JPH0274864A - Fractional measurement - Google Patents

Fractional measurement

Info

Publication number
JPH0274864A
JPH0274864A JP22596788A JP22596788A JPH0274864A JP H0274864 A JPH0274864 A JP H0274864A JP 22596788 A JP22596788 A JP 22596788A JP 22596788 A JP22596788 A JP 22596788A JP H0274864 A JPH0274864 A JP H0274864A
Authority
JP
Japan
Prior art keywords
solution
concentration
test sample
sample
gld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22596788A
Other languages
Japanese (ja)
Other versions
JPH07117543B2 (en
Inventor
Masakazu Tsuchiya
正和 土谷
Fumi Takaoka
高岡 文
Masashige Fusamoto
房本 正滋
Haruki Oishi
晴樹 大石
Shuji Matsuura
脩治 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to JP22596788A priority Critical patent/JPH07117543B2/en
Publication of JPH0274864A publication Critical patent/JPH0274864A/en
Publication of JPH07117543B2 publication Critical patent/JPH07117543B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To judge whether a material which is incorporated in a specimen to be checked and generates gelling reaction is endotoxin or not by making the specimen to be checked react with Limulus blood-cell component extract, and reading a curve expressing the degree of optical change based on the gelling reaction after the elapse of specified time. CONSTITUTION:The frozen dry material of Limulus blood-cell component extract (AL solution) derived from Limulus of a Limulus genus is dissolved with distilled water. A specimen comprising endotoxin (ET) solution or glucan (GL) solution having a specified concentration is added into the solution (LAL solution) obtained by said method. After agitation, the change in amount of transmitted light during the specified elapsed time in said mixed liquid is measured at the maintained temperature of 37 deg.C. As a result, the trends in changes in the amounts of the transmitted lights are different depending on the case when the ET solution is used as the specimen and the case when the GL solution is used as the specimens. Whether the gelling material incorporated in the specimen is ET or not is judged based on the curves.

Description

【発明の詳細な説明】 [発明の利用分野] 本発明は、被検試料中の、カブトガニの血球成分(Am
oebocyte  Lysate)抽出液(以下、A
L温溶液略記する。)と反応してゲル化反応を生じせし
める物質(以下、ゲル化物質と略記する。)の分別測定
法に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention is directed to the detection of horseshoe crab blood cell components (Am) in a test sample.
oebocyte Lysate) extract (hereinafter referred to as A
L warm solution is abbreviated. ) and which causes a gelling reaction (hereinafter abbreviated as gelling substance).

[発明の背景コ エンドトキシン(以下、ETと略記する。)は主にダラ
ム陰性菌の細胞表層中に存在するリボ多糖であり、発熱
物質(Pyrogen )の一種としても知られる物質
である。そのため、試料中のETfi度の測定は医学、
薬学、微生物学の分野に於いて、重要なものの1つとな
っている。
[Background of the Invention Coendotoxin (hereinafter abbreviated as ET) is a ribopolysaccharide that mainly exists on the cell surface of Durum-negative bacteria, and is also known as a type of pyrogen. Therefore, the measurement of ETfi degree in a sample is
It is one of the important fields in the fields of pharmaceutical science and microbiology.

現在のところ、このETの測定法としては、AL温溶液
ETによって活性化されてゲル化する現象を利用した、
所謂リムルステストがその簡便性、費用が安価な点等か
ら広く利用さ九ている。
At present, this ET measurement method utilizes the phenomenon of activation and gelation by AL warm solution ET.
The so-called Limulus test is widely used because of its simplicity and low cost.

しかしながら、このAL温溶液ET以外のゲル化物質1
例えばカルボキシメチル化したβ−1,3−グルカンと
も反応することが見出され[Kakinumaeむ a
l、、Biochem、Biophys、Re5ear
ch   Communication、BΩ工η−,
434−439(1981)] 、その現象は、AL溶
液中に存在するβ−1,3−グルカン(以下、GLと略
記する。)と反応して凝固反応を惹起する因子(以下、
GL感受性因子と略記する。)がGL又はその誘導体(
以下、GLDと略記する。)と反応することにより惹起
されることが明らかにされたC岩永ら2日本細菌学雑誌
、鏡山、781−803(1983)]。
However, gelling substance 1 other than this AL hot solution ET
For example, it was found that it also reacts with carboxymethylated β-1,3-glucan [Kakinumaem a
l,,Biochem,Biophys,Re5ear
ch Communication, BΩ Engineering η-,
434-439 (1981)], this phenomenon is caused by a factor (hereinafter referred to as GL) that reacts with β-1,3-glucan (hereinafter abbreviated as GL) present in the AL solution and induces a coagulation reaction.
It is abbreviated as GL sensitivity factor. ) is GL or its derivative (
Hereinafter, it will be abbreviated as GLD. C. Iwanaga et al. 2 Japanese Journal of Bacteriology, Kagamiyama, 781-803 (1983)].

そのため、現在市販されているリムルステストの大部分
は、ETのみならずGL又はGLDとも反応してゲル化
し、この測定法では試料中に存在しているのがETであ
るのかGL又は/及びGLDであるのか、或はこれらの
混合物であるのかを判定することは難しく、その特異性
が問題となっていた。
Therefore, most of the Limulus tests currently on the market react with not only ET but also GL or GLD to form a gel. It is difficult to determine whether there is one or a mixture of these, and its specificity has been a problem.

このような問題点を解決すべく、AL温溶液らGL感受
性因子を除去してETに特異的な試薬をIl製する方法
が報告されている(特開昭58−13516号公報、特
開昭59−27828号公報)、シかしながら、これら
に開示された方法は、何れもAL温溶液ゲル渡過法或は
ヘパリン、デキストラン硫酸を結合させた担体を用いた
クロマトグラフィ等によって処理し、凝固酵素前駆体の
分画、GL感受性因子の分画及びETと反応してゲル化
反応を惹起する因子(以下、ET感受性因子と略記する
。)の分画に分離してGL感受性因子の除去を行うとい
う極めて煩雑な操作を要する方法である。そのため、こ
の操作を行うための専用装置等が必要であり、しかも、
最終的にETに特異的な試薬を得るには各分画を改めて
適宜混合しなければならないという欠点を有していた。
In order to solve these problems, a method has been reported to prepare a reagent specific for ET by removing GL-sensitive factors from a warm AL solution (Japanese Patent Application Laid-open No. 13516/1983, 59-27828), however, in all of the methods disclosed in these publications, treatment is carried out by AL hot solution gel transfer method or chromatography using a carrier bound with heparin or dextran sulfate, followed by solidification. The GL-sensitive factor is removed by separating into a fraction of the enzyme precursor, a fraction of the GL-sensitive factor, and a fraction of the factor that reacts with ET to cause a gelation reaction (hereinafter abbreviated as the ET-sensitive factor). This is a method that requires extremely complicated operations. Therefore, special equipment is required to perform this operation, and
In order to finally obtain a reagent specific to ET, each fraction had to be appropriately mixed again.

