JPH0275492A - Method and device for profiling weld line - Google Patents

Method and device for profiling weld line

Info

Publication number
JPH0275492A
JPH0275492A JP63225774A JP22577488A JPH0275492A JP H0275492 A JPH0275492 A JP H0275492A JP 63225774 A JP63225774 A JP 63225774A JP 22577488 A JP22577488 A JP 22577488A JP H0275492 A JPH0275492 A JP H0275492A
Authority
JP
Japan
Prior art keywords
camera
welding
line
weld line
welding line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63225774A
Other languages
Japanese (ja)
Inventor
Nagahito Kuroda
黒田 寿仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63225774A priority Critical patent/JPH0275492A/en
Publication of JPH0275492A publication Critical patent/JPH0275492A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To enhance the follow-up property of a welding torch against a bending state of a weld line by detecting a change with the lapse of time of a position of the weld line on a photographing screen of a camera and predicting the subsequent bending state of the weld line, and correcting a position of the camera, based on a result of its prediction. CONSTITUTION:By detecting a change with the lapse of time of a position of a weld line 15 on a photographic screen of a camera 12, the subsequent bending state of the weld line 15 is predicted, and based on a result of its prediction, a position of the camera 12 is corrected. Therefore, even if the bending state of the weld line 15 is large, the weld line 15 can be held surely in a visual field of the camera 12, and also, it is unnecessary to enlarge the visual field of the camera 12, the detection accuracy of the camera 12 is not lowered, and irrespective of whether the bending state of the weld line 15 is large or small, the position of the weld line 15 can be detected with high accuracy. Moreover, since a position of a welding torch 19 is corrected, based on a high accuracy position detection of the weld line 15, the follow-up property against the bending state of the weld line 15 can be enhanced remarkably, and welding can be homogenized.

Description

【発明の詳細な説明】 [発明の目的〕 (産業上の利用分野) 本発明は、溶接線の曲り具合をカメラでモニターしなが
ら溶接トーチを溶接線上を倣わせるための溶接線倣い方
法とその装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Field of Application) The present invention provides a welding line tracing method for tracing a welding torch on a welding line while monitoring the degree of curvature of the welding line with a camera. Regarding the device.

(従来の技術) 近年、溶接作業の自動化のために、例えば第9図に示す
ような溶接線倣い装置が開発されている。この溶接線倣
い装置は、本体1の右側下面部にスリット光源(図示せ
ず)付きのカメラ2を固定し、そのスリット光源から半
導体レーザ光3を被溶接物4の溶接線5に照射し、その
反射光をカメラ2の受光面で受けて映像化する。そして
、本体1の左側部には、溶接トーチ6を駆動手段7によ
って矢印B方向(X−Y座標でY軸方向)に移動可能に
設けている。
(Prior Art) In recent years, a welding line copying device as shown in FIG. 9, for example, has been developed to automate welding work. This welding line copying device fixes a camera 2 with a slit light source (not shown) on the lower right side of a main body 1, and irradiates a welding line 5 of a workpiece 4 with semiconductor laser light 3 from the slit light source. The reflected light is received by the light receiving surface of the camera 2 and visualized. A welding torch 6 is provided on the left side of the main body 1 so as to be movable in the direction of arrow B (Y-axis direction in the X-Y coordinates) by a drive means 7.

この場合、溶接作業時には、本体1は矢印A方向(X軸
方向)へ直線移動される。この際、カメラ2の撮影画面
2a(第10図参照)には、スリット光源に照らされた
被溶接物4a(斜線部分)と溶接線5の開先幅Wとが写
し出され、その画像信号が制御装置8(第9図参照)に
入力される。
In this case, during welding work, the main body 1 is linearly moved in the direction of arrow A (X-axis direction). At this time, the photographic screen 2a of the camera 2 (see FIG. 10) shows the workpiece 4a (hatched area) illuminated by the slit light source and the groove width W of the weld line 5, and the image signal is It is input to the control device 8 (see FIG. 9).

そして、この制御装置8により、溶接線5の開先中心C
(第10図参照)を演算して求め、カメラ基準K(撮影
画面2aの中心線)に対する開先中心Cのずれfidを
求める。このようにしてずれ量dを求めた時点からtd
秒(後述する(1)式参照)遅れて溶接トーチ6を上記
ずれ量d分だけ矢印B方向(Y軸方向)に移動させて位
置を修正するものであり、以上述べた動作を繰返すこと
によって溶接トーチ6を溶接線5上を倣わせるようにな
っている。尚、遅延時間tdは、 td −D/υ  ・・・・・・(1)ここで、Dは検
出点(カメラ2の位置)と溶接点(溶接トーチ6の位置
)との距離、υは溶接速度(本体1の移動速度)であり
、溶接点が検出点に対しtd秒だけ遅れていることを意
味する。
Then, the control device 8 controls the groove center C of the weld line 5.
(see FIG. 10) to find the deviation fid of the groove center C with respect to the camera reference K (the center line of the photographic screen 2a). From the time when the deviation amount d is obtained in this way, td
The position is corrected by moving the welding torch 6 in the direction of arrow B (Y-axis direction) by the amount of deviation d described above after a delay of seconds (see equation (1) described later), and by repeating the above-mentioned operation. The welding torch 6 is made to trace the welding line 5. The delay time td is td - D/υ (1) where D is the distance between the detection point (position of camera 2) and the welding point (position of welding torch 6), and υ is This is the welding speed (moving speed of the main body 1), and means that the welding point is delayed by td seconds with respect to the detection point.

