JPH0275406A - Method for controlling mill pacing - Google Patents
Method for controlling mill pacingInfo
- Publication number
- JPH0275406A JPH0275406A JP63224721A JP22472188A JPH0275406A JP H0275406 A JPH0275406 A JP H0275406A JP 63224721 A JP63224721 A JP 63224721A JP 22472188 A JP22472188 A JP 22472188A JP H0275406 A JPH0275406 A JP H0275406A
- Authority
- JP
- Japan
- Prior art keywords
- time
- cooling bed
- cutting
- bed
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 12
- 238000005520 cutting process Methods 0.000 claims abstract description 105
- 238000001816 cooling Methods 0.000 claims abstract description 86
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 37
- 239000010959 steel Substances 0.000 claims abstract description 37
- 238000005096 rolling process Methods 0.000 claims abstract description 34
- 238000000605 extraction Methods 0.000 claims abstract description 28
- 238000010438 heat treatment Methods 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims description 62
- 230000007423 decrease Effects 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 description 6
- 238000005336 cracking Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/005—Control of time interval or spacing between workpieces
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Metal Rolling (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、その精整ラインに自然冷却の冷却床と冷間切
断機を有する圧延設備による条鋼圧延方法に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a long steel rolling method using a rolling equipment having a natural cooling cooling bed and a cold cutting machine in its finishing line.
[従来の技術]
通常、条鋼圧延設備においては、走間切断機を含む圧延
機列の後の精整ラインに、自然冷却の例えばレッヘン式
の冷却床と例えばダウンカット式の冷間切断機とを有す
る。[Prior Art] Normally, in long steel rolling equipment, a natural cooling cooling bed, such as a Lechen type cooling bed, and a down cut type cold cutting machine, for example, are installed in a finishing line after a row of rolling mills including a running cutting machine. has.
第3図は、自然冷却冷却床とダウンカット式冷開切断機
による冷間切断ラインのブロック図であって、1は加熱
炉、2は圧延機列、3は走間切断機、4はレッヘン式の
冷却床、5はダウンカット式の冷間切断機、6は抽出制
御装置、7は圧延機制御装置、8は走間切断機切断制御
装置、9は冷却床上のどの溝に圧延材があるかの情報を
保持出力するトラッキング装置、10は冷間切断機切断
制御装置である6
軸受鋼、合金鋼等温間切断(ウオームシャー)材と称さ
れる材料は、冷間切断機5での切断時、300℃以上の
温度を確保していなければならず、それ以下の温度で切
断を行うと、切断面に割れを発生し品質不良に至る。FIG. 3 is a block diagram of a cold cutting line using a naturally cooled cooling bed and a down-cut type cold opening cutting machine, in which 1 is a heating furnace, 2 is a rolling mill row, 3 is a running cutting machine, and 4 is a lechen cutting machine. 5 is a down-cut type cold cutting machine, 6 is an extraction control device, 7 is a rolling mill control device, 8 is a running cutting machine cutting control device, 9 is a groove on the cooling bed where the rolled material is placed. A tracking device 10 is a cold cutting machine cutting control device 6. Materials called isothermal cutting (worm shear) materials such as bearing steel and alloy steel are cut by the cold cutting machine 5. When cutting, a temperature of 300° C. or higher must be maintained; if cutting is performed at a temperature lower than that, cracks will occur on the cut surface, resulting in poor quality.
そのため従来は。Therefore, conventionally.
(1)冷間切断機5で一括切断可能な本数をビレット本
数に換算(通常ビレットは圧延後走間切断機3で数本に
分割され翫)シ、換算ビレット本数が抽出された段階で
抽出を中断する。(1) Convert the number of billets that can be cut at once with the cold cutting machine 5 into the number of billets (normally billets are divided into several pieces by the running cutter 3 after rolling), and extract the number of billets when the converted number of billets is extracted. interrupt.
(2)この抽出ビレット全数を走間切断機3で分割し、
その分割鋼材全数を冷却床4に取り込んだ後、温度降下
をできるだけ防ぐため冷却床4の早送りが実施される。(2) Divide the entire number of extracted billets using a running cutter 3,
After all of the divided steel materials are taken into the cooling bed 4, the cooling bed 4 is rapidly moved in order to prevent temperature drop as much as possible.
(3)取り込み鋼材が冷却床4を出た後または冷却床4
出側近くに到達した時オペレータが次切断群の鋼材の抽
出を開始する。(3) After the introduced steel leaves the cooling bed 4 or
When reaching near the exit side, the operator begins extracting steel for the next cutting group.
といった方法で対処している。This is how we deal with it.