[発明の目的] 本発明は、上記した如き状況に鑑みなさ九たもので、被
検試料中の、ゲル化物質を分別測定し得る、簡便な測定
方法を提供することを目的とする。
[Object of the Invention] The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a simple measuring method capable of separately measuring gelled substances in a test sample.

[発明の構成コ 本発明は、被検試料とA T=溶液とを反応させた際に
生ずるゲル化反応に基づく、光学的変化を測定し、所定
経過時間に於けるゲル化反応に基づく光学的変化の程度
を表わす曲線の形から、被検試料中に含まれるゲル化反
応を生じさせる物質がETであるか否かを判別する方法
であり、且つ、その曲線を微分して得られる微分係数の
最大値とその最大値に到達するまでの経過時間から、被
検試料中のET濃度及び、GL又は/及びGLDの濃度
を推定する方法である。
[Structure of the Invention] The present invention measures an optical change based on a gelation reaction that occurs when a test sample and an AT=solution are reacted, and measures an optical change based on a gelation reaction over a predetermined elapsed time. This is a method for determining whether or not a substance that causes a gelation reaction contained in a test sample is ET from the shape of a curve representing the degree of physical change, and the differential obtained by differentiating the curve. This method estimates the ET concentration and the GL or/and GLD concentration in the test sample from the maximum value of the coefficient and the elapsed time until the maximum value is reached.

また、本発明は、被検試料とAL温溶液を反応させた際
に生ずるゲル化反応に基づく光学的変化を測定すること
により、被検試料中のET濃度を測定する方法に於いて
、所定経過時間に於けるゲル化反応に基づく光学的変化
の程度を表わす曲線を微分して得られる微分係数の最大
値から、被検試料中のET濃度を測定する方法であり、
且つ、この方法により被検試料中のET濃度を測定し、
他方、ポリミキシンBの共存下に被検試料とAL温溶液
を反応させた際に生ずるゲル化反応に基づく光学的変化
を測定することにより、被検試料中のGL又は/及びG
LDの濃度を測定し、そのGL又は/及びGLD濃度か
ら前記゛方法により得られた被検試料中のET濃度の信
頼性を検定する方法であり、更には、ポリミキシンBの
共存下に被検試料とAL温溶液を反応させた際に生ずる
ゲル化反応に基づく光学的変化を測定することにより、
被検試料中のGL又は/及びGLDの濃度を測定する方
法である。
Furthermore, the present invention provides a method for measuring the ET concentration in a test sample by measuring an optical change based on a gelation reaction that occurs when a test sample is reacted with an AL hot solution. A method of measuring the ET concentration in a test sample from the maximum value of the differential coefficient obtained by differentiating a curve representing the degree of optical change due to gelation reaction over time,
and measuring the ET concentration in the test sample by this method,
On the other hand, by measuring the optical change based on the gelation reaction that occurs when the test sample and the AL hot solution are reacted in the presence of polymyxin B, it is possible to detect GL or/and G in the test sample.
This method measures the concentration of LD and tests the reliability of the ET concentration in the test sample obtained by the above method from the GL or/and GLD concentration. By measuring the optical changes based on the gelation reaction that occurs when the sample and the AL hot solution are reacted,
This is a method for measuring the concentration of GL and/or GLD in a test sample.

即ち、本発明者らは、被検試料中のETとGL又は/及
びGLDを簡便に分別測定できる方法について研究の途
上、ETとGL又は/及びGLDとでは所定経過時間に
於けるAL温溶液の反応の結果生じるゲル化反応に基づ
く光学的変化の程度を表わす曲線の形が異なること、更
に詳しくは、GL又は/及びGLDとAL温溶液反応さ
せた場合のゲル化反応に基づく光学的変化の程度は、E
TとAL温溶液反応させた場合のそれに比べて反応の初
期において小さいことを見出し、所定経過時間に於ける
ゲル化反応に基づく光学的変化の程度を表わす曲線の形
から被検試料中に含まれる、ゲル化物質が、ET、GL
又は/及びGLD或はこれらの混合物であることを判別
できることを見出した。更には、この所定経過時間に於
ける光学的変化の程度を表わす曲線を微分して微分係数
を求め、その最大値(以下、Dmaxと略記する。)と
その最大値に到達するまでの経過時間(以下、TPと略
記する。)とから、被検試料中に含まれるゲル化物質の
存在量比、言い換えればETとGL又は/及びGLDの
存在量比が推定し得ることを見出し、本発明に到達した
That is, the present inventors are in the process of researching a method that can easily separate and measure ET and GL or/and GLD in a test sample. The shape of the curve representing the degree of optical change due to the gelation reaction resulting from the reaction is different, and more specifically, the optical change due to the gelation reaction when GL or/and GLD is reacted with AL hot solution. The degree of E
It was found that the temperature was smaller at the initial stage of the reaction than when T was reacted with AL in a warm solution, and based on the shape of the curve representing the degree of optical change due to the gelation reaction over a predetermined elapsed time, it was found that The gelatinized substance is ET, GL
It has been found that it is possible to determine that it is GLD or/and GLD or a mixture thereof. Furthermore, the curve representing the degree of optical change over a predetermined elapsed time is differentiated to obtain a differential coefficient, and its maximum value (hereinafter abbreviated as Dmax) and the elapsed time until the maximum value is reached are calculated. (hereinafter abbreviated as TP), it has been found that the abundance ratio of gelling substances contained in the test sample, in other words, the abundance ratio of ET and GL or/and GLD can be estimated, and the present invention reached.

