JPH027512B2 - - Google Patents

Info

Publication number
JPH027512B2
JPH027512B2 JP58180150A JP18015083A JPH027512B2 JP H027512 B2 JPH027512 B2 JP H027512B2 JP 58180150 A JP58180150 A JP 58180150A JP 18015083 A JP18015083 A JP 18015083A JP H027512 B2 JPH027512 B2 JP H027512B2
Authority
JP
Japan
Prior art keywords
window member
ray
radiation
radiation detector
cfrp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58180150A
Other languages
Japanese (ja)
Other versions
JPS6074253A (en
Inventor
Juzo Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58180150A priority Critical patent/JPS6074253A/en
Publication of JPS6074253A publication Critical patent/JPS6074253A/en
Publication of JPH027512B2 publication Critical patent/JPH027512B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J47/00Tubes for determining the presence, intensity, density or energy of radiation or particles
    • H01J47/001Details
    • H01J47/002Vessels or containers
    • H01J47/004Windows permeable to X-rays, gamma-rays, or particles

Landscapes

  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Electron Tubes For Measurement (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は放射線検出器に係り、特にX線入射窓
部材を改良した放射線検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a radiation detector, and particularly to a radiation detector with an improved X-ray entrance window member.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

放射線断層撮影装置、例えば、コンピユータ・
トモグラフイ(以下単に「CT装置」と略称する)
は、第1図に示すように、放射線発生手段1より
曝射されたX線フアンビーム(FX)が被検体3
を透過後に放射線検出器2に入射するようになつ
ている。しかして、この放射線検出器2は、被検
体透過後のX線エネルギを電離電流として検出
し、これをX線吸収データとして出力するもので
あり、その性能は、CT装置における最終的な再
構成画像の良否に大きく影響する。そこで、優れ
たCT装置を得るためには、感度,密度分解等の
優れた放射線検出器を具備しなければならない。
Radiation tomography equipment, e.g.
Tomography (hereinafter simply referred to as "CT device")
As shown in FIG. 1, the X-ray fan beam (FX) emitted from the radiation generating means 1
After passing through the radiation, the radiation enters the radiation detector 2. This radiation detector 2 detects the X-ray energy after passing through the subject as an ionizing current and outputs this as X-ray absorption data, and its performance depends on the final reconstruction in the CT device. This greatly affects the quality of the image. Therefore, in order to obtain an excellent CT device, it is necessary to have a radiation detector with excellent sensitivity, density resolution, etc.

ところで、従来の放射線検出器の材質には、第
2図に示すX線入射窓部材4aも含めて、X線透
過の比較的良効なアルミニウム等が適用されてい
た。
Incidentally, the material of conventional radiation detectors, including the X-ray entrance window member 4a shown in FIG. 2, has been made of aluminum or the like, which has relatively good X-ray transmission properties.

しかしながら、アルミニウム等のX線入射窓部
材4aの影響により、被検体透過X線の低エネル
ギーフオトンが減衰する傾向にあり、従来より以
下に述べるような問題が生じていた。
However, due to the influence of the X-ray entrance window member 4a made of aluminum or the like, low-energy photons of the X-rays transmitted through the subject tend to be attenuated, which has conventionally caused problems as described below.

すなわち、放射線検出器の密度分解能は、第3
図に示すX線入射窓4aを透過して検出素子群6
に到達する低エネルギフオトンに比例するが、こ
の低エネルギフオトンは、検出素子に到達する前
に、X線入射窓部材4a(アルミニウム)によつ
て吸収されてしまう。この結果、密度分解能の悪
い放射線検出器となつてしまうのである。
In other words, the density resolution of the radiation detector is
The detection element group 6 passes through the X-ray entrance window 4a shown in the figure.
However, the low-energy photons are absorbed by the X-ray entrance window member 4a (aluminum) before reaching the detection element. This results in a radiation detector with poor density resolution.

〔発明の目的〕[Purpose of the invention]

本発明は前記事情に鑑みてなされたもので、被
写体透過X線エネルギの低エネルギフオトンを十
分に検出素子に到達させることによつて、密度分
解能の優れた放射線検出器を提供することを目的
とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a radiation detector with excellent density resolution by sufficiently allowing low-energy photons of the X-ray energy transmitted through the object to reach the detection element. shall be.

〔発明の概要〕[Summary of the invention]

前記目的を達成するための本発明の概要は、少
なくとも放射線の入射する窓部材が、炭素繊維強
化樹脂と、該炭素繊維強化樹脂に積層される導電
体箔とを有することを特徴とするものである。
The outline of the present invention for achieving the above object is characterized in that at least a window member through which radiation enters has a carbon fiber reinforced resin and a conductive foil laminated on the carbon fiber reinforced resin. be.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について図面を参照し
ながら説明する。
An embodiment of the present invention will be described below with reference to the drawings.