[解決しようとする課題]
しかしながら、上述の操業方法には、幾つかの問題があ
る。すなわち。[Problems to be Solved] However, the above-mentioned operating method has several problems. Namely.
(1)冷間切断機5での切断可能最大本数を取り込んだ
場合、早送りを実施しても、切断群先頭材の切断時温度
が300℃を割り、端面割れに至る場合がある。(1) When the maximum number of pieces that can be cut by the cold cutter 5 is taken in, even if fast forwarding is carried out, the temperature at the time of cutting of the leading material of the cutting group may fall below 300°C, leading to end face cracking.
(2)次切断群の抽出タイミングが早すぎれば、先行切
断群切断途中に次切断群の鋼材が冷却床出側に到達し、
待ちが発生するため切断温度が300”Cを割り、端面
割れに至る場合がある。(2) If the extraction timing of the next cutting group is too early, the steel material of the next cutting group will reach the cooling bed exit side during the cutting of the preceding cutting group,
Because of the waiting time, the cutting temperature may drop below 300"C, leading to end face cracking.
(3)上記トラブルを回避するため、次切断群の抽出を
先行切断群が冷却床を出た後とすれば、次切断群との間
に圧延ロスタイムが発生し、生産性低下に至る場合があ
る。(3) In order to avoid the above trouble, if the next cutting group is extracted after the preceding cutting group has left the cooling bed, rolling loss time will occur between the preceding cutting group and the next cutting group, which may lead to a decrease in productivity. be.
種々の鋼材サイズ、圧延条件によりその冷却パターンと
最適抽出タイミングが異なるため、オペレータ判断では
上記のトラブルが回避しきれない。Since the cooling pattern and optimal extraction timing differ depending on the various steel material sizes and rolling conditions, the above-mentioned troubles cannot be avoided by the operator's judgment.
本発明は、上記の問題を解決しようとするもので、生産
性の低下を最小限としながら、温間切断材を割れの発生
なしに冷間切断できるミルページング制御方法を得るこ
とを目的とする。The present invention aims to solve the above-mentioned problems, and aims to provide a mill paging control method that can cold-cut warm-cut materials without cracking while minimizing the decrease in productivity. .
[課題を解決するための手段]
本発明のミルページング制御方法は、冷却床の取り込み
時から冷間切断目標温度まで鋼材が温度降下する間の時
間Tと、前記鋼材の加熱炉抽出から圧延材となって冷却
床入口に到達するまでの作業時間Fioと、前記冷却床
の取込み時間Aiと、同冷却床の溝数Etと、同冷却床
の1溝あたりの早送り時間すと、同冷却床出口から冷間
切断機までの搬送時間Ciと、同冷間切断機の切断時間
Diとから、後述(1)式が満足されることが確認され
た後に、同(2)式により次回抽出目安冷却床溝位置E
が演算され、前記冷却床上の(i−1)回目圧延材の後
尾位置が前記次回抽出目安冷却床溝位置Eとなった時点
で、j回目圧延用鋼材を耐記加熱炉より抽出することを
特徴としている。[Means for Solving the Problems] The mill paging control method of the present invention has the following advantages: the time T during which the temperature of the steel material falls from the time of intake into the cooling bed to the cold cutting target temperature, and the time T during which the temperature of the steel material falls from the heating furnace extraction to the rolled material. Then, the working time Fio until reaching the cooling bed inlet, the intake time Ai of the cooling bed, the number of grooves Et of the cooling bed, and the fast-forwarding time per groove of the cooling bed, the cooling bed After confirming that the equation (1) described below is satisfied from the transport time Ci from the outlet to the cold cutting machine and the cutting time Di of the cold cutting machine, the next extraction standard is determined by the equation (2). Cooling bed groove position E
is calculated, and when the trailing position of the (i-1)th rolled material on the cooling bed becomes the next extraction target cooling bed groove position E, the steel material for the jth rolling is extracted from the recordable heating furnace. It is a feature.
[作用]
複数の工程が直列につながっているとき、最も能力の小
さい工程(律速段階)をフル稼働させることが肝要とな
る。圧延切断ラインでは、冷間切断機が律速段階となる
ことが多い。[Operation] When multiple processes are connected in series, it is important to fully operate the process with the smallest capacity (rate-determining stage). In a rolling cut line, the cold cutter is often the rate-limiting step.