また、この事実から、現在のところETの測定法の主流
である、ETとAL温溶液反応させた際に生ずるゲル化
反応に基づく光学的変化が一定値に到達するまでの時間
(以下、Tgと略記する。)から被検試料中のET濃度
を測定する、所謂比濁時間測定法により測定を行った場
合には、被検試料中に含まれるゲル化物質がETのみで
ある場合には、その測定値の信頼性は充分認められるも
のの、該ゲル化物質がETとGL又は/及びGLDの混
合物である場合には、その測定値の信頼性が低下するこ
とが改めて確認された。そこで、GL又は/及びGLD
が被検試料中に混在している場合にもETを信頼性良く
測定できる方法につき研究を重ねた結果、Tgの代りに
Dmaxを指標として用いれば、GL又は/及びGLD
が混在している被検試料中のET濃度を精度良く測定し
得ることを見出した。
In addition, from this fact, the time required for the optical change to reach a certain value (hereinafter referred to as Tg When the so-called turbidimetric method is used to measure the ET concentration in the test sample from Although the reliability of the measured values is sufficiently recognized, it was once again confirmed that the reliability of the measured values decreases when the gelling substance is a mixture of ET and GL or/and GLD. Therefore, GL or/and GLD
As a result of repeated research on a method that can reliably measure ET even when ET is mixed in the test sample, we found that if Dmax is used as an index instead of Tg, GL and/or GLD can be measured.
It has been found that the ET concentration in a test sample containing a mixture of ET can be measured with high accuracy.

GL又は/及びGLDの濃度により、精度良く測定し得
るET濃度の範囲が生ずることを見出した。
It has been found that depending on the concentration of GL and/or GLD, there is a range of ET concentrations that can be measured with high accuracy.

そこで、被検試料中のGL又は/及びGLD濃度を簡便
に且つ精度良く測定し得る方法につき、鋭意研究を重ね
た結果、被検試料とAL温溶液を反応させる際に、ET
と強い親和性を有するポリミキシンB(以下、PMBと
略記する。)を共存させた場合には、PMBは、ETと
AL温溶液の反応は阻害するが、意外にもGL又は/及
びGLDとAL温溶液の反応は阻害しないことを見出し
た。
Therefore, as a result of extensive research into a method that can easily and accurately measure the GL and/or GLD concentration in a test sample, we found that when reacting a test sample with an AL warm solution, ET
When coexisting with polymyxin B (hereinafter abbreviated as PMB), which has a strong affinity for GL and/or GLD, PMB inhibits the reaction between ET and AL warm solution, but surprisingly It was found that the reaction of the warm solution was not inhibited.

この現象を利用して、PMHの共存下に被検試料とAL
温溶液を反応させた際に生ずるゲル化反応に基づく光学
的変化を測定すれば、被検試料中のGL又は/及びGL
Dを簡便に且つ精度良く測定し得ることを見出した。更
には、この方法により得られる被検試料中のGL又は/
及びGLD濃度を利用すれば、先に述べたDmaxを用
いてETを測定する方法により得られた被検試料中のE
T濃度の測定値の信頼性をも検定し得ることを見出し、
本発明を完成するに至った。
Utilizing this phenomenon, the test sample and AL in the coexistence of PMH
By measuring the optical change based on the gelation reaction that occurs when a hot solution is reacted, GL or/and GL in the test sample can be detected.
It has been found that D can be measured easily and accurately. Furthermore, GL or/in the test sample obtained by this method
By using the GLD concentration and the GLD concentration, the E in the test sample obtained by the method of measuring ET using Dmax described above can be
It was discovered that the reliability of the measured value of T concentration can also be tested,
The present invention has now been completed.

本発明を実施するには、例えば以下の如く行えばよい。The present invention may be carried out, for example, as follows.

即ち、先ず被検試料とAL温溶液を混合した後に、この
溶液の所定経過時間に於ける光学的変化の測定を行って
、所定経過時11flに於けるゲル化反応に基づく光学
的変化の程度を表わす曲線を作成する。次いで、この曲
線を、予めET、又はGL又は/及びGLDのみを含む
検体により作成した所定経過時間に於けるゲル化反応に
基づく光学的変化の程度を表わす曲線と比較することに
より、被検試料中に含まれているゲル化物質がETであ
るか否かを判別する。また、所定経過時間に於ける上記
ゲル化反応に基づく光学的変化の程度を表わす曲線を微
分して微分係数を得、そのDmaxとTpとを求め、こ
れらを、予め所定のET−ETとGL又は/及びGLD
、若しくはGL又は/及びGLDを含む検体により測定
したDmaxとTpとの相関関係を示すグラフに当ては
めて被検試料中に含まれるETとGL又は/及びGLD
の含量を推定する。また、被検試料につき得られたDm
axを、予め所定濃度のETを含む検体を用いて作成し
たDmaxとET濃度との検量線に当てはめて、被検試
料中のET濃度を測定する。更には。
That is, first, after mixing the test sample and the AL hot solution, the optical change of this solution over a predetermined elapsed time is measured, and the degree of optical change due to the gelation reaction at 11 fl at the predetermined elapsed time is determined. Create a curve representing . Next, by comparing this curve with a curve representing the degree of optical change based on the gelation reaction over a predetermined elapsed time, which was prepared in advance using a specimen containing only ET, GL, or/and GLD, the test sample can be determined. It is determined whether the gelling substance contained therein is ET. Further, the curve representing the degree of optical change due to the gelation reaction in a predetermined elapsed time is differentiated to obtain a differential coefficient, Dmax and Tp are obtained, and these are determined in advance by predetermined ET-ET and GL. or/and GLD
, or ET and GL or/and GLD contained in the test sample by applying it to a graph showing the correlation between Dmax and Tp measured using a sample containing GL or/and GLD.
Estimate the content of In addition, the Dm obtained for the test sample
The ET concentration in the test sample is measured by applying ax to a calibration curve of Dmax and ET concentration prepared in advance using a sample containing ET at a predetermined concentration. Furthermore.

被検試料とAL温溶液を反応させる際に、PMBを共存
させて測定を行えば、被検試料中のETはAL温溶液反
応を起こさなくなり、被検試料中に含まれるGL又は/
及びGLDによってのみ惹起されたゲル化反応が生ずる
。そこでこのゲル化反応に起因する光学的変化を測定し
、TgやDmax等を求め、これらの値から被検試料中
のGL又は/及びGLDII度を求める。このG L又
は/及びGLD濃度を基に先に求めた被検試料中のET
濃度の信頼性を検定する。
If the test sample and the AL warm solution are reacted together and the measurement is performed in the presence of PMB, the ET in the test sample will not cause the AL warm solution reaction, and the GL or /
and a gelation reaction triggered only by GLD occurs. Therefore, optical changes caused by this gelation reaction are measured, Tg, Dmax, etc. are determined, and the degree of GL and/or GLDII in the test sample is determined from these values. ET in the test sample previously determined based on this GL or/and GLD concentration.
Test the reliability of the concentration.