(発明が解決しようとする課題) 上記従来構成では、カメラ2が本体1に固定されていて
、カメラ2がX軸方向に直線移動する゛だけであるから
、溶接線5の曲り具合が大きくなると、その溶接線5が
カメラ2の視野からはみ出してしまい、追従不能となっ
てしまう。そこで、溶接線5の曲り具合に対する追従性
を改善する方法として、従来より、カメラ2の視野を広
くし、それに応じて溶接トーチ6の移動ストロークも大
きくする方法が採用されている。
(Problems to be Solved by the Invention) In the conventional configuration described above, the camera 2 is fixed to the main body 1, and the camera 2 only moves linearly in the X-axis direction. , the weld line 5 protrudes from the field of view of the camera 2, making it impossible to follow it. Therefore, as a method for improving the ability to follow the bending of the welding line 5, a method has been adopted in the past in which the field of view of the camera 2 is widened and the movement stroke of the welding torch 6 is also increased accordingly.

しかしながら、カメラ2の視野を広くすると検出精度が
低下してしまう。これは、映像信号の分解能R(水平走
査線1本当りの被写体の寸法)が次の(2)式に示すよ
うにX軸方向の視野V[mm]に比例することによる。
However, when the field of view of the camera 2 is widened, the detection accuracy decreases. This is because the resolution R of the video signal (the size of the object per horizontal scanning line) is proportional to the field of view V [mm] in the X-axis direction, as shown in the following equation (2).

ここで、mはX軸方向の視野Vに対する受光面の倍率で
ある。この(2)式の分解能Rは、1/2インチサイズ
のCCDカメラ(受光面サイズが4 、8 ++n X
 6 、4 +u 、水平走査線の有効本数が1フィー
ルド当り約242本)の場合であり、倍率はm−4,8
/Vとなる。
Here, m is the magnification of the light receiving surface with respect to the field of view V in the X-axis direction. The resolution R in equation (2) is calculated using a 1/2-inch CCD camera (with a light-receiving surface size of 4, 8 ++n
6,4 +u, the effective number of horizontal scanning lines is approximately 242 per field), and the magnification is m-4,8
/V.

このように、カメラ2の視野を広くすると、検出精度(
分解能R)が悪くなってしまうため、溶接トーチ6の移
動ストロークを大き(しても、溶接トーチ6の倣い動作
の精度が低下して、溶接品質が不均質になってしまう。
In this way, by widening the field of view of camera 2, the detection accuracy (
Since the resolution R) deteriorates, even if the movement stroke of the welding torch 6 is increased (even if the movement stroke of the welding torch 6 is increased), the accuracy of the tracing operation of the welding torch 6 decreases, resulting in non-uniform welding quality.

従って、溶接品質確保上、カメラ2の視野の拡大にも限
界があり、それ故に、溶接線5の曲り具合に対する追従
性を高める新たな技術の開発が切望されていた。
Therefore, in order to ensure welding quality, there is a limit to the expansion of the field of view of the camera 2, and therefore, there has been a strong desire to develop a new technique that improves the ability to follow the bending of the welding line 5.

本発明は、このような事情を考慮してなされたもので、
従ってその目的は、溶接線の曲り具合に対する追従性を
高めることができて、その曲り具合が比較的大きなもの
に対しても溶接の均質化を図り得る溶接線倣い方法とそ
の装置を提供するにある。
The present invention was made in consideration of such circumstances, and
Therefore, the purpose is to provide a welding line tracing method and device that can improve the followability of the welding line to the degree of bending and can achieve uniform welding even when the degree of bending is relatively large. be.

[発明の構成] (課題を解決するための手段) 本発明の溶接線倣い方法は、溶接トーチを溶接線上を倣
わせるために、その溶接線に沿ってカメラを移動させて
溶接線の曲り具合をモニターしながら溶接トーチの位置
を溶接線の曲り具合に応じて補正する方法であって、カ
メラの撮影画面上の溶接線の位置の経時的変化を検出し
て以後の溶接線の曲り具合を予測した上で、その予測結
果に基いてカメラの位置をその視野の中央部に溶接線を
収めるように補正し、そのカメラ位置の補正量とカメラ
の撮影画面上の溶接線の位置とに基いて溶接トーチの位
置を補正するようにしたものである。
[Structure of the Invention] (Means for Solving the Problems) The welding line tracing method of the present invention moves a camera along the welding line to trace the welding line with a welding torch, and detects the curve of the welding line. This method corrects the position of the welding torch according to the degree of curvature of the welding line while monitoring the condition, and detects changes over time in the position of the welding line on the camera's photographic screen to determine the degree of subsequent curvature of the welding line. After predicting, based on the prediction result, the camera position is corrected so that the welding line is placed in the center of the field of view, and the correction amount of the camera position and the position of the welding line on the camera's shooting screen are adjusted. Based on this, the position of the welding torch is corrected.