本発明は、冷間切断機がフル稼働するように、前段冷却
床に次回圧延材を取り込む時期を最適化しようとするも
ので、まず圧延材が冷却床入口に達してから冷間切断さ
れるまでの許容冷却時間Tを求め、それと冷却床を早送
りしたときの搬送時間との差の余裕時間があれば、冷間
切断完了前に次回圧延材の抽出圧延を行うようにし、冷
間切断中の圧延材末尾の冷却床上位置を目安として次回
鋼材の加熱炉抽出指令を行っている。The present invention attempts to optimize the next time when the rolled material is taken into the front cooling bed so that the cold cutting machine can operate at full capacity.The rolled material is first cold cut after reaching the cooling bed inlet. If there is a margin of time between that and the transport time when the cooling bed is moved rapidly, extraction rolling of the next rolled material will be performed before the cold cutting is completed, and during the cold cutting The next time the next steel material is extracted from the heating furnace, the position on the cooling bed at the end of the rolled material is used as a guide.
[実施例] 以下、本発明の一実施例を図面により詳細に説明する。[Example] Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.
なお、既述の符号は同一の部分を示しており説明を省略
する。Note that the reference numerals already mentioned indicate the same parts, and the explanation will be omitted.
第1図は、一実施例としてのミルページング制御方法に
よるミルページング制御装置のブロック図であって、1
1は冷却床に到着する圧延材の温度を計測し冷却時間演
算装置12に信号出力する放射温度計、12は図示しな
い人手入力による予想温度(12a)、切断目標温度(
12b)、鋼材寸法(12c)と、放射温度計11の信
号11aにより圧延材が冷却床入口到着時から300℃
まで放冷冷却されるまでの時間(許容冷却時間というこ
とがある)Tを推定演算する冷却時間演算装置。FIG. 1 is a block diagram of a mil paging control device according to a mil paging control method as an embodiment,
1 is a radiation thermometer that measures the temperature of the rolled material arriving at the cooling bed and outputs a signal to the cooling time calculation device 12; 12 is a predicted temperature (12a) input manually (not shown); a cutting target temperature (
12b) According to the steel material dimensions (12c) and the signal 11a of the radiation thermometer 11, the temperature of the rolled material is 300°C from the time it arrives at the cooling bed entrance.
A cooling time calculation device that estimates and calculates the time T (sometimes referred to as allowable cooling time) until the air is cooled down.
13は次回抽出タイミングを演算し加熱炉1の抽出制御
装置6に鋼材の抽出を指令するミルページング装置であ
る。13 is a mill paging device that calculates the next extraction timing and instructs the extraction control device 6 of the heating furnace 1 to extract steel material.
ここで、前記(1)、(2)式の算出経過を説明する。Here, the calculation process of the above formulas (1) and (2) will be explained.
関係する特性値とし寸、以下の変数を設定する。Set the related characteristic values and dimensions as well as the following variables.
T:冷却床4取り込み予想温度(抽出温度と圧延スケジ
ュールより予測)から冷間切断機5切断時の目標温度ま
でに温度降下する間の時間(許容冷却時間ということが
ある)。第2図に冷却床4取込み温度を1000℃とし
た場合の冷却曲線を示すが、それを折線近似したデータ
を記憶した冷却時間演算装置12に人手により上記取り
込み予想温度(12a)と切断目標温度(12b)と鋼
材サイズ(12c)を入力すれば、許容冷却時間が算出
される。さらに、冷却床4の圧延材取り込み箇所もしく
は冷間切断l’5人側のどちらか、または双方に温度計
測装置(放射温度計11)を設置すれば、その温度フィ
ードバックにより、許容冷却時間予測精度の向上が可能
となる。T: Time required for the temperature to drop from the expected intake temperature of the cooling bed 4 (predicted from the extraction temperature and rolling schedule) to the target temperature at the time of cutting in the cold cutting machine 5 (sometimes referred to as allowable cooling time). Fig. 2 shows a cooling curve when the intake temperature of the cooling bed 4 is set to 1000°C, and the above predicted intake temperature (12a) and the cutting target temperature are manually input into the cooling time calculation device 12 which stores data obtained by approximating the curve to a broken line. (12b) and the steel material size (12c), the allowable cooling time is calculated. Furthermore, if a temperature measuring device (radiation thermometer 11) is installed at either or both of the rolling material intake point of the cooling bed 4 or the cold cutting l'5 person side, the temperature feedback will improve the accuracy of predicting the allowable cooling time. It is possible to improve the
Ai:1切断群取込み時間。冷却床4が、到着した1群
の圧延材を床上に取込むのに要する時間である。更に詳
しく定義すると、
Ai=ai(取込み本数)×[1本あたり取込み時間]
+[抽出鋼材本数−11×[間ピッチ時間]
となる。Ai: 1 cutting group uptake time. This is the time required for the cooling bed 4 to take in a group of arriving rolled materials onto the bed. To define it in more detail, Ai = ai (number of images captured) x [time taken per image]
+ [Number of extracted steel materials - 11 x [interval pitch time].