本発明の方法に於いて使用できるAL温溶液しては、通
常のETの測定に使用できるものであってGL又はGL
Dとも反応してゲル化反応が生じるものであれば特に限
定されることなく使用することができるが、例えば、A
 CC(ASSOCIATES OF CAPE C0
D)社、ヘマケム社、MAB社、マリンクロット社、帝
国臓器(株)社等によって製造された市販のAL温溶液
凍結乾燥品から調製されたものを用いてもよいし、リム
ルス(Limulus)属。
The AL hot solution that can be used in the method of the present invention is one that can be used for ordinary ET measurement and is GL or GL.
It can be used without particular limitation as long as it also reacts with D and causes a gelation reaction, but for example, A
CC(ASSOCIATES OF CAPE C0
Products prepared from commercially available freeze-dried AL warm solutions manufactured by D), Hemakem, MAB, Mallinckrodt, Teikoku Kinki Co., Ltd., etc., may be used, and Limulus spp. .

タキプレウス(Tachypleus)属或はカルシノ
スコルビウス(Carcinoscorpius)属に
属するカブトガニの血球から抽出されたもので、ET−
GL又はGLDとの反応によりゲル化反応が生じるもの
であれば、特に限定されることなく挙げられる。
It is extracted from the blood cells of horseshoe crabs belonging to the genus Tachypleus or Carcinoscorpius.
It may be mentioned without particular limitation as long as it causes a gelation reaction by reaction with GL or GLD.

本発明を実施する際の操作法や反応条件としては自体公
知のET測定法である比濁時間分析法に準じて行えばよ
く、使用されるその他の試薬等も自体公知の比濁時間分
析法に準じて適宜選択して用いればよい。
The operating method and reaction conditions for carrying out the present invention may be carried out in accordance with the nephelometric time analysis method, which is a well-known ET measurement method, and other reagents used may also be carried out according to the nephelometric time analysis method, which is a well-known ET measurement method. They may be selected and used as appropriate.

本発明に於いて、光学的変化を測定する際のpHとして
は、AL溶液中のET、GL又はGLDと反応して凝固
反応を起こす因子が失活しないpHであれば何れにても
よいが、通常6〜8の範囲が好ましく用いられる。また
、測定時の温度としては、AL溶液中のET、GL又は
GLDと反応して凝固反応を起こす因子が失活しない温
度であればよいが1通常、0〜40℃、より好ましくは
25〜40℃が用いられる。
In the present invention, the pH at which optical changes are measured may be any pH that does not deactivate the factors that react with ET, GL, or GLD in the AL solution and cause a coagulation reaction. , usually in the range of 6 to 8 is preferably used. The temperature at the time of measurement may be any temperature that does not deactivate the factors that react with ET, GL, or GLD in the AL solution and cause a coagulation reaction.1 Usually, 0 to 40°C, more preferably 25 to 40°C. 40°C is used.

本発明の方法は、例えばトキシノメーターET−201
(和光純薬工業(株)製)、LAL−5000(ACC
社製)等の比濁時間分析法専用装置を利用して実施する
こともできるし、分光光度計等のその他の光学的原理を
利用した測定装置を用いても同様に実施できる。
The method of the present invention can be carried out using, for example, a toxinometer ET-201.
(manufactured by Wako Pure Chemical Industries, Ltd.), LAL-5000 (ACC
It can be carried out using a specialized device for turbidimetric time analysis, such as a nephelometric analysis method (manufactured by Co., Ltd.), or it can be similarly carried out using a measuring device that uses other optical principles, such as a spectrophotometer.

本発明のGL又は/及びGLD濃度を測定する方法に於
ける、PMBの使用濃度としては、ETとAL温溶液の
ゲル化反応を阻害できる量であれば特に限定されないが
、通常ETとAL温溶液反応させる際の反応液中の終濃
度として100 ng/ml及至10 mg/mlとな
るように用いられる。
In the method of measuring GL and/or GLD concentration of the present invention, the concentration of PMB used is not particularly limited as long as it can inhibit the gelation reaction of ET and AL warm solutions, but it is usually It is used so that the final concentration in the reaction solution during solution reaction is 100 ng/ml to 10 mg/ml.

本発明の方法により測定できるGL及びGLDとしては
、GLをその構成成分として含む多糖類であれば特に限
定されることなく挙げられるが、例えば各種細菌類(例
えば、Alcaligenes属t Lam1nari
a属、 Agrobacterium属等)、酵母類(
例えば、Saccharomyces属等)、キノコy
M(例えば、シイタケ、スエヒロタケ、カワラタケ等)
等の細胞壁から得られる天然の多糖、具体的には例えば
、カードラン、パキマン、スクレロタン、レンチナン、
シゾフィラン、コリオラン等、或は、藻類(例えば、褐
藻、ユーグレナ、ケイ藻等)の貯蔵性多糖、具体的には
例えばラミナラン、パラミロン等、或は又これらに常法
、例えば大有機化学第19巻、第7版、70〜101頁
、小竹無二雄監修、昭和42年5月10日、朝食書店;
 A、E、C1arkeら、 Phyt。
GL and GLD that can be measured by the method of the present invention are not particularly limited as long as they are polysaccharides containing GL as a component, but include, for example, various bacteria (e.g. Alcaligenes genus, Lam1nari
a genus, Agrobacterium genus, etc.), yeasts (
For example, Saccharomyces genus), mushrooms
M (e.g. Shiitake, Suehirotake, Kawaratake, etc.)
Natural polysaccharides obtained from cell walls such as curdlan, pachyman, sclerotane, lentinan, etc.
Schizophyllan, Coriolan, etc., or storage polysaccharides of algae (e.g., brown algae, euglenoid, diatom, etc.), specifically, for example, laminaran, paramylon, etc., or conventional methods for these, e.g., Large Organic Chemistry Vol. , 7th edition, pp. 70-101, supervised by Munio Kotake, May 10, 1962, Breakfast Shoten;
A, E, C1arke et al., Phyt.

chemist、ry、土、 175−188(196
7) ;T、5asakiら、 Europ。
chemist, ry, soil, 175-188 (196
7); T, 5asaki et al., Europe.

J、Cancer、15,211−215(1987)
等に記載された方法に準じてカルボキメチル基、カルボ
キシルエチル基、メチル基、ヒドロキシエチル基、ヒド
ロキシプロピル基、スルホプロピル基等を導入して得ら
れる誘導体等が挙げられる。
J. Cancer, 15, 211-215 (1987)
Examples include derivatives obtained by introducing a carboxymethyl group, a carboxylethyl group, a methyl group, a hydroxyethyl group, a hydroxypropyl group, a sulfopropyl group, etc. according to the method described in et al.