そして、このような溶接線倣い方法を実行するために、
本発明の溶接線倣い装置は、溶接トーチと、この溶接ト
ーチと共に溶接線に沿って移動されて溶接線の曲り具合
をモニターするカメラと、このカメラの撮影画面上の溶
接線の位置の経時的変化を検出する検出手段と、この検
出手段の検出結果に基いて以後の溶接線の曲り具合を予
測する予測手段と、この予測手段の予測結果に基いてカ
メラの位置をその視野の中央部に溶接線を収めるように
補正するカメラ位置補正手段と、このカメラ位置補正手
段によるカメラ位置の補正量とカメラの撮影画面上の溶
接線の位置とに基いて溶接トーチの位置を補正する溶接
トーチ位置補正手段とを具備して成るものである。
In order to carry out this weld line tracing method,
The welding line copying device of the present invention includes a welding torch, a camera that is moved along the welding line together with the welding torch to monitor the degree of curvature of the welding line, and a camera that monitors the position of the welding line over time on a photographic screen of the camera. a detection means for detecting the change; a prediction means for predicting the degree of bending of the weld line thereafter based on the detection result of the detection means; and a prediction means for predicting the degree of bending of the weld line thereafter based on the detection result of the prediction means; A camera position correction means for correcting the welding line so as to fit the welding line; and a welding torch position for correcting the position of the welding torch based on the amount of correction of the camera position by the camera position correction means and the position of the welding line on the photographic screen of the camera. The correction means is also provided.

(作用) 本発明の溶接線倣い方法によれば、カメラの撮影画面上
の溶接線の位置の経時的変化を検出して以後の溶接線の
曲り具合を予測するため、その子AP1結果に基いてカ
メラの位置を補正することによって、溶接線の曲り具合
が大きくてもカメラの視野内に溶接線を確実に収めるこ
とができる。そして、カメラ位置の補正量とカメラの撮
影画面上の溶接線の位置とに基いて溶接トーチの位置を
補正することによって、溶接線の曲り具合が大きくても
それに溶接トーチを高精′度で追従させることができる
(Function) According to the welding line tracing method of the present invention, in order to detect the temporal change in the position of the welding line on the photographic screen of the camera and predict the degree of bending of the welding line thereafter, based on the result of its child AP1, By correcting the position of the camera, the weld line can be reliably placed within the field of view of the camera even if the weld line is highly curved. By correcting the position of the welding torch based on the correction amount of the camera position and the position of the welding line on the camera's shooting screen, the welding torch can be adjusted with high precision even if the welding line is highly curved. It can be followed.

また、本発明の溶接線倣い装置によれば、カメラの撮影
画面上の溶接線の位置の経時的変化を検出手段により検
出し、その検出結果に基いて以後の溶接線の曲り具合を
予71−1手段により予測した上で、その予測結果に基
いてカメラの位置をカメラ位置補正手段により補正し、
そのカメラ位置の補正量とカメラの撮影画面上の溶接線
の位置とに基いて溶接トーチの位置を溶接トーチ位置補
正手段により補正する。
Further, according to the welding line copying device of the present invention, the detection means detects a change over time in the position of the welding line on the photographic screen of the camera, and based on the detection result, the degree of bending of the welding line thereafter can be predicted. -1 means to predict, and based on the prediction result, correct the camera position by camera position correction means;
The position of the welding torch is corrected by the welding torch position correction means based on the correction amount of the camera position and the position of the welding line on the photographic screen of the camera.