Bi:1切断群早送り時間。冷却床4での冷却を最小限
とするとき行われる早送りによって、冷却床4取入れ直
後から圧延材が冷却床4出口に達するまでの搬送時間で
ある。Bi: 1 cutting group fast forward time. This is the conveyance time from immediately after intake of the cooling bed 4 until the rolled material reaches the exit of the cooling bed 4 due to the rapid feed performed when cooling in the cooling bed 4 is minimized.
Bi=EtXb Et :冷却床4のTotal溝数。Bi=EtXb Et: Total number of grooves in the cooling bed 4.
b =早送り時に圧延材が冷却床4の1溝を通過するに
要する時間(1溝あたりの早送り時間)。b = Time required for the rolled material to pass through one groove of the cooling bed 4 during rapid traverse (rapid traverse time per groove).
Ci:1切断群搬送時間。冷却床4出口から冷間切断機
5までの圧延材1群の搬送時間である。Ci: Transport time for one cutting group. This is the transportation time of one group of rolled materials from the outlet of the cooling bed 4 to the cold cutting machine 5.
断する時間である。It's time to cut it off.
Di=[切断回数]×[1回あたりの切断時間]切断回
数は、取り込み材料長と冷間切断長より決定される。Di=[number of cuts]×[cutting time per time] The number of cuts is determined from the length of the material taken in and the cold cutting length.
Fio:lll油抽出ら冷却床4到達までの作業時間。Fio: Working time from oil extraction to reaching cooling bed 4.
鋼材が加熱炉1より抽出された時点から、圧延、走間切
断を経て冷却床4人口に達するまでの時間である。This is the time from when the steel material is extracted from the heating furnace 1 until it reaches the cooling bed 4 population through rolling and running cutting.
添字i:圧延、切断群の順(i =1.2.3・・・・
・・)を示す。Subscript i: Rolling, cutting group order (i = 1.2.3...
...) is shown.
添字io : i番目の圧延、切断群の最初の鋼材を示
す。Subscript io: Indicates the first steel material in the i-th rolling and cutting group.
以下、各特性値が如何なるとき割れ発生なしに冷間切断
が可能かを考察する。Below, we will consider when each characteristic value allows cold cutting without cracking.
1、A工+B工+C1+D工〉Tの場合温間切断不可。1. Warm cutting is not possible in the case of A work + B work + C1 + D work> T.
冷間切断機5では、切断可能本数を1切断群として切断
することが基本である。The cold cutting machine 5 basically cuts the number of pieces that can be cut into one cutting group.
A□十B工+C□+D工は、第1回目の冷却床4人口列
着から冷間切断完了までの全時間であり、それが圧延材
の300℃放冷時間Tより長いので、割れ発生条件とな
る。対策として、抽出本数すなわち取り込み本数aiを
変更してAよを小さくし、A1+B1+C工+D工≦T
tI−満たす抽出本数とする。A□10B work + C□+D work is the total time from the first cooling bed 4 rows to the completion of cold cutting, which is longer than the 300℃ cooling time T of the rolled material, so cracks will occur. It is a condition. As a countermeasure, change the number of extracted lines, that is, the number of captured lines ai, and make A to smaller, so that A1+B1+C-work+D-work≦T
tI - the number of extractions to satisfy.
11、Aユ+B工+C,+D工≦Tの場合温間切断可能
。この場合、温間切断可能であるので、さらに待ち時間
短縮の可能性を検討する。11. Warm cutting is possible when A + B work + C, + D work ≦T. In this case, since warm cutting is possible, the possibility of further shortening the waiting time will be investigated.
(a ) A 、 + B 1+ C、+ D □+
A 2> Tの場合次切断群の冷却床4取込み不可。次
切断群を冷却床4に取込む時間(A2)の余裕はない。(a) A, + B 1+ C, + D □+
If A2>T, cooling bed 4 of the next cutting group cannot be taken in. There is no time (A2) to take the next group of cuts into the cooling bed 4.
しかし、次鋼材群の加熱炉l抽出から冷却床4到達まで
の時間をF2oとすると、先行切断群最終材が冷却床4
の(Et−(F、。/b))番目の溝到達時に次鋼材の
加熱炉1からの抽出を行ってよい。ただしCF2゜/b
)は小数点以下を切捨てて整数化する。この時。However, if F2o is the time from extraction of the next steel material group to the arrival at cooling bed 4, then the final material of the preceding cutting group will reach cooling bed 4.