また、本発明の方法により、GL又は/及びGLDを測
定した場合、GLの由来や導入された置換基の種類や個
数等によりAL温溶液の反応性が異なる場合も有り得る
。そのため、本発明の方法によりGL又は/及びGLD
を測定する場合には、特定のGL又はGLDを基準物質
とし、その基準物質に換算した濃度として被検試料中に
含まれるGL又は/及びGLD濃度を示すことが望まし
い。
Further, when GL and/or GLD are measured by the method of the present invention, the reactivity of the AL warm solution may differ depending on the origin of GL, the type and number of introduced substituents, etc. Therefore, by the method of the present invention, GL or/and GLD
When measuring GL or GLD, it is desirable to use a specific GL or GLD as a reference substance and to indicate the concentration of GL or/and GLD contained in the test sample as the concentration converted to the reference substance.

以下に参考例、実験例及び実施例を挙げ、本発明を更に
詳細に説明するが、本発明はこれらにより何ら限定され
るものではない。
The present invention will be explained in more detail by reference examples, experimental examples, and examples below, but the present invention is not limited by these in any way.

[実施例] 参考例1.カルボキシメチル化カードランの調製カード
ラン(和光純薬工業(株)W) aogにトルエン54
0m1とエタノール80m1を加え、これに50%水酸
化ナトリウム水溶液61gを滴下した後、50℃に加熱
し、1時間攪拌した。これに、モノクロル酸fi 35
gをトルエン:エタノール=9:1の混合溶媒100m
1に溶解したものを加え、更に50℃で1時間攪拌した
。この反応液に更に水酸化ナトリウム水溶液とモノクロ
ル酢酸溶液を加える前記の操作を、2度繰り返した後、
冷却し、−晩装置した。これを、90%メタノール 1
1中に流し込み、生じた沈殿を濾取し、乾燥して142
gの粗結晶を得た。得られた粗結晶を1420m1の蒸
留水に溶解し、この溶液のpHを希塩酸を用いて8に調
整した。
[Example] Reference example 1. Preparation of carboxymethylated curdlan Curdlan (Wako Pure Chemical Industries, Ltd.) Toluene 54 to aog
0ml and 80ml of ethanol were added thereto, and 61g of a 50% aqueous sodium hydroxide solution was added dropwise thereto, then heated to 50°C and stirred for 1 hour. In addition, monochloric acid fi 35
g to 100ml of a mixed solvent of toluene:ethanol=9:1
1 was added to the mixture, and the mixture was further stirred at 50°C for 1 hour. After repeating the above operation twice, adding an aqueous sodium hydroxide solution and a monochloroacetic acid solution to the reaction solution,
Cool and store overnight. Add this to 90% methanol 1
1, filter the resulting precipitate and dry it to form 142
A crude crystal of g was obtained. The obtained crude crystals were dissolved in 1420 ml of distilled water, and the pH of this solution was adjusted to 8 using dilute hydrochloric acid.

これに、メタノール12.781を、攪拌下に滴下し、
生じた沈殿を濾取し、90%メタノール500m1で洗
浄後、乾燥し、目的のカルボキシメチル化カードラン(
以下、CMGLと略記する。)を得た。
12.781 methanol was added dropwise to this while stirring,
The resulting precipitate was collected by filtration, washed with 500 ml of 90% methanol, and dried to obtain the desired carboxymethylated curdlan (
Hereinafter, it will be abbreviated as CMGL. ) was obtained.

実験例1゜ (試薬) ・ET溶液 大腸菌レファレンスエンドトキシン(和光純薬工業(株
)製、E、coli UKT−8株由来のリポ多糖、1
バイアル当り FDA レファレンスエンドトキシンE
C−2として500ng相当量を含有、5ml用。)を
注射用蒸留水で適宜希釈したものを使用した。
Experimental Example 1゜(Reagent) ・ET solution E. coli reference endotoxin (manufactured by Wako Pure Chemical Industries, Ltd., lipopolysaccharide derived from E. coli UKT-8 strain, 1
Per Vial FDA Reference Endotoxin E
Contains an amount equivalent to 500 ng as C-2, for 5 ml. ) was appropriately diluted with distilled water for injection.

・GL溶液 ETを含まないカードラン(和光純薬工業(株)製)を
、ETを含まない50mM NaOH水溶液に5mg/
mlとなるように溶解した後、注射用蒸留水で適宜希釈
したものを用いた。
・GL solution Add 5 mg of ET-free curdlan (manufactured by Wako Pure Chemical Industries, Ltd.) to a ET-free 50 mM NaOH aqueous solution.
After dissolving the solution to a volume of 1.0 ml, the solution was appropriately diluted with distilled water for injection and used.

・AL温溶 液ムルス属のカブトガニ由来のAL温溶液凍結乾燥品(
以下、LALと略記する。和光純薬工業(株)製、ゲル
化感度: 0.03 El/m1.5ml用。)を注射
用蒸留水5 mlで溶解して得たLAL溶液を使用した
・AL warm solution Freeze-dried AL warm solution derived from horseshoe crabs of the genus Mullus (
Hereinafter, it will be abbreviated as LAL. Manufactured by Wako Pure Chemical Industries, Ltd., gelling sensitivity: 0.03 El/m for 1.5 ml. ) in 5 ml of distilled water for injection was used.

(検体) 所定濃度のET溶液又はGL溶液を検体とした。(sample) An ET solution or GL solution with a predetermined concentration was used as a specimen.

(操作法) トキシンメーターET−201(和光純薬工業(株)製
)を用いて、常法に従い以下のように行った。
(Operating method) Using a toxin meter ET-201 (manufactured by Wako Pure Chemical Industries, Ltd.), the following procedure was carried out according to a conventional method.

0.1mlのLAL溶液に0.1mlの検体を加え、攪
拌後、37℃保温下に、上記混合液の所定経過時間に於
ける透過光量の変化を測定した。
0.1 ml of the sample was added to 0.1 ml of the LAL solution, and after stirring, the mixture was kept at 37° C. and the change in the amount of transmitted light over a predetermined elapsed time of the mixture was measured.

(結果) 結果を、第1図及び第2図に示す。尚、第1図及び第2
図に於いて、透過光量の変化は、透過光量比(%)(L
AL溶液と検体との混合直後の透過光量を100%とし
た場合の、所定時間に於ける透過光量の相対値。)とし
て示した。
(Results) The results are shown in Figures 1 and 2. In addition, Figures 1 and 2
In the figure, the change in the transmitted light amount is expressed as the transmitted light amount ratio (%) (L
Relative value of the amount of transmitted light in a predetermined time, when the amount of transmitted light immediately after mixing the AL solution and the sample is taken as 100%. ).