(実施例) 以下、本発明の第1実施例を第1図乃至第4図に基いて
説明する。11は溶接線倣い装置の本体で、溶接時には
駆動装置(図示せず)によって矢印A方向(X軸方向)
に直線移動されるようになっている。この本体11の右
側下面部には、スリット光源(図示せず)付きの力、メ
ラ12が矢印B方向(Y軸方向)に移動可能に設けられ
、そのスリット光源から半導体レーザ光13を被溶接物
14の溶接線15に照射し、その反射光をカメラ12の
受光面で受けて映像化する。16はカメラ12の位置を
矢印B方向に補正するカメラ位置補正手段で、これの動
作は制御装置17によって自動的に制御される。この制
御装置17は、第2図に示すようにカメラ12からの画
像信号を二値化する画像処理回路17a、後述する検出
手段及び予測手段として機能する演算処理回路17b、
各種データを記憶するRAM17cとから構成され、画
像処理回路17aの出力によってモニター18の画面に
映像が写し出される。一方、第1図において、19は例
えばCO2レーザ光を熱源とする溶接トーチで、本体1
1の左側下面部に矢印B方向(Y軸方向)に移動可能に
設けられ、その位置が溶接トーチ位置補正手段20によ
って補正される。この溶接トーチ位置補正手段2oの動
作は制御装置17によって自動的に制御される。
(Example) Hereinafter, a first example of the present invention will be described based on FIGS. 1 to 4. 11 is the main body of the welding line copying device, which is moved in the direction of arrow A (X-axis direction) by a drive device (not shown) during welding.
It is designed to be moved in a straight line. On the lower right side of the main body 11, there is provided a slit light source (not shown) movable in the direction of arrow B (Y-axis direction). The welding line 15 of the object 14 is irradiated, and the reflected light is received by the light receiving surface of the camera 12 and visualized. A camera position correction means 16 corrects the position of the camera 12 in the direction of arrow B, and its operation is automatically controlled by a control device 17. As shown in FIG. 2, this control device 17 includes an image processing circuit 17a that binarizes the image signal from the camera 12, an arithmetic processing circuit 17b that functions as a detection means and a prediction means to be described later,
It is composed of a RAM 17c that stores various data, and images are displayed on the screen of the monitor 18 based on the output of the image processing circuit 17a. On the other hand, in FIG. 1, 19 is a welding torch that uses CO2 laser light as a heat source, and the main body 1
The welding torch position is corrected by the welding torch position correction means 20. The operation of this welding torch position correction means 2o is automatically controlled by a control device 17.

この場合、制御装置17は、第4図のフローチャートに
示す制御プログラムに従って次のように運転を制御する
。まず、本体11をX軸方向(溶接線15に沿う方向)
に直線′移動する(ステップPI)。これにより、本体
11(カメラ12)が距離り移動する毎に、カメラ12
がらの画像信号を処理して、第3図に示す如く、カメラ
12の撮影画面12a上のカメラ基準K(中心線)と溶
接線15の開先中心Cとのずれfadを求め(尚、第3
図は、カメラ1.2が距離り移動する毎に、撮影画面1
2aの位置とその中央に写し出された被溶接物14の画
像14a、開先中心C及びずれff1dの関係を示した
もので、図中12a、14a、C。
In this case, the control device 17 controls the operation as follows according to the control program shown in the flowchart of FIG. First, move the main body 11 in the X-axis direction (direction along the welding line 15).
(step PI). As a result, each time the main body 11 (camera 12) moves a distance, the camera 12
As shown in FIG. 3, by processing the image signal of 3
The figure shows that each time the camera 1.2 moves a distance, the shooting screen 1
2a, the image 14a of the workpiece 14 projected at the center, the groove center C, and the deviation ff1d.

dに付された添字は小さい方が先のデータを示している
)、そのずれJndをデータとしてRAMl7cに記憶
する(ステップP2)。このようにしてずれEndを一
定間隔で繰返し検出することによって、制御装置17が
、カメラ12の撮影画面12a上の溶接線15の位置の
経時的変化を検出する検出手段としての機能を果す。そ
して、ずれ量dを3回検出した時点で、前3回のデータ
d1゜d2+d3に基いて以後の溶接線15の進行方向
E即ち曲り具合を予測する(ステップP3)。この予測
の方法は、例えば次の2通りの方法が考えられる。
(The smaller the subscript attached to d indicates the earlier data), the deviation Jnd is stored as data in the RAM 17c (step P2). By repeatedly detecting the deviation End at regular intervals in this manner, the control device 17 functions as a detection means for detecting changes over time in the position of the welding line 15 on the photographic screen 12a of the camera 12. Then, when the amount of deviation d has been detected three times, the direction of movement E of the weld line 15, that is, the degree of bending, is predicted based on the data d1°d2+d3 of the previous three times (step P3). For example, the following two methods can be considered for this prediction method.

■d1 (1回目のデータ)とd3 (2回目のデータ
)とを直線で結ぶ矢印として求める。この場合、d2 
(2回目のデータ)は原則として無視し、d3がカメラ
12の視野から外れて検出不能になったときにd2を用
い、dlとd2とを直線で結ぶ。
■ Obtain as an arrow connecting d1 (first data) and d3 (second data) with a straight line. In this case, d2
(second data) is ignored in principle, and d2 is used when d3 is out of the field of view of the camera 12 and cannot be detected, and dl and d2 are connected with a straight line.

■d1を始点としてd2とd3との中間を通る直線の矢
印として求める(データの平均をとる)。
(2) Obtain a straight arrow starting from d1 and passing through the middle of d2 and d3 (average the data).