When the (Et-(F, ./b))th groove is reached, the next steel material may be extracted from the heating furnace 1. However, CF2゜/b
) rounds down to an integer after the decimal point. At this time.
A2+B2+C2≧C1+D1ならば、C2≠C工のた
めA2千B、≧D□となり1次切断群に切断待ちの発生
はない。If A2+B2+C2≧C1+D1, then A2,000B,≧D□ because C2≠C, and there is no waiting for cutting in the primary cutting group.
A、+B、+C2<C工+D工ならば、C2弁C8のた
めA2+B2<D工となり、次切断群に切断待ちが発生
する。If A, +B, +C2<C work + D work, then A2 + B2 < D work because of the C2 valve C8, and a cutting wait occurs in the next cutting group.
しかし、通常、A、+B、)D、のため、冷間切断機が
フル稼働しないことになり、この[Ia条件は望ましく
ない。However, because of A, +B, )D, the cold cutting machine usually does not operate at full capacity, and this [Ia condition is undesirable.
(b)A工+B1+C工+D、+A、≦T・・・・・・
(3)の場合
次切断群取り込み可。先行切断群にとっては、次切断群
の取り込みが、どこで行われようと無関係である。この
時、B1□を次切断群取り込み完了以降の先行切断群早
送り時間として、
B2+C2≧B工2+ C> + D 1ならば、C2
与C1のためB2≧Bi、+Dえとなって、次切断群に
切断待ちの発生はない。(b) A work + B1 + C work + D, +A, ≦T...
In the case of (3), the next cutting group can be imported. For the preceding cutting group, it is irrelevant where the next cutting group is taken. At this time, B1□ is the fast-forwarding time of the preceding cutting group after the completion of importing the next cutting group, and if B2+C2≧B-work2+C>+D 1, then C2
Since C1 is given, B2≧Bi, +D, and there is no waiting for cutting in the next cutting group.
B2+C2〈Bi2+C工+D8ならば、C2勾C工の
ためB2<B工2+D、となって、次切断群に切断待ち
が発生する。If B2+C2<Bi2+C work+D8, then B2<B work 2+D because of C2 slope C work, and a cutting wait occurs in the next cutting group.
さらに、
A2十BZ+C2+ (BL、+D□−B 2 ) +
D z > Tの場合、圧延材温度低下により次切断
群の温間切断不可となり、
−1A、+B、+C,+(B、、+D、−B2)+D、
≦Tの場合、次切断群の温間切断可となる。Furthermore, A20BZ+C2+ (BL, +D□-B2) +
When D z > T, warm cutting of the next cutting group becomes impossible due to a decrease in the temperature of the rolled material,
-1A, +B, +C, +(B,, +D, -B2)+D,
If ≦T, warm cutting of the next cutting group is possible.
上述の温間切断可の条件を満たすB1□の値を険討する
。境界条件では。A value of B1□ that satisfies the above-mentioned conditions for warm cutting is carefully investigated. In boundary conditions.
A、+C,+B工、+D、+D2=T
より
B1□=T−A、−C,−D、−D2
B□2は物理的に負の値をとれないので、T−A、−C
,−01−D、≧0 ・・・・・・(4)である必要
がある。A, +C, +B, +D, +D2 = T, so B1□ = T-A, -C, -D, -D2 Since B□2 cannot physically take a negative value, T-A, -C
, -01-D, ≧0 (4).
次鋼材抽出タイミングは、前記B1□時間に加えて抽出
から冷却床4到着までの圧延等処理時間F20を考慮す
ると、先行切断群最終材が冷却床4の
Et−((Fz、/b)+(B、/b))−””’
(5)番目溝に到達時と計算できる。ただしくF2゜/
b)+(B□2/b)は小数点以下を切捨てて整数とす
る。The next steel material extraction timing is determined by considering the processing time F20 such as rolling from extraction to arrival at cooling bed 4 in addition to the above B1□ time. (B, /b))-””'
(5) It can be calculated as when the second groove is reached. Just F2゜/
b)+(B□2/b) is rounded down to an integer after the decimal point.
また、Eが1未満となったときは便宜上 E=1(取り
込み直後)とする。Furthermore, when E becomes less than 1, for convenience, it is assumed that E=1 (immediately after import).
上述(4)、(5)式の圧延回数1,2をi−1゜iと
一般化して(1)、(2)式とする。The rolling numbers 1 and 2 in the above equations (4) and (5) are generalized to i-1°i to form equations (1) and (2).
本実施例のミルページング制御装置はこのように構成さ
れており、次のように動作する。The mill paging control device of this embodiment is configured as described above and operates as follows.