この結果から明らかな如く、ET溶液を検体とした場合
と、GL溶液を検体とした場合とでは、時間経過に伴う
透過光量の変化の傾向が異なることが判る。このことか
ら、所定経過時間に於ける透過光量の変化の程度を表わ
す曲線の形から、検体中に含まれているゲル化物質がE
Tであるか否かを判別できることが示唆された。
As is clear from this result, the tendency of the change in the amount of transmitted light over time is different when the ET solution is used as the sample and when the GL solution is used as the sample. From this, from the shape of the curve representing the degree of change in the amount of transmitted light over a predetermined elapsed time, it is clear that the gelling substance contained in the sample is
It was suggested that it is possible to determine whether it is T or not.

また、ここで得られた、各検体の所定経過時間に於ける
透過光量の変化の程度を表わす曲線を微分して微分係数
を求め、第3図に示す様な、DmaxとTPを求めた。
Further, the curve obtained here representing the degree of change in the amount of transmitted light for each specimen over a predetermined elapsed time was differentiated to obtain a differential coefficient, and Dmax and TP as shown in FIG. 3 were obtained.

尚、第3図に於いて、aは所定経過時間に於ける透過光
量の変化の程度を表わす曲線を、bはaを微分して得ら
れた微分曲線を夫々示し、Thは透過光量比のある特定
の値を示す。得られたDmaxとTpの相関関係を示す
グラフを第4rgIに示す。尚、v14図に於いて、O
はGL溶液を検体として得られた結果を、・はET溶液
を検体として得られた結果を夫々示す。
In Fig. 3, a represents a curve representing the degree of change in the amount of transmitted light over a predetermined elapsed time, b represents a differential curve obtained by differentiating a, and Th represents the ratio of the amount of transmitted light. Indicates a certain value. A graph showing the correlation between the obtained Dmax and Tp is shown in the fourth rgI. In addition, in the v14 diagram, O
. indicates the results obtained using the GL solution as the sample, and . indicates the results obtained using the ET solution as the sample.

こρ結果から明らかな如く、DmaxとTPとの相関関
係において、ETを含む検体とGLを含む検体とでは、
夫々異なった直線関係が得られることが判る。
As is clear from the ρ results, in the correlation between Dmax and TP, there is a difference between samples containing ET and samples containing GL.
It can be seen that different linear relationships are obtained for each.

実験例2゜ (試薬) 実験例1と同じものを用いた。Experimental example 2゜ (reagent) The same one as in Experimental Example 1 was used.

(検体) 所定濃度のET、GL若しくはETとGL、とを含む溶
液を検体とした。
(Sample) A solution containing ET, GL, or ET and GL at a predetermined concentration was used as a specimen.

(操作法) 実験例1と同様に行った。(Operation method) The same procedure as in Experimental Example 1 was carried out.

(結果) 表1−1及び表1−2に各検体で得られたDmaxとT
pの実測値を示し、第5図に、各検体で得られたD w
axとTpとの相関関係を示すグラフを示す。尚、第S
図に於いて、・はETのみを含む検体により得られた結
果を示し、OはGLのみを含む検体により得られた結果
を、ΔはETとGLとを含む検体により得られた結果を
夫々示す。
(Results) Tables 1-1 and 1-2 show Dmax and T obtained for each sample.
The actual measured values of p are shown in Fig. 5, and the D w obtained for each sample is shown in Fig. 5.
A graph showing the correlation between ax and Tp is shown. In addition, No. S
In the figure, . indicates the results obtained with the sample containing only ET, O indicates the results obtained with the sample containing only GL, and Δ indicates the results obtained with the sample containing ET and GL. show.

表1−1 表1−2 表1−1、表1−2及び第5図より明らかな如く、ET
濃度を一定にしてGL濃度を変化させた検体に於いては
、検体中のGL濃度が増加するにつれてプロットされる
点の位置が左方向へ平行移動する傾向が見られ、GL濃
度を一定としてET濃度を変化させた場合には、検体中
のET濃度が増加するにつれてプロットされる点の位置
が左上方に移動する傾向が見られることが判る。このこ
とから、予めETのみを含む検体とGLのみを含む検体
とで、各ET若しくはGL濃度に於けるDmaxとTp
とを測定して、夫々の相関関係を示すグラフを作成して
おき、未知の検体のDmaxとTPを求めれば、該検体
中のET濃度と0L211度とを推定できることが示唆
された。
Table 1-1 Table 1-2 As is clear from Table 1-1, Table 1-2 and Figure 5, ET
In samples in which the GL concentration was varied while keeping the concentration constant, there was a tendency for the position of the plotted point to move in parallel to the left as the GL concentration in the sample increased; It can be seen that when the concentration is changed, the position of the plotted point tends to move toward the upper left as the ET concentration in the sample increases. From this, we have determined in advance that Dmax and Tp at each ET or GL concentration for samples containing only ET and samples containing only GL.
It was suggested that the ET concentration and 0L211 degrees in an unknown sample can be estimated by measuring the above, creating a graph showing the respective correlations, and determining the Dmax and TP of the unknown sample.

また、この結果からD[1laxは主に検体中のET濃
度に比例し、共存するGLによる影響を受は難いことも
見出され、Dmaxから検体中のET濃度を精度良く測
定できることが示唆された。
In addition, from this result, it was found that D[1lax is mainly proportional to the ET concentration in the sample and is hardly affected by coexisting GL, suggesting that the ET concentration in the sample can be measured with high accuracy from Dmax. Ta.

そこで、第6図に、ここで得られた各検体のDmaxと
ET濃度の関係をプロットした結果を示す。
Therefore, FIG. 6 shows the results of plotting the relationship between Dmax and ET concentration of each sample obtained here.

ここに於いて、・はETのみを含む検体により得られた
結果を、○は所定のETと0.1  ng/mlのGL
を含む検体により得られた結果を、ムは所定のETと1
 0g/mlのGLを含む検体により得られた結果を、
△は所定のETと10 ng/mlのGLを含む検体に
より得られた結果を、口は所定のETと100 ng/
mlのGLを含む検体により得られた結果を夫々示す。
Here, * indicates the results obtained with the sample containing only ET, and ○ indicates the results obtained with the specified ET and 0.1 ng/ml GL.
The results obtained from the sample containing
The results obtained with the sample containing 0 g/ml of GL,
△ indicates the results obtained with the sample containing the specified ET and 10 ng/ml of GL;
The results obtained with samples containing ml of GL are shown.