以上のようにして、制御装置17が、溶接線15の曲り
具合(進行方向E)を予測する予11−1手段として機
能する。予測後、カメラ位置補正手段16を駆動して、
カメラ12を溶接線15の進行方向Eの延長線上までY
軸方向に移動し、それによって第3図に点線で示すよう
にカメラ12の位置をその視野(撮影画面12a)の中
央部に溶接線15を収めるように補正すると共に、その
補正後のカメラ12の位置Fを絶対座標で記憶する(ス
テップP4)。次いで、溶接トーチ位置補正手段20を
駆動して溶接トーチ19をtd秒前のカメラ12の位置
Fにおける開先中心CまでY軸方向に移動し、それによ
って溶接トーチ19の位置を溶接線15上に補正する(
ステップP5)。尚、tdは前述した(1)式で定義さ
れる遅延時間である。以上述べた動作を溶接作業の完了
まで繰返すことによって(ステップP6)、溶接トーチ
19を溶接線15上を正確に倣わせて溶接するものであ
る。
As described above, the control device 17 functions as a preliminary 11-1 means for predicting the degree of bending of the weld line 15 (progressing direction E). After the prediction, drive the camera position correction means 16,
Move the camera 12 to the extension line of the welding line 15 in the direction of travel E.
The camera 12 is moved in the axial direction, thereby correcting the position of the camera 12 so that the welding line 15 is placed in the center of its field of view (photographing screen 12a) as shown by the dotted line in FIG. The position F is stored in absolute coordinates (step P4). Next, the welding torch position correction means 20 is driven to move the welding torch 19 in the Y-axis direction to the groove center C at the position F of the camera 12 td seconds ago, thereby changing the position of the welding torch 19 onto the welding line 15. Correct to (
Step P5). Note that td is the delay time defined by the above-mentioned equation (1). By repeating the above-mentioned operations until the welding work is completed (step P6), welding is performed while the welding torch 19 accurately follows the welding line 15.

このような第1実施例によれば、カメラ12の撮影画面
12a上の溶接線15の位置の経時的変化を検出して以
後の溶接線15の曲り具合(進行方向E)を予測し、そ
の予測結果に基いてカメラ12の位置を補正するように
しているので、溶接線15の曲り具合が大きくてもカメ
ラ12の視野内に溶接線15を確実に収めることができ
ると共に、カメラ12の視野を大きくする必要が無く、
カメラ12の検出精度(分解能R,)を低下させずに済
み、溶接線15の曲り具合の大小に拘らずその溶接線1
5の位置を高精度で検出できる。そして、このような溶
接線15の高精度位置検出を基にして溶接トーチ19の
位置を補正するものであるから、溶接線15の曲り具合
が大きくてもそれに溶接トーチ19を高精度で追従させ
ることができて、溶接線15の曲り具合に対する追従性
を大幅に高めることができ、その曲り具合が比較的大き
なものに対しても溶接の均質化を図り得る。
According to the first embodiment, the change over time of the position of the weld line 15 on the photographic screen 12a of the camera 12 is detected, the degree of bending of the weld line 15 (progressing direction E) thereafter is predicted, and the Since the position of the camera 12 is corrected based on the prediction result, even if the weld line 15 is highly curved, the weld line 15 can be reliably placed within the field of view of the camera 12, and the field of view of the camera 12 can be There is no need to increase
There is no need to reduce the detection accuracy (resolution R,) of the camera 12, and regardless of the degree of bending of the weld line 15, the weld line 1
5 position can be detected with high accuracy. Since the position of the welding torch 19 is corrected based on such highly accurate position detection of the welding line 15, the welding torch 19 can be made to follow the welding line 15 with high precision even if the welding line 15 is highly curved. As a result, it is possible to greatly improve the ability to follow the bending of the welding line 15, and it is possible to achieve uniform welding even when the bending of the weld line 15 is relatively large.

ところで、上記第1実施例では、カメラ12の移動方向
が1次元(Y軸方向のみ)であったが、本発明はこれに
限定されず、例えば第5図乃至第8図に示す本発明の第
2実施例のように、カメラ12を2次元的に動かして溶
接線15を捕えるようにしても良い。即ち、この第2実
施例におけるカメラ12は、Y軸方向(矢印B方向)へ
の移動に加え、矢印G方向に水平回動可能となっていて
、その回動動作が新たに設けたカメラ位置補正手段21
によって実行される。このように回動動作を加える趣旨
は、第7図に示すように、溶接線15の進行方向E(曲
り具合)の角度αが大きくなると、溶接線15の開先幅
Wが大きくなり過ぎて、画像処理や溶接トーチ19の制
御が難しくなるからである。
Incidentally, in the first embodiment, the moving direction of the camera 12 is one-dimensional (Y-axis direction only), but the present invention is not limited to this. For example, the present invention shown in FIGS. 5 to 8 As in the second embodiment, the welding line 15 may be captured by moving the camera 12 two-dimensionally. That is, the camera 12 in this second embodiment is capable of horizontal rotation in the direction of arrow G in addition to movement in the Y-axis direction (direction of arrow B), and the rotational movement moves the camera to a newly established camera position. Correction means 21
executed by The purpose of adding the rotational motion in this way is that, as shown in FIG. 7, when the angle α of the advancing direction E (curvature) of the weld line 15 becomes large, the groove width W of the weld line 15 becomes too large. This is because image processing and control of the welding torch 19 become difficult.

