) such as a diode bridge, where it is full-wave rectified. And then the smoothing capacitor (21
) as a stable DC voltage that is smoothed by the controller (1
4).

このようにして電圧が印加される制御器(14)は予め
設定されたプログラムにしたがって動作するが、脱水モ
ーター(7)が回転するとこれにより速度発電m (1
3)が発電し、第5図に示すような電圧が生じる。この
電圧波形は、例えば脱水モーター(7)が1回転すると
ニピッチの正弦波が出力するもので、このニビッチの正
弦波はトランジスタ(23)によりデジタル出力として
の矩形波に変換されて、制御器(14)の入カポ−) 
(22)に出力される。そして、この矩形波をカウント
することで脱水モーター(7)の回転数が検出される。
The controller (14) to which voltage is applied in this way operates according to a preset program, but when the dehydration motor (7) rotates, it generates speed m (1
3) generates electricity, and a voltage as shown in FIG. 5 is generated. This voltage waveform is, for example, a two-pitch sine wave output when the dehydration motor (7) makes one rotation, and this two-pitch sine wave is converted by the transistor (23) into a rectangular wave as a digital output, and then the controller ( 14) entry capo)
(22) is output. Then, by counting this rectangular wave, the rotation speed of the dehydration motor (7) is detected.

本発明の運転制御方法は、このようにして電圧が印加さ
れる制御器(14)により行うもので、次に脱水槽(3
)で洗い運転を行った後、これに続けて該脱水槽(3)
で排水、脱水運転を行う場合について説明する。
The operation control method of the present invention is performed by the controller (14) to which a voltage is applied in this way, and then the dehydration tank (3
), and then the dehydration tank (3)
This section explains how to perform drainage and dewatering operations.

脱水スイッチ(図示せず)を押すと、プログラムにした
がって制御器(14)からの出力で右回転スイッチ(1
7)がオンして脱水モーター(7)に通電され、脱水槽
(3)が回転し、脱水槽(3)内の水が排出される。
When the dehydration switch (not shown) is pressed, the clockwise rotation switch (1) is activated by the output from the controller (14) according to the program.
7) is turned on, the dehydration motor (7) is energized, the dehydration tank (3) rotates, and the water in the dehydration tank (3) is discharged.

この時、右回転スイッチ(17)は高速にオンオフし、
これにより第2図に示したような疑似周波数で脱水モー
ター(7)に電圧を印加する。なお、かかる疑似周波数
を得るには、図示は省略するが、交流商用電源から周波
数変換器を介して得たものを脱水モーター(7)に印加
するようにすればよい。この場合の疑似周波数は印加周
波数の1/3となっており、したがって脱水モーター(
7)は通常の全速脱水の場合の1/3の回転数で低速回
転する。
At this time, the right rotation switch (17) turns on and off at high speed,
As a result, a voltage is applied to the dehydration motor (7) at a pseudo frequency as shown in FIG. Note that in order to obtain such a pseudo frequency, although not shown in the drawings, one obtained from an AC commercial power source via a frequency converter may be applied to the dewatering motor (7). The pseudo frequency in this case is 1/3 of the applied frequency, so the dehydration motor (
7) rotates at low speed at 1/3 of the rotation speed of normal full-speed dehydration.

この低速回転中の回転数は、脱水モーター(7)が回転
することで速度発電i (13)が発電し、トランジス
タ(23)によって矩形波に変換された波形が制御器(
14)の入カポ−1−(22)に入力されることにより
、制御器(14)で入力されてくる波形のパルス間の時
間をもとにして算出する。
The rotation speed during this low-speed rotation is determined by the rotation of the dehydration motor (7), which generates electricity from the speed generator i (13), and the waveform converted into a rectangular wave by the transistor (23), which is transmitted to the controller (
14) is input to the input capo-1-(22), and is calculated based on the time between pulses of the waveform input by the controller (14).