冷却時間演算装置12は、予想温度(12a)、切断目
標温度(12b)、鋼材サイズ(12c)の入力を受け
て、予め記憶している標準冷却曲線にあてはめて許容冷
却時間Tを演算する。ミルページング装置13は、前記
ケース1.Ila、IIbのいずれに属するかを演算判
定し、可能な限りnbのケースとなるように取り込み本
数aiを調整する。The cooling time calculating device 12 receives input of the expected temperature (12a), the target cutting temperature (12b), and the steel material size (12c), and calculates the allowable cooling time T by applying it to a standard cooling curve stored in advance. The mil paging device 13 includes the case 1. It is determined by calculation whether it belongs to Ila or IIb, and the number ai to be taken in is adjusted so that it is in the nb case as much as possible.
ケースIIbであれば、ミルページング装置13は、前
記(1)式が成立するように、必要があれば取り込み本
数aiを再調整し、次に前記(2)式により次回抽出目
安溝位置Eを算出する。In case IIb, the mill paging device 13 readjusts the intake number ai if necessary so that the formula (1) holds true, and then determines the next extraction target groove position E using the formula (2). calculate.
次回抽出目安溝位置Eが決定すると、ミルページング装
置13は、先行圧延材の冷却床4上の動きをトラッキン
グ装置9の信号により監視し、圧延材の末尾が前記次回
抽出目安溝位置Eに達したとき、抽出制御装置6に次回
圧延用鋼材の抽出を指令Yる。When the next extraction target groove position E is determined, the mill paging device 13 monitors the movement of the previously rolled material on the cooling bed 4 using the signal from the tracking device 9, and determines when the tail of the rolled material reaches the next extraction target groove position E. At this time, the extraction control device 6 is commanded to extract the steel material for next rolling.
ケースIlaであれば、冷間切断中の冷却床への次回圧
延材の取り込みは許可されない。このとき5ミルページ
ング装置13は、冷間切断終了予定時刻の圧延走間切断
作業時間Fio時間前に次回圧延用鋼材の抽出指令を行
う。In case Ila, the next rolling material is not allowed to be taken into the cooling bed during cold cutting. At this time, the 5 mil paging device 13 issues a command to extract the steel material for next rolling at a time Fio time before the rolling cutting operation time Fio of the scheduled end time of cold cutting.
このようにして、本実施例のミルページング制御装置に
より、冷間切断時の圧延材温度を300℃以上として割
れの発生を防止しながら、冷間切断機の待ち時間を最小
として、圧延切断ラインの生産性を向上することができ
る。In this way, with the mill paging control device of this embodiment, the temperature of the rolled material during cold cutting is set to 300°C or higher to prevent the occurrence of cracks, and the waiting time of the cold cutting machine is minimized, allowing the rolling cutting line to productivity can be improved.
[発明の効果コ
本発明のミルページング制御方法は、冷却床の取り込み
時から冷間切断目標温度まで鋼材が温度降下する間の時
間Tと、前記鋼材の加熱炉抽出から圧延材となって冷却
床入口に到達するまでの作業時間Fioと、前記冷却床
の取込み時間Aiと、同冷却床の溝数Etと、同冷却床
の1溝あたりの早送り時間すと、同冷却床出口から冷間
切断機までの搬送時間Ciと、同冷間切断機の切断時間
Diとから、後述(1)式が満足されることが確認され
た後に、同(2)式により次回抽出目安冷却床溝位WE
が演算され、前記冷却床上の(i−1)回目圧延材の後
尾位置が前記次回抽出目安冷却床溝位fiEとなった時
点で、i回目圧延用鋼材を前記加熱炉より抽出するよう
にされ、鋼材サイズ等圧延切断条件の多様な変化に対応
して割れの発生を防止しなから冷間切断機の操業度を最
大とするので、温間切断材の品質確保、生産性の向上、
抽出ピッチの安定化が可能となって、大きな経済的な利
益が得られる。[Effects of the Invention] The mill paging control method of the present invention is characterized by the time T during which the temperature of the steel material falls from the time of intake into the cooling bed to the cold cutting target temperature, and the time T from when the steel material is extracted from the heating furnace until it becomes a rolled material and is cooled. The working time Fio until reaching the bed inlet, the intake time Ai of the cooling bed, the number of grooves Et of the cooling bed, and the fast-forward time per groove of the cooling bed, After confirming that the equation (1) described below is satisfied from the transport time Ci to the cutting machine and the cutting time Di of the cold cutting machine, the next extraction target cooling bed groove position is determined by the equation (2). W.E.
is calculated, and when the trailing position of the (i-1)th rolled material on the cooling bed reaches the next extraction standard cooling bed groove position fiE, the i-th rolled steel material is extracted from the heating furnace. In response to various changes in rolling cutting conditions such as steel material size, it prevents the occurrence of cracks and maximizes the operation rate of the cold cutting machine, ensuring the quality of warm-cut materials, improving productivity,
It becomes possible to stabilize the extraction pitch, and a large economic benefit can be obtained.