第4図は本発明に係る放射線検出器を示す断面
斜視図である。同図7は、X線入射方向(矢印X
―ray)に切欠部(X線入射窓)を有し、かつ、
プレート8によつて閉塞されるケースである。こ
のケース7の切欠部に、窓部材4aが、例えば接
着剤によつて接着されるとともに、例えば第5図
に示すように、額縁形状の補強部材10及びビス
11によつて補強されている。
FIG. 4 is a cross-sectional perspective view showing a radiation detector according to the present invention. 7 shows the X-ray incident direction (arrow
-ray) has a notch (X-ray entrance window), and
This is a case where the plate 8 is used to close the case. A window member 4a is bonded to the notch of the case 7 with, for example, an adhesive, and is reinforced with a frame-shaped reinforcing member 10 and screws 11, as shown in FIG. 5, for example.

次に前記窓部材4aの構成について説明する。
この窓部材4aは、第6図に示すように、たとえ
ば15〜25μm厚のシート状に形成された炭素繊維
強化樹脂(Carbon Fiber Reinforced
Plastics;以下CFRPと略称する)のシート16
を10枚程度積層し、所望の厚さ(t2.0〜2.5mm)を
得、かつ窓部材内壁(検出素子群6側)に導電体
箔(t25〜50μm)、例えばアルミニウム箔17が
貼り付けられて成る。
Next, the structure of the window member 4a will be explained.
As shown in FIG. 6, this window member 4a is made of carbon fiber reinforced resin formed into a sheet shape with a thickness of 15 to 25 μm, for example.
Plastics (hereinafter abbreviated as CFRP) sheet 16
About 10 sheets are laminated to obtain the desired thickness (t2.0 to 2.5 mm), and a conductive foil (t25 to 50 μm), such as aluminum foil 17, is pasted on the inner wall of the window member (detection element group 6 side). It is made up of

ここで、前記シート状に形成されたCFRP(こ
れを「プリプレグ」と称する)16の積層は、例
えばオートクレーブで特定時間加熱することによ
り容易に実現できる。また、X線入射窓部材に
CFRPを用いるのは次の理由による。
Here, the lamination of the sheet-shaped CFRP (referred to as "prepreg") 16 can be easily realized, for example, by heating in an autoclave for a specific period of time. In addition, the X-ray entrance window member
The reason for using CFRP is as follows.

すなわち、従来のX線入射窓部材たるアルミニ
ウムは、エネルギ60kevでX線吸収係数μ=0.27
cm-1であるのに対し、CFRPのX線透過率は、エ
ネルギ60kev〜100kevにおいてAl当量(アルミ当
量)で1/10と、極めて優れている。したがつて、
CFRPを用いれば低エネルギフオトンの透過率が
向上し、密度分解能の向上が図れるのである。さ
らに、前記CFRPの検出素子群6側にアルミニウ
ム箔17を貼り付けるのは次の理由による。
In other words, aluminum, which is the conventional X-ray entrance window material, has an X-ray absorption coefficient μ = 0.27 at an energy of 60 keV.
cm -1 , whereas the X-ray transmittance of CFRP is extremely excellent at 1/10 of Al equivalent (aluminum equivalent) at energy of 60kev to 100kev. Therefore,
Using CFRP improves the transmittance of low-energy photons and improves density resolution. Furthermore, the reason why the aluminum foil 17 is attached to the detection element group 6 side of the CFRP is as follows.

すなわち、CFRPはカーボン繊維とレジン(主
にエポキシ樹脂)から構成されており、使用中熱
を受けると、第8図に示すように、レジンから例
えばH2O,CO,NH3等のガスが発生し、このガ
スが、検出器内において放射線により電離された
Xe+、e-と結合し、検出器特性に悪影響を与える
虞れがある。また、窓部材内壁を絶縁物質にする
と(すなわち、窓部材がCFRPのみであると)、
第9図に示すように、X線により電離されたXe+
が検出素子に収集されず、前記窓部材内壁に付着
し、検出器特性に悪影響を与える虞れがある。そ
こで、CFRP9の検出素子群6側(窓部材内壁)
にアルミニウム箔17を貼り付けることにより、
脱ガス防止及び帯電防止を図るとともに、均一電
界分布を得るのである。
In other words, CFRP is composed of carbon fiber and resin (mainly epoxy resin), and when it is heated during use, gases such as H 2 O, CO, and NH 3 are released from the resin, as shown in Figure 8. This gas is ionized by radiation in the detector.
There is a risk that it will combine with Xe + and e - and adversely affect the detector characteristics. Also, if the inner wall of the window member is made of an insulating material (i.e., if the window member is made only of CFRP),
As shown in Figure 9, Xe + ionized by X-rays
is not collected by the detection element and may adhere to the inner wall of the window member, which may adversely affect the characteristics of the detector. Therefore, the detection element group 6 side of CFRP9 (window member inner wall)
By pasting aluminum foil 17 on
This prevents degassing and charging, and also provides a uniform electric field distribution.