そして、この低速回転中の安定した回転数W2が、固有
振動数W1よりも小さい間は、脱水槽(3)が大きく振
動することはない。しかし、この回転数W2は、脱水槽
(3)の負荷トルクを脱水モーター(7)の運転トルク
とのつり合いで決定されるものであることから、脱水槽
(3)の水が排出されて脱水槽(3)全体の重量が軽く
なると、Wl<W、となる可能性もあり、かかる場合に
は脱水槽(3)が共振してスムーズに回転を立上げるこ
とができなくなる。
As long as the stable rotational speed W2 during this low-speed rotation is smaller than the natural frequency W1, the dehydration tank (3) does not vibrate significantly. However, since this rotation speed W2 is determined by balancing the load torque of the dehydration tank (3) with the operating torque of the dehydration motor (7), the water in the dehydration tank (3) is discharged and dehydrated. If the overall weight of the water tank (3) becomes lighter, there is a possibility that Wl<W, and in such a case, the dehydration tank (3) will resonate and will not be able to start up its rotation smoothly.

そこで、本発明方法では、前記のように速度発電機(1
3)の電圧波形をもとにして脱水モーター(7)の回転
数Wtを常時検出し、制御器(14)でこの回転数W2
を固有振動数W1と比較し、回転数W2が固有振動数W
l付近に達すると、自動的に脱水モーター(7)への通
電をオフする。そして、予め設定した停止時間経過後、
再び脱水モーター(7)に通電し、低速で脱水槽(3)
を回転して排水を行う。かかる固有振動数W1以下の低
速の回転数W2による脱水槽(3)の回転と停止とを複
数回繰返して脱水運転の初期の段階で脱水槽(3)内の
水を排出する。そして、この低速回転による排水は、固
有振動数W、以下で行われるので、この間に脱水槽(3
)が大きく振動することはない。
Therefore, in the method of the present invention, the speed generator (1
The rotation speed Wt of the dehydration motor (7) is constantly detected based on the voltage waveform in step 3), and the controller (14) controls the rotation speed W2.
is compared with the natural frequency W1, and the rotation speed W2 is the natural frequency W1.
When the temperature reaches around l, the power to the dehydration motor (7) is automatically turned off. Then, after the preset stop time has elapsed,
Turn on the power to the dehydration motor (7) again and run the dehydration tank (3) at low speed.
Rotate to drain water. The rotation and stopping of the dehydration tank (3) at a low rotational speed W2 below the natural frequency W1 is repeated multiple times to drain the water in the dehydration tank (3) at an early stage of the dehydration operation. Drainage due to this low-speed rotation is performed below the natural frequency W, so during this time the dewatering tank (3
) does not vibrate significantly.

かかる間欠脱水を行った後、脱水モーター(7)に連続
通電して全速脱水に移行する。この時点での脱水槽(3
)内の水の量は前記間欠脱水により排水されているので
少なくなっており、脱水槽(3)全体の重量が小さくな
っているために全速脱水時の趣速角度は間欠脱水時の加
速角度よりも大きく、固有振動数付近を短時間で通過で
き、また、槽内には大量の水はないので、偏芯荷重が生
じてこれが脱水槽(3)に作用することもない。
After performing such intermittent dehydration, the dehydration motor (7) is continuously energized to shift to full speed dehydration. Dehydration tank at this point (3
) is decreasing because it is drained by the above-mentioned intermittent dehydration, and the weight of the entire dehydration tank (3) is small, so the flow velocity angle during full speed dehydration is the acceleration angle during intermittent dehydration. The dewatering tank (3) is larger than the above, and can pass through the vicinity of the natural frequency in a short time, and since there is not a large amount of water in the tank, eccentric loads will not occur and act on the dehydration tank (3).