斯かる第2実施例においては、制御装置17が、第8図
のフローチャートに示す制御プログラムに従って次のよ
うに運転を制御する。まず、本体11をX軸方向(溶接
線15に沿う方向)に直線移動する(ステップPi)。
In the second embodiment, the control device 17 controls the operation as follows according to the control program shown in the flowchart of FIG. First, the main body 11 is linearly moved in the X-axis direction (direction along the welding line 15) (step Pi).

これにより、本体゛11が距離り移動する毎に、第1実
施例と同様に、カメラ基準にと溶接線15の開先中心C
とのずれ量dを求め、そのずれ量dをデータとして記憶
する(ステップP2)。そして、ずれmdを3回検出し
た時点で、第1実施例と同様の方法で、以後の溶接線1
5の進行方向E即ち曲り具合を予ΔIIIする(ステッ
プP3)。次いで、溶接線15の進行方向Eとカメラ基
準にとのなす角度αを演算する(ステップP4)。そし
て、カメラ12を溶接線15の進行方向Eの延長線上ま
でY軸方向に移動して、カメラ12のY軸方向位置を補
正すると共に、回動動作用のカメラ位置補正手段21を
駆動してカメラ12を上述の角度αだけ回動させ、その
補正後のカメラ12の位置Fを絶対座標で記憶する(ス
テップP5)。この場合、カメラ12の回動動作に伴っ
て、カメラ基準にも角度αだけ回動されてに1が新たな
カメラ基準となり、このカメラ基準に1に対し溶接線1
5が平行となって開先幅W1が小さくなるので、画像処
理や溶接トーチ19の制御が容易になる。尚、回動前の
開先幅Wと回動後の開先幅Wlとの間には次の(3)式
の関係が成り立つ。
As a result, each time the main body 11 moves a distance, the groove center C of the welding line 15 is adjusted based on the camera reference, similarly to the first embodiment.
The amount of deviation d between the two is calculated and the amount of deviation d is stored as data (step P2). Then, when the deviation md has been detected three times, the welding line 1
5, that is, the degree of bending is predicted (step P3). Next, the angle α between the traveling direction E of the welding line 15 and the camera reference is calculated (step P4). Then, the camera 12 is moved in the Y-axis direction to the extension line of the traveling direction E of the welding line 15 to correct the position of the camera 12 in the Y-axis direction, and the camera position correction means 21 for rotational operation is driven. The camera 12 is rotated by the above angle α, and the corrected position F of the camera 12 is stored in absolute coordinates (step P5). In this case, as the camera 12 rotates, the camera reference is also rotated by the angle α, and 1 becomes the new camera reference, and the welding line 1
5 become parallel and the groove width W1 becomes smaller, making image processing and control of the welding torch 19 easier. Incidentally, the relationship expressed by the following equation (3) holds between the groove width W before rotation and the groove width Wl after rotation.

W−W、/CO8α  ・・・・・・(3)(−2/π
くαく2/π) 但し、この(3)式が成り立つには、■被溶接物14の
画像14aがカメラ12の回転中心O上に位置するよう
に光学系が調整されていること、■視野の垂直/水平方
向の倍率が同じであること、の2条件を必要とする。
W−W, /CO8α ・・・・・・(3)(−2/π
(α + 2/π) However, in order for this formula (3) to hold true, the optical system must be adjusted so that the image 14a of the workpiece 14 is located on the rotation center O of the camera 12; Two conditions are required: the vertical/horizontal magnification of the field of view must be the same.

そして、ステップP6において、溶接トーチ19をtd
秒前のカメラ12の位置Fにおける開先中心CまでY軸
方向に移動して溶接トーチ19の位置を補正する。この
際回動後のカメラ基準Kl上の開先中心C1のデータを
、上記(3)式により当初のカメラ基*K (絶対座標
のX軸に相当)上のデータに変換することで、カメラ基
準に上の座標(絶対座標)にて制御する溶接トーチ19
の位置補正をI′EIifに行うことができる。
Then, in step P6, the welding torch 19 is
The position of the welding torch 19 is corrected by moving in the Y-axis direction to the groove center C at the position F of the camera 12 seconds ago. At this time, by converting the data of the groove center C1 on the camera reference Kl after rotation into the data on the original camera base *K (corresponding to the X axis of absolute coordinates) using the above equation (3), the camera Welding torch 19 controlled using coordinates above the reference (absolute coordinates)
A positional correction can be made to I'EIif.

この溶接トーチ19の位置補正後、溶接作業完了か否か
が判断され(ステップP7)、完了していない場合には
、本体11を溶接線15の進行方向E (X、軸方向)
へ移動させ(ステップP8)、以後、前述したステップ
P2以下の動作を溶接作業の完了まで繰返すことによっ
て、溶接トーチ19を溶接線15上を正確に倣わせて溶
接するものである。尚、第7図において、X−Y座標は
絶対座標で、Xl−Y1座標はカメラ12を角度α修正
した後の新たな座標で、角度α修正後には、溶接方向(
本体11の移動方向)がXl軸方向となり、カメラ12
の移動方向がY、軸方向となる。
After correcting the position of the welding torch 19, it is determined whether or not the welding work is completed (step P7). If the welding work is not completed, the main body 11 is moved in the traveling direction E (X, axial direction) of the welding line 15.
(step P8), and thereafter repeating the operations from step P2 described above until the welding work is completed, so that the welding torch 19 accurately follows the welding line 15 and welds. In FIG. 7, the X-Y coordinates are absolute coordinates, and the Xl-Y1 coordinates are new coordinates after correcting the angle α of the camera 12. After correcting the angle α, the welding direction (
The moving direction of the main body 11) is the Xl axis direction, and the camera 12
The direction of movement is Y, which is the axial direction.