このように構成される放射線検出器のシミユレ
ーシヨン結果を第10図に示す。同図aはX線入
射窓4aの前面におけるX線スペクトルを示し、
また、b,cはそれぞれ本発明に係る窓部材(ア
ルミニウム箔を貼り付けたCFRP),従来の窓部
材(アルミニウム)の場合であつて、それぞれ同
じ厚さに形成した際の検出素子群6でのX線吸収
スペクトルを示している。同図から明らかなよう
に、本発明に係る窓部材の場合のX線吸収スペク
トルは、従来のそれに比べ15〜20%向上すること
が分かる。
FIG. 10 shows simulation results of the radiation detector constructed in this manner. Figure a shows the X-ray spectrum in front of the X-ray entrance window 4a,
Furthermore, b and c are the cases of the window member according to the present invention (CFRP pasted with aluminum foil) and the conventional window member (aluminum), respectively, and the detection element group 6 when formed to the same thickness. The X-ray absorption spectrum of As is clear from the figure, the X-ray absorption spectrum of the window member according to the present invention is improved by 15 to 20% compared to the conventional one.

尚、本発明は前記実施例によつて限定されるも
のではなく、本発明の要旨の範囲内で適宜に変形
実施が可能であるのはいうまでもない。
It goes without saying that the present invention is not limited to the embodiments described above, and that modifications can be made as appropriate within the scope of the gist of the present invention.

例えば、窓部材4aの補強を第11図及び第1
2図に示すように、窓部材4aの周囲を穿設せず
して、補強部材13及びビス14によつて、前記
窓部材4aを補強することも可能である。
For example, the reinforcement of the window member 4a is shown in FIGS.
As shown in FIG. 2, it is also possible to reinforce the window member 4a with reinforcing members 13 and screws 14 without drilling around the window member 4a.

また、前記実施例では、導電体箔をアルミニウ
ム箔としたが、これに限定されず例えば、銅箔,
ニツケル箔,鉄箔等でも良い。
Further, in the above embodiments, the conductive foil is aluminum foil, but is not limited to this, and for example, copper foil,
Nickel foil, iron foil, etc. may also be used.

さらに、CFRPに導電体箔を積層させる方法と
しては、抵抗加熱,電子ビーム等による蒸着法、
あるいは、スパツタ法による蒸着法を用いても良
い。
Furthermore, methods for laminating conductive foil on CFRP include resistance heating, vapor deposition using an electron beam, etc.
Alternatively, a sputtering vapor deposition method may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、検出素子
における放射線の低エネルギ側の吸収が増加する
ので、密度分解能が向上し、臨床的に有効なデー
タの収集が可能となるとともに、X線入射窓のX
線透過率が増大し、S/Nが向上する。また、
CFRP導電体箔を積層することにより、CFRPか
らの脱ガス防止,帯電防止が図られるとともに、
均一電界分布が得られる等、優れた効果を奏する
放射線検出器を提供することができる。
As explained above, according to the present invention, the absorption of radiation on the low energy side in the detection element is increased, so the density resolution is improved, it becomes possible to collect clinically effective data, and the X-ray incidence window X of
The linear transmittance increases and the S/N ratio improves. Also,
By laminating CFRP conductive foil, it is possible to prevent degassing from CFRP and prevent static electricity.
It is possible to provide a radiation detector that exhibits excellent effects such as obtaining a uniform electric field distribution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCT装置を示す概略説明図、第2図は
放射線検出器の概略斜視図、第3図は第2図に示
す放射検出器の断面図、第4図は本発明に係る放
射線検出器を示す断面図、第5図は第4図に示す
放射線検出器の窓部材の補強を説明するための説
明図、第6図及び第7図は第4図に示す放射線検
出器の窓部材の詳細な構成を説明するための説明
図、第8図及び第9図は放射線検出器の窓部材を
第6図及び第7図に示す構成とする理由を説明す
るための説明図、第10図は第4図に示す放射線
検出器の特性を示す特性図、第11図及び第12
図は第5図に示す窓部材の補強の変形例を説明す
るための説明図である。 4a…窓部材、9…炭素繊維強度樹脂
(CFRP)、17…アルミニウム箔(導電体箔)。
Fig. 1 is a schematic explanatory diagram showing a CT device, Fig. 2 is a schematic perspective view of a radiation detector, Fig. 3 is a sectional view of the radiation detector shown in Fig. 2, and Fig. 4 is a radiation detection according to the present invention. 5 is an explanatory diagram for explaining the reinforcement of the window member of the radiation detector shown in FIG. 4, and FIGS. 6 and 7 are the window members of the radiation detector shown in FIG. 4. 8 and 9 are explanatory diagrams for explaining the reason why the window member of the radiation detector has the configuration shown in FIGS. 6 and 7. The figures are characteristic diagrams showing the characteristics of the radiation detector shown in Figure 4, Figures 11 and 12.
This figure is an explanatory view for explaining a modification of reinforcing the window member shown in FIG. 5. 4a... Window member, 9... Carbon fiber reinforced resin (CFRP), 17... Aluminum foil (conductor foil).