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の脱水機の運転制御方法は、二
槽式洗濯機の脱水槽で洗い運転とこれに続く脱水運転を
行う場合に、脱水運転時においてその初期の段階で固有
振動数以下の低速の回転数により脱水槽を間欠的に回転
して槽内の水を排出するようにしたので、脱水槽と水と
の回転が同期して脱水槽に大きな偏芯荷重が作用するお
それがなく、また、脱水槽の固有振動数付近を短時間で
通過できるので、脱水槽が大きく揺れて脱水受槽にぶつ
かるおそれがなく、その結果、スムーズに全速回転に達
することができるものである。
As described above, in the dehydrator operation control method of the present invention, when a washing operation and a subsequent dehydration operation are performed in the dehydration tank of a two-tub washing machine, the natural vibration frequency is set at the initial stage of the dehydration operation. Since the dehydration tank is rotated intermittently at the following low rotational speeds to drain the water in the tank, there is a risk that the rotation of the dehydration tank and water will be synchronized and a large eccentric load will be applied to the dehydration tank. Furthermore, since the dehydration tank can pass through the vicinity of the natural frequency of the dehydration tank in a short time, there is no risk that the dehydration tank will shake greatly and hit the dehydration receiving tank, and as a result, it can smoothly reach full speed rotation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の脱水機の運転制御方法の実施例を示す
脱水モーターへの通電時間と回転数との関係を示す特性
曲線図、第2図は同上脱水モーターの印加電圧波形図、
第3図は速度発電機の正面図、第4図は脱水制御の電気
回路図、第5図は速度発電機の電圧波形図、第6図は二
槽式洗濯機の全体斜視図、第7図は同上要部である脱水
機の縦断側面図、第8図は従来の脱水制御回路図、第9
図は同上通電時間と脱水槽の回転数との関係を示す特性
曲線図、第10図は脱水槽の振動量と角速度との関係を
示す特性曲線図である。 (1)・・・外箱      (2)・・・洗濯槽(3
)・・・脱水槽     (4)・・・脱水受槽(5)
・・・底枠      (6)・・・防振バネ(7)・
・・脱水モーター  (8)・・・回転軸(9)・・・
脱水軸     (10)・・・カンプリング(11)
・・・ネジ      (12)・・・脱水孔(13)
−・・速度発電機   (13a)・・・コイル(13
b)・・・磁石     (14)・・・制御器(15
)・−・大スイッチ    (16)・・・起動用コン
デンサ(17)・〜右回転スイッチ (18)・・・左
回転スイッチ(19)・・・トランス     (20
)・・・整流器(21)・・−平滑コンデンサ (22
)・・・人力ポート(23)・・・トランジスタ  (
25)・・・誘電コイル(26)・・・起動用コンデン
サ(27)・・・タイムスインチ(28)・・・時限接
点    (29)・・・電源(30)・・・時限接点
    (31)・・・カム(32)・・・切換スイッ
チ 代理人   弁理士  入居 増雄 第1図 第7 図 第8図 第9図 −aキ藺 第10図 由違襄ヒ玉勤竜 由逮、t
Fig. 1 is a characteristic curve diagram showing the relationship between the energization time and the rotation speed of the dehydrating motor showing an embodiment of the dehydrating machine operation control method of the present invention; Fig. 2 is a voltage waveform diagram of the same dehydrating motor;
Figure 3 is a front view of the speed generator, Figure 4 is an electric circuit diagram for dehydration control, Figure 5 is a voltage waveform diagram of the speed generator, Figure 6 is an overall perspective view of the two-tub washing machine, Figure 7 The figure is a vertical sectional side view of the dehydrator, which is the main part of the same as above, Figure 8 is a conventional dehydration control circuit diagram, and Figure 9 is a conventional dehydrator control circuit diagram.
The figure is a characteristic curve diagram showing the relationship between the energization time and the rotation speed of the dehydration tank, and FIG. 10 is a characteristic curve diagram showing the relationship between the vibration amount and angular velocity of the dehydration tank. (1)...Outer box (2)...Washing tub (3
)...Dehydration tank (4)...Dehydration tank (5)
... Bottom frame (6) ... Anti-vibration spring (7)
... Dehydration motor (8) ... Rotating shaft (9) ...
Dehydration shaft (10)... Campling (11)
...Screw (12) ...Dehydration hole (13)
-...Speed generator (13a)...Coil (13
b)... Magnet (14)... Controller (15
)...Large switch (16)...Starting capacitor (17)...Right rotation switch (18)...Left rotation switch (19)...Transformer (20
)... Rectifier (21)... - Smoothing capacitor (22
)...Manpower port (23)...Transistor (
25)...Induction coil (26)...Starting capacitor (27)...Time switch (28)...Time contact (29)...Power supply (30)...Time contact (31) ... Cam (32) ... Changeover switch agent Patent attorney Tenant Masuo Figure 1 Figure 7 Figure 8 Figure 9 - akii Figure 10