第6図から明らかな如く、Dmaxを基に得られた各検
体のETの実測値と真値の差は、検体中のETの濃度が
低く、共存するGLの濃度が高い程大きくなることが判
る。即ち、共存するGLの濃度によって、Dmaxを用
いた測定法により測定し得るET濃度の範囲があること
、更に言い換えれば、該測定法により得られたET濃度
の信頼性は共存するGL濃度により左右されることが判
る。
As is clear from Figure 6, the difference between the actual measured value and true value of ET for each sample obtained based on Dmax becomes larger as the concentration of ET in the sample is lower and the concentration of coexisting GL is higher. I understand. In other words, there is a range of ET concentrations that can be measured by the measurement method using Dmax depending on the concentration of coexisting GL. In other words, the reliability of the ET concentration obtained by this measurement method depends on the coexisting GL concentration. It turns out that it will be done.

実施例1゜ (試薬) ・ET溶液 実験例1と同じものを用いた。Example 1゜ (reagent) ・ET solution The same one as in Experimental Example 1 was used.

・CMGL溶液 参考例1で得られたCMGLを注射用蒸留水で溶解した
後、適宜希釈したものを用いた。
- CMGL solution The CMGL obtained in Reference Example 1 was dissolved in distilled water for injection, and then appropriately diluted and used.

・AL溶液 実験例1と同じものを用いた。・AL solution The same one as in Experimental Example 1 was used.

(検体) 0.250 EU/mlのET溶液と所定の濃度のCM
GL溶液とを1:1で混合したものを検体とした。
(Sample) ET solution of 0.250 EU/ml and CM of specified concentration
A sample was prepared by mixing the sample with the GL solution at a ratio of 1:1.

(操作法) トキシノメーターET−201(和光純薬工業(株)製
)を用いて、常法に従い以下のように行った。
(Procedure) Using a toxinometer ET-201 (manufactured by Wako Pure Chemical Industries, Ltd.), the following procedure was carried out according to a conventional method.

0.1mlのLAL溶液に0.1mlの検体を加え、攪
拌後、37℃保温下に、上記混合液の所定経過時間に於
ける透過光量の変化を測定した。
0.1 ml of the sample was added to 0.1 ml of the LAL solution, and after stirring, the mixture was kept at 37° C. and the change in the amount of transmitted light over a predetermined elapsed time of the mixture was measured.

このデータを解析して、各検体に於けるDmax及びT
gを求めた。これらの値を、予め所定濃度のETを含む
溶液を検体として得られた。ET濃度とDmax、又は
ET211度とTgとの検量線に外押し、各検体のET
の実測値を求めた。
Analyze this data to determine Dmax and T for each sample.
g was calculated. These values were obtained in advance using a solution containing ET at a predetermined concentration as a sample. Apply external pressure to the calibration curve of ET concentration and Dmax, or ET211 degrees and Tg, and calculate the ET of each sample.
The actual measured value was obtained.

(結果) 測定結果を表2に示す。(result) The measurement results are shown in Table 2.

表2 この結果から明らかな如<、CMGLの共存する溶液中
のET濃度の測定に於いては、測定の指標としてTgよ
りDmaxを用いた方がより測定精度が高くなることが
判る。
Table 2 As is clear from these results, in measuring the ET concentration in a solution in which CMGL coexists, the measurement accuracy is higher when Dmax is used as a measurement index than Tg.

しかしながら、Dmaxを指標として用いた場合でも、
検体中のCMGL濃度が高くなると、その影響によりE
Tの実測値が理論値より高くなっている。従って、実際
に精度良く測定を行うためには、検体中に共存するCM
GL濃度を併行して測定する必要があることが判る。
However, even when using Dmax as an index,
When the concentration of CMGL in the sample increases, the effect is that E
The actual value of T is higher than the theoretical value. Therefore, in order to actually perform accurate measurements, it is necessary to
It can be seen that it is necessary to measure the GL concentration in parallel.

実験例3.PMBを共存させた場合の測定値への影響 PMBがETと特異的に結合して、AL温溶液の反応、
即ちゲル化反応を阻害することは既に知られている。し
かしながら、PMBがGL又は/及びGLDとAL温溶
液の反応を阻害するか否かについては現在のところ知ら
れていない。そこで、PMBを共存させた場合の、CM
GLとAL温溶液の反応進行状況について検討を行った
Experimental example 3. Effect on measured values when PMB coexists PMB specifically binds to ET, and the reaction of the AL warm solution,
That is, it is already known that it inhibits the gelation reaction. However, it is currently unknown whether PMB inhibits the reaction of GL or/and GLD with AL warm solution. Therefore, when PMB coexists, CM
We investigated the progress of the reaction between GL and AL hot solutions.

(試薬) 実施例1と同じものを用いた。(reagent) The same material as in Example 1 was used.

(検体) 0.125 El/mlのET溶液及び1 ng/ml
のCMGL溶液、及び夫々にPMB (和光純薬工業(
株)製、硫酸塩)を0.2 mg/mlとなるように添
加したものを検体とした。
(Sample) 0.125 El/ml ET solution and 1 ng/ml
CMGL solution, and PMB (Wako Pure Chemical Industries, Ltd.) respectively.
The sample was prepared by adding 0.2 mg/ml of sulfate (manufactured by Co., Ltd.) to the sample.

(操作法) トキシノメーターET−201(・和光純薬工業(株)
製)を用いて、常法に従い以下のように行つた。
(Operation method) Toxinometer ET-201 (Wako Pure Chemical Industries, Ltd.)
The following procedure was carried out using a conventional method.

0.1mlのLAL溶液に0.1mlの検体を加え、攪
拌後、37℃保温下に、上記混合液の所定経過時間に於
ける透過光量の変化を測定した。
0.1 ml of the sample was added to 0.1 ml of the LAL solution, and after stirring, the mixture was kept at 37° C. and the change in the amount of transmitted light over a predetermined elapsed time of the mixture was measured.

(結果) ET溶液を検体として得られた結果を第7図に、CMG
L溶液を検体として得られた結果を第8図に夫々示す6
尚、各図中、(1)はPMBを添加していない検体を用
いた場合を、(2)はP’MBを添加した検体を用いた
場合を夫々示す。
(Results) The results obtained using the ET solution as the sample are shown in Figure 7.
The results obtained using the L solution as the sample are shown in Figure 8.6
In each figure, (1) shows the case where a sample to which PMB was not added was used, and (2) shows the case where a sample to which P'MB was added was used.