第1図は一実施例としてのミルページング制御方法によ
るミルページング制御装置のブロック図、第2図は冷却
床取込み温度が1000”Cの圧延材を放冷したときの
温度冷却曲線のグラフ、第3図は従来の冷間切断ライン
のブロック図である。
1・・・・・加熱炉、2・・・・・・圧延機列、3・・
・・・・走間切断機、4・・・・・・冷却床、5・・・
・・・冷間切断機、6・・・・・・抽出制御装置、7・
・・・・・圧延機制御装置、8・・・・・・走間切断機
切断制御装置、9・・・・・・トラッキング装置、10
・・・・・・冷間切断機切断制御装置、11・・・・・
・放射温度計、12・・・・・・冷却時間演算装置、1
3・・・・・・ミルページング装置。
特許出願人 株式会社 神戸製鋼所
代理人 弁理士 小 林 傅Fig. 1 is a block diagram of a mill paging control device according to a mill paging control method as an embodiment, Fig. 2 is a graph of a temperature cooling curve when a rolled material with a cooling bed intake temperature of 1000''C is left to cool; Figure 3 is a block diagram of a conventional cold cutting line. 1... Heating furnace, 2... Rolling mill row, 3...
....running cutting machine, 4..cooling bed, 5..
...Cold cutting machine, 6...Extraction control device, 7.
....Rolling mill control device, 8 ....Tracking machine cutting control device, 9 ....Tracking device, 10
...Cold cutting machine cutting control device, 11...
・Radiation thermometer, 12... Cooling time calculation device, 1
3... Mil paging device. Patent applicant Kobe Steel Co., Ltd. Representative Patent attorney Fu Kobayashi
Claims (1)
て圧延材とした後に、複数の圧延材載置溝を有する冷却
床で自然冷却し、冷間切断機で冷間切断する圧延切断ラ
インの、前記鋼材の抽出時間間隔を調整するミルページ
ング制御方法において、前記冷却床の取り込み時から冷
間切断目標温度まで鋼材が温度降下する間の時間Tと、
前記鋼材の加熱炉抽出から圧延材となって冷却床入口に
到達するまでの作業時間Fioと、前記冷却床の取込み
時間Aiと、同冷却床の溝数Etと、同冷却床の1溝あ
たりの早送り時間bと、同冷却床出口から前記冷間切断
機までの搬送時間Ciと、同冷間切断機の切断時間Di
とから、後述(1)式が満足されることが確認された後
に、同(2)式により次回抽出目安冷却床溝位置Eが演
算され、前記冷却床上の(i−1)回目圧延材の後尾位
置が前記次回抽出目安冷却床溝位置Eとなった時点で、
i回目圧延用鋼材を前記加熱炉より抽出することを特徴
とするミルページング制御方法。 T−Ai−Ci−Di−Di_−_1≧0・・・・・・
(1) E=Et−(Fio+T−Ai−Ci−Di−Di_−
_1)/b・・・・・・(2) ただし、Eの小数点以下は切上げ、E<1のときE=1
。(1) Extract the heated steel material from the heating furnace, hot-roll it into a rolled material, cool it naturally on a cooling bed with multiple rolling material placement grooves, and then cold-cut it with a cold cutting machine. In a mill paging control method for adjusting the extraction time interval of the steel material in a rolling cutting line, the time T during which the temperature of the steel material decreases from the time of intake of the cooling bed to the cold cutting target temperature;
The working time Fio from the extraction of the steel material into the heating furnace until it becomes a rolled material and reaches the cooling bed inlet, the intake time Ai of the cooling bed, the number of grooves Et of the cooling bed, and per groove of the cooling bed. , the transport time Ci from the cooling bed outlet to the cold cutting machine, and the cutting time Di of the cold cutting machine.
After confirming that the equation (1) described below is satisfied, the next extraction target cooling bed groove position E is calculated using the equation (2), and the position E of the (i-1)th rolled material on the cooling bed is calculated. When the trailing position reaches the cooling bed groove position E as the guideline for next extraction,
A mill paging control method characterized by extracting steel material for i-th rolling from the heating furnace. T-Ai-Ci-Di-Di_-_1≧0...