斯かる第2実施例においては、カメラ12を2次元的に
動かすから、溶接線15の曲り具合に対する追従性を一
層高めることができる。
In the second embodiment, since the camera 12 is moved two-dimensionally, the ability to follow the curve of the welding line 15 can be further improved.

尚、上記各実施例では、カメラ基準と開先中心とのずれ
量を3回検出する毎に、以後の溶接線15の曲り具合(
進行方向E)を予n1するようにしたが、ずれ量を2回
或は4回以上検出する毎に曲り具合を予測するようにし
ても良い。
In each of the above embodiments, the degree of bending of the welding line 15 (
Although the traveling direction E) is predicted n1 in advance, the degree of bending may be predicted every time the amount of deviation is detected twice or four times or more.

[発明の効果] 以上の説明から明らかなように、本発明の溶接線倣い方
法とその装置によれば、カメラの撮影画面上の溶接線の
位置の経時的変化を検出して以後の溶接線の曲り具合を
予測し、その予測結果に基いてカメラの位置を補正する
ようにしているので、溶接線の曲り具合が大きくてもカ
メラの視野内に溶接線を確実に収めることができると共
に、カメラの視野を検出精度(分解能)を落してまで大
きくする必要が無く、溶接線の曲り具合の大小に拘らず
その溶接線の位置を高精度で検出できる。
[Effects of the Invention] As is clear from the above description, according to the welding line tracing method and its device of the present invention, changes over time in the position of the welding line on the photographic screen of the camera are detected and subsequent welding lines are Since the degree of curvature of the weld line is predicted and the position of the camera is corrected based on the predicted result, it is possible to reliably keep the weld line within the field of view of the camera even if the degree of curvature of the weld line is large. There is no need to increase the field of view of the camera at the cost of reducing detection accuracy (resolution), and the position of the weld line can be detected with high precision regardless of the degree of curvature of the weld line.