Claims (1)

【特許請求の範囲】[Claims] 1 外部から放射線を受けて電離する気体を封入
する容器と、この容器の放射線を受ける面に設け
られ、前記放射線を受ける面を炭素繊維強化樹脂
からなる第1の層、及び前記気体に接する面を導
電体からなる第2の層によつて形成した窓部とを
有することを特徴とする放射線検出器。
1. A container that encloses a gas that ionizes when it receives radiation from the outside; a first layer that is provided on the radiation-receiving surface of this container, and that the radiation-receiving surface is covered with a first layer made of carbon fiber reinforced resin; and a window formed by a second layer made of a conductor.
JP58180150A 1983-09-30 1983-09-30 Radioactive ray detector Granted JPS6074253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58180150A JPS6074253A (en) 1983-09-30 1983-09-30 Radioactive ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58180150A JPS6074253A (en) 1983-09-30 1983-09-30 Radioactive ray detector

Publications (2)

Publication Number Publication Date
JPS6074253A JPS6074253A (en) 1985-04-26
JPH027512B2 true JPH027512B2 (en) 1990-02-19

Family

ID=16078270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58180150A Granted JPS6074253A (en) 1983-09-30 1983-09-30 Radioactive ray detector

Country Status (1)

Country Link
JP (1) JPS6074253A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9076628B2 (en) 2011-05-16 2015-07-07 Brigham Young University Variable radius taper x-ray window support structure
US8989354B2 (en) * 2011-05-16 2015-03-24 Brigham Young University Carbon composite support structure
US9502206B2 (en) 2012-06-05 2016-11-22 Brigham Young University Corrosion-resistant, strong x-ray window

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749879A (en) * 1980-09-10 1982-03-24 Toshiba Corp Detector for radiation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749879A (en) * 1980-09-10 1982-03-24 Toshiba Corp Detector for radiation

Also Published As

Publication number Publication date
JPS6074253A (en) 1985-04-26

Similar Documents

Publication Publication Date Title
US5943390A (en) Storage phosphor cassette with reduced weight and cost
US5033075A (en) Radiation reduction filter for use in medical diagnosis
Droege et al. Influence of metal screens on contrast in megavoltage x‐ray imaging
Fenster et al. Efficiency and resolution of ionography in diagnostic radiology
US3916200A (en) Window for radiation detectors and the like
JPH027512B2 (en)
US4764946A (en) Method and modifying body for influencing the effect of X-ray or gamma radiation on a target sensitive to the radiation
US5321272A (en) X-ray beam stop
EP0356488A1 (en) Radiation reduction filter for use in medical diagnosis
Kim et al. Signal and noise analysis of flat-panel sandwich detectors for single-shot dual-energy x-ray imaging
WO1997036310A1 (en) A direct conversion x-ray/gamma-ray photocathode
US8834021B2 (en) Digital X-ray detector with a multi-functional panel support
JP2001208891A (en) Laminated lightweight radiation shielding material
EP0212836B1 (en) Radiation imaging systems
US4218619A (en) Multi-copy ion-valve radiography
Plyusnin et al. Characteristics of four-channel Cherenkov-type detector for measurements of runaway electrons in the ISTTOK tokamak
Hernández-Hernández et al. The true spectrum of tribo-generated X-rays from peeling tape
JPH0259582B2 (en)
Berinde et al. Relativistic effects in K-shell ionisation by 7-15 MeV proton bombardment on heavy elements
Bates Concepts and implementations in X-ray intensification
JPS58223145A (en) Cassette for x-ray diagnosis device
Gobet et al. X-ray photons produced from a plasma-cathode electron beam for radiation biology applications
Marshall et al. Charge-injection-device performance in the high-energy-neutron environment of laser-fusion experiments
Sparks Jr et al. Window for radiation detectors and the like
STADE Image enhancement in neutron radiography through an indirect method