(1) E=Et-(Fio+T-Ai-Ci-Di-Di_-
_1)/b・・・(2) However, the decimal places of E are rounded up, and when E<1, E=1
.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63224721A JPH0741295B2 (en) | 1988-09-09 | 1988-09-09 | Mill pacing control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63224721A JPH0741295B2 (en) | 1988-09-09 | 1988-09-09 | Mill pacing control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0275406A true JPH0275406A (en) | 1990-03-15 |
JPH0741295B2 JPH0741295B2 (en) | 1995-05-10 |
Family
ID=16818207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63224721A Expired - Lifetime JPH0741295B2 (en) | 1988-09-09 | 1988-09-09 | Mill pacing control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0741295B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011245508A (en) * | 2010-05-27 | 2011-12-08 | Jfe Steel Corp | Method of operating hot-rolled coil yard |
JP2015196182A (en) * | 2014-04-02 | 2015-11-09 | Jfeスチール株式会社 | Method for determining extraction interval of heating furnace in shaped steel rolling line |
JP2016203239A (en) * | 2015-04-28 | 2016-12-08 | Jfeスチール株式会社 | Temperature correction device and temperature correction method of long-length steel material, cooling device and cooling method of long-length steel material, and manufacturing equipment and manufacturing method of rail |
CN107282659A (en) * | 2016-04-04 | 2017-10-24 | 鞍钢股份有限公司 | Control method for initial loading of cooling bed on HMI picture |
KR20200140785A (en) * | 2019-06-04 | 2020-12-16 | 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 | Mill Facing Control System |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105396878B (en) * | 2015-12-02 | 2017-05-10 | 张家港浦项不锈钢有限公司 | Steel drawing control method and device for hot rolling production line |
-
1988
- 1988-09-09 JP JP63224721A patent/JPH0741295B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011245508A (en) * | 2010-05-27 | 2011-12-08 | Jfe Steel Corp | Method of operating hot-rolled coil yard |
JP2015196182A (en) * | 2014-04-02 | 2015-11-09 | Jfeスチール株式会社 | Method for determining extraction interval of heating furnace in shaped steel rolling line |
JP2016203239A (en) * | 2015-04-28 | 2016-12-08 | Jfeスチール株式会社 | Temperature correction device and temperature correction method of long-length steel material, cooling device and cooling method of long-length steel material, and manufacturing equipment and manufacturing method of rail |
CN107282659A (en) * | 2016-04-04 | 2017-10-24 | 鞍钢股份有限公司 | Control method for initial loading of cooling bed on HMI picture |
KR20200140785A (en) * | 2019-06-04 | 2020-12-16 | 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 | Mill Facing Control System |
Also Published As
Publication number | Publication date |
---|---|
JPH0741295B2 (en) | 1995-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0275406A (en) | Method for controlling mill pacing | |
EP0368333A2 (en) | Hot-rolling equipment and a method of hot-rolling a slab | |
EP0183187B1 (en) | Method of increasing the productivity of reversing plate mills | |
CA2312279C (en) | Method for setting operating conditions for continuous hot rolling facilities | |
US5533248A (en) | Method of steel processing using an inline grinder | |
US6698266B2 (en) | System and method for optimizing mill cuts | |
JP5463743B2 (en) | Slab hot rolling schedule determination method and slab hot rolling schedule determination device | |
JP2002126814A (en) | Hot rolling method | |
JPS638849B2 (en) | ||
JP3620464B2 (en) | Manufacturing method and manufacturing apparatus for hot-rolled steel sheet | |
JP3068289B2 (en) | Inlet temperature control method for hot continuous finishing mill | |
JPH10230314A (en) | Method for preventing scale defect | |
JP3503581B2 (en) | A method for charging a continuously cast hot slab to a heating furnace for hot rolling. | |
JP3304024B2 (en) | Rolling method in hot rolling process having a plurality of heating furnaces | |
RU2766592C1 (en) | Method and device for production of strip | |
JPS641206B2 (en) | ||
US20240009724A1 (en) | Process and apparatus for producing metallurgical products, in particular of the merchant type, in particular in an endless mode | |
EP1327487B1 (en) | Endless hot rolling method | |
JP3177631B2 (en) | Method for setting furnace duration and heating control method for hot-rolled material | |
JPS60180604A (en) | Rolling method of thick steel plate | |
JPH01306004A (en) | Method for rolling continuously cast thin slab | |
JP2580068B2 (en) | Determination method of extraction strand in wire heating furnace | |
JPH07314008A (en) | Continuous rolling equipment for hot band steel | |
JPH0892631A (en) | Operation of continuous heating furnace | |
JPH11264026A (en) | Method for determing slab withdraw time in hot rolling |