Claims (1)

【特許請求の範囲】[Claims] 洗濯槽と脱水槽とを備え、脱水槽で洗い運転と脱水運転
とを行う二槽式洗濯機において、脱水運転時に初期の段
階で電源周波数よりも低い疑似周波数で通電して脱水モ
ーターを低速回転し、該低速回転中に脱水モーターの回
転数を検知する手段により検知された脱水モーターの回
転数が防振系全体の固有振動数付近に達すると脱水モー
ターへの通電を停止し、所定の停止時間経過後、再び低
い疑似周波数で脱水モーターに通電し、このサイクルを
複数回繰返した後、脱水モーターに全速通電することを
特徴とした脱水機の運転制御方法。
In a two-tub washing machine that is equipped with a washing tub and a spin-dry tub, and the spin-dry tub performs washing and spin-drying operations, the spin-drying motor is rotated at low speed by energizing at a pseudo frequency lower than the power supply frequency during the initial stage of spin-driving operation. When the rotation speed of the dehydration motor detected by the means for detecting the rotation speed of the dehydration motor during the low speed rotation reaches around the natural frequency of the entire vibration isolation system, the power supply to the dehydration motor is stopped and a predetermined stop is performed. After a period of time has elapsed, the dehydrating motor is energized again at a low pseudo frequency, and after repeating this cycle multiple times, the dehydrating motor is energized at full speed.
JP22898288A 1988-09-13 1988-09-13 Operation control method for dewatering machine Pending JPH0277297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22898288A JPH0277297A (en) 1988-09-13 1988-09-13 Operation control method for dewatering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22898288A JPH0277297A (en) 1988-09-13 1988-09-13 Operation control method for dewatering machine

Publications (1)

Publication Number Publication Date
JPH0277297A true JPH0277297A (en) 1990-03-16

Family

ID=16884914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22898288A Pending JPH0277297A (en) 1988-09-13 1988-09-13 Operation control method for dewatering machine

Country Status (1)

Country Link
JP (1) JPH0277297A (en)

Similar Documents

Publication Publication Date Title
US4843671A (en) Dehydrating method for a washing machine
JPH06182084A (en) Washing machine for raw fabric
KR100590361B1 (en) Washing machine
JPH0277297A (en) Operation control method for dewatering machine
JP4073141B2 (en) Drum washing machine
JP3861967B2 (en) Washing machine control device
TW201237228A (en) Washing machine
JPH01314598A (en) Method for controlling running of hydroextractor
JPH03244495A (en) Operation control method for agitation type washing machine
JPH0271797A (en) Operation control method for dewaterer
JPH03222993A (en) Operation control method for washing machine
JPH01314599A (en) Method for controlling running of hydroextractor
JPH1155977A (en) Control circuit for capacitor motor and dewatering device provided with the control circuit
JPH03136697A (en) Operation control method for dehydrator
JP3423231B2 (en) Drum type washing machine
JPS6311919B2 (en)
JPH11244593A (en) Drum type centrifugal dehydrating device
JPH04105698A (en) Dehydrator
JP3822065B2 (en) Inverter washing machine
JPH0292394A (en) Drum type washing and drying machine
JP2001300181A (en) Inverter washing machine
JPH02209196A (en) Operation control method for dehydrating machine
JPS59136154A (en) Dehydrater
JPH0647186A (en) Operation control device for motor and washing machine using the device
JP2588992B2 (en) Operation control method of stirring type washing machine