そして、このような溶接線の高精度位置検出を基にして
溶接トーチの位置を補正するものであるから、溶接線の
曲り具合が大きくてもそれに溶接トーチを高精度で追従
させることができて、その曲り具合が比較的大きなもの
に対しても溶接の均質化を図り得る。
Since the position of the welding torch is corrected based on such highly accurate position detection of the welding line, the welding torch can be made to follow the welding line with high precision even if the welding line is highly curved. , it is possible to achieve uniform welding even when the degree of bending is relatively large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は本発明の第1実施例を示したもので
、第1図は全体の斜視図、第2図は電気的構成を示すブ
ロック図、第3図は画像処理の概念図、第4図は制御プ
ログラムのフローチャートである。そして、第5図乃至
第8図は本発明の第2実施例を示したもので、第5図は
第1図相当図、第6図は第2図相当図、第7図は第3図
相当図、第8図は第4図相当図である。そして、第9図
及び第10図は従来例を示したもので、第9図は第1図
相当図、第10図は第3図相当図である。 図面中、11は本体、12はカメラ、14は被溶接物、
15は溶接線、16はカメラ位置補正手段、17は制御
装置(検出手段、予測手段)、19は溶接トーチ、20
は溶接トーチ位置補正手段、21はカメラ位置補正手段
である。 第 4 図 第5図 第 6 図
1 to 4 show a first embodiment of the present invention, in which FIG. 1 is an overall perspective view, FIG. 2 is a block diagram showing the electrical configuration, and FIG. 3 is a concept of image processing. FIG. 4 is a flowchart of the control program. 5 to 8 show a second embodiment of the present invention. FIG. 5 is a diagram equivalent to FIG. 1, FIG. 6 is a diagram equivalent to FIG. 2, and FIG. 7 is a diagram equivalent to FIG. 3. Equivalent diagram, FIG. 8 is a diagram equivalent to FIG. 4. 9 and 10 show conventional examples, with FIG. 9 being a diagram corresponding to FIG. 1, and FIG. 10 being a diagram corresponding to FIG. 3. In the drawing, 11 is the main body, 12 is the camera, 14 is the object to be welded,
15 is a welding line, 16 is a camera position correction means, 17 is a control device (detection means, prediction means), 19 is a welding torch, 20
21 is a welding torch position correction means, and 21 is a camera position correction means. Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、溶接トーチを溶接線上を倣わせるために、その溶接
線に沿ってカメラを移動させて溶接線の曲り具合をモニ
ターしながら前記溶接トーチの位置を溶接線の曲り具合
に応じて補正する方法であって、前記カメラの撮影画面
上の溶接線の位置の経時的変化を検出して以後の溶接線
の曲り具合を予測した上で、その予測結果に基いて前記
カメラの位置をその視野の中央部に溶接線を収めるよう
に補正し、そのカメラ位置の補正量と前記カメラの撮影
画面上の溶接線の位置とに基いて前記溶接トーチの位置
を補正するようにしたことを特徴とする溶接線倣い方法
。 2、溶接トーチと、この溶接トーチと共に溶接線に沿っ
て移動されその溶接線の曲り具合をモニターするカメラ
と、このカメラの撮影画面上の溶接線の位置の経時的変
化を検出する検出手段と、この検出手段の検出結果に基
いて以後の溶接線の曲り具合を予測する予測手段と、こ
の予測手段の予測結果に基いて前記カメラの位置をその
視野の中央部に溶接線を収めるように補正するカメラ位
置補正手段と、このカメラ位置補正手段によるカメラ位
置の補正量とカメラの撮影画面上の溶接線の位置とに基
いて前記溶接トーチの位置を補正する溶接トーチ位置補
正手段とを具備して成る溶接線倣い装置。
[Claims] 1. In order to trace the welding line with the welding torch, the camera is moved along the welding line and the position of the welding torch is adjusted according to the curvature of the welding line while monitoring the degree of curvature of the welding line. This is a method of correcting according to the situation, which detects changes over time in the position of the weld line on the photographic screen of the camera, predicts the degree of curvature of the weld line after that, and then performs the correction according to the prediction result. The position of the camera is corrected so that the welding line is placed in the center of its field of view, and the position of the welding torch is corrected based on the amount of correction of the camera position and the position of the welding line on the photographic screen of the camera. A welding line copying method characterized by: 2. A welding torch, a camera that moves along the welding line with the welding torch and monitors the degree of curvature of the welding line, and a detection means that detects changes over time in the position of the welding line on the camera's photographic screen. a prediction means for predicting the degree of subsequent bending of the weld line based on the detection result of the detection means; and a prediction means for predicting the degree of bending of the weld line thereafter based on the detection result of the detection means, and a position of the camera so as to fit the weld line in the center of the field of view based on the prediction result of the prediction means. A camera position correction means for correcting the welding torch, and a welding torch position correction means for correcting the position of the welding torch based on the amount of camera position correction by the camera position correction means and the position of the welding line on the photographic screen of the camera. A welding line copying device.
JP63225774A 1988-09-08 1988-09-08 Method and device for profiling weld line Pending JPH0275492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63225774A JPH0275492A (en) 1988-09-08 1988-09-08 Method and device for profiling weld line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63225774A JPH0275492A (en) 1988-09-08 1988-09-08 Method and device for profiling weld line

Publications (1)

Publication Number Publication Date
JPH0275492A true JPH0275492A (en) 1990-03-15

Family

ID=16834583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63225774A Pending JPH0275492A (en) 1988-09-08 1988-09-08 Method and device for profiling weld line

Country Status (1)

Country Link
JP (1) JPH0275492A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100409183B1 (en) * 2001-10-19 2003-12-12 헤스본주식회사 a hydraulic circuit for a double-scissors type car lift

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100409183B1 (en) * 2001-10-19 2003-12-12 헤스본주식회사 a hydraulic circuit for a double-scissors type car lift

Similar Documents

Publication Publication Date Title
EP1486283B1 (en) Method of controlling the welding of a three-dimensional construction by taking a two-dimensional image of the construction and adjusting in real time in the third dimension
JP2002192373A (en) Laser beam welding method and laser beam welding device
JPH0275492A (en) Method and device for profiling weld line
KR19990018849A (en) Welding robot control method and device using laser vision sensor
KR100568627B1 (en) Welding method and apparatus thereof for welding welded body formed with corrugation
JPH09248687A (en) Laser beam machining robot
JPH0833979A (en) Multilayer build-up automatic welding method
JPH05138354A (en) Automatic welding profiling device
JP2887656B2 (en) Laser processing equipment
JP3203507B2 (en) Laser processing equipment
JPH11147187A (en) Method and device for yag laser machining
JPS6325871B2 (en)
JPH08197248A (en) Tracking control method for multi-layer welding
JPH0394979A (en) Welding position detector
JP7349542B1 (en) Welding robot system, welding method and program
JP2004216440A (en) Laser beam machine
KR20020090636A (en) Pipe Fitting's Welding Method Using Laser Vision Sensor and the Apparatus thereof
JPH1076366A (en) Welding position detecting device and its method
JPS63157779A (en) Laser beam machine equipped with optical type distance sensor
JPH07117372B2 (en) Welding line detector
US20220237768A1 (en) System and method of welding workpiece by vision guided welding platform
JPH03118975A (en) Welding equipment
JP2003033874A (en) Automatic-welding-profiling controller
JPS58157588A (en) Detection of change in position of weld line
JP2001129669A (en) Plasma welding device