第7図及び第8図の結果から明らかな如く、ETとAL
温溶液反応はPMBの添加により大きく影響を受けてい
るのに対して、CMGLはPMBの添加による影響を受
けないことが判る。即ち、PMBの共存下に、検体をA
L温溶液反応させ、その混合液の所定経過時間に於ける
透過光量の変化を測定することにより、検体中のGL及
び/又はGLDを選択的に測定できる可能性が示唆され
た。
As is clear from the results in Figures 7 and 8, ET and AL
It can be seen that the warm solution reaction is greatly affected by the addition of PMB, whereas CMGL is not affected by the addition of PMB. That is, in the presence of PMB, the sample is
It was suggested that it is possible to selectively measure GL and/or GLD in a specimen by reacting with a L-warm solution and measuring the change in the amount of transmitted light of the mixture over a predetermined elapsed time.

実験例4゜ 実験例3の結果から、PMBの共存下に、検体をAL温
溶液反応させ、その混合液の所定経過時間に於ける透過
光量の変化を測定することにより、検体中のGL又は/
及びGLDのみを選択的に測定できる可能性が示唆され
た。そこでPMB、ET又はPMBとETが共存した場
合に、CMG Lへの検量線へ及ぼす影響について検討
を行った。
Experimental Example 4゜From the results of Experimental Example 3, GL in the specimen or /
It was suggested that only GLD and GLD could be selectively measured. Therefore, we investigated the effect on the calibration curve for CMGL when PMB, ET, or PMB and ET coexist.

(試薬) 実施例1と同じものを用いた。(reagent) The same material as in Example 1 was used.

(検体) 所定濃度のCMGL溶液、夫々のCMGL溶液にPMB
 (硫酸塩)を0.2 o+g/+1及びETを0.1
25 EU/mlとなるように添加したものを検体とし
た。
(Sample) CMGL solution with a predetermined concentration, PMB in each CMGL solution
(sulfate) 0.2 o+g/+1 and ET 0.1
The sample was added at a concentration of 25 EU/ml.

(操作法) トキシノメーターET−201(和光純薬工業(株)製
)を用いて、常法に従い以下のように行った。
(Procedure) Using a toxinometer ET-201 (manufactured by Wako Pure Chemical Industries, Ltd.), the following procedure was carried out according to a conventional method.

0.1+++1のLAI、溶液に0.1mlの検体を加
え、攪拌後、37℃保温下に、上記混合液の所定経過時
間に於ける透過光量の変化を測定し、各検体の透過光量
比が5%減少するのに要する時間Tg5を求めた。
Add 0.1ml of the sample to the LAI solution of 0.1+++1, stir it, keep it warm at 37℃, measure the change in the amount of transmitted light of the above mixture over a predetermined elapsed time, and calculate the ratio of the amount of transmitted light for each sample. The time Tg5 required for a 5% decrease was determined.

(結果) 結果を第9図に示す。尚、図中、−・−はCMGLのみ
を含む検体を、−〇−はCMGLとETを含む検体を、
−Δ−は、CMGL、PMB及びETを含む検体を用い
た場合の結果を夫々示す。
(Results) The results are shown in Figure 9. In the figure, -・- indicates a sample containing only CMGL, -〇- indicates a sample containing CMGL and ET,
-Δ- indicates the results when samples containing CMGL, PMB, and ET were used, respectively.

この結果から明らかな如く、CMGLとETを含む検体
を用いた場合には、CMGL濃度が低下するに従って、
各検体のTg5は、CMGLのみを含む検体により得ら
れたTg5とCMGL濃度との検量線(以下、CMGL
検量線と略記する。)から解離したが、CMGL、PM
B及びETを含む検体を用いた場合には、各検体のTg
5はCMGL検量線に一致した。
As is clear from this result, when using a sample containing CMGL and ET, as the CMGL concentration decreases,
The Tg5 of each sample is determined by the calibration curve between Tg5 and CMGL concentration obtained from a sample containing only CMGL (hereinafter referred to as CMGL
Abbreviated as calibration curve. ), but CMGL, PM
When using samples containing B and ET, the Tg of each sample
5 matched the CMGL standard curve.

以上の結果から、検体にPMBを添加することにより各
検体のGL又は/及びGLDを定量することができるこ
とが判った。
From the above results, it was found that GL and/or GLD of each specimen can be quantified by adding PMB to the specimen.

実施例2゜ (被検試料) 市販の酸化銅アンモニア再生セルロース膜製中空糸フィ
ルター(有効濾過面積150 c+n2)を注射用蒸留
水(大塚製薬(株)製) 50m1で洗浄し、得られた
洗浄液を被検試料とした。
Example 2゜ (test sample) A commercially available cupric ammonia oxide regenerated cellulose membrane hollow fiber filter (effective filtration area 150 c+n2) was washed with 50 ml of distilled water for injection (manufactured by Otsuka Pharmaceutical Co., Ltd.), and the resulting washing solution was used as the test sample.

(検体) 被検試料の原液及びこれを注射用蒸留水で10倍希釈し
たもの、また夫々に、ETを0.25 EU/m1又は
PMBを0.2 mg/mlとなるように添加したもの
を検体とした。
(Specimen) The stock solution of the test sample, the 10-fold dilution of this with distilled water for injection, and the ET added to 0.25 EU/ml or PMB 0.2 mg/ml, respectively. was used as the specimen.

(LAL溶液) 実験例1と同じものを用いた。(LAL solution) The same one as in Experimental Example 1 was used.

(操作法) トキシノメーターET−201(和光純薬工業(株)製
)を用いて、常法に従い以下のように行った。
(Procedure) Using a toxinometer ET-201 (manufactured by Wako Pure Chemical Industries, Ltd.), the following procedure was carried out according to a conventional method.

0.1mlのL A L溶液に0.1mlの検体を加え
、攪拌後、37℃保温下に、上記混合液の所定経過時間
に於ける透過光量の変化を測定し、このデータからDm
ax及びTPを求めた。
Add 0.1 ml of the sample to 0.1 ml of L A L solution, stir, and then measure the change in the amount of transmitted light of the above mixture over a predetermined elapsed time while keeping it warm at 37°C. Based on this data, Dm
Ax and TP were determined.

(結果) 得られたDmaxとTPとの相関関係を第10図に示す
。尚、図中、ムは被検試料原液を検体として得られた結
果を、Δは10倍希釈した被検試料を検体として得られ
た結果を、閣と口は夫々にPMBを0.2 rag/m
l添加して調製した検体により得られた結果を、マとは
夫々にETを0.25 EU/ml添加して調製した検
体により得られた結果を夫々示す。また、図中の○は実
験例1で用いた所定濃度のGL温溶液GLとしてカード
ラン含有)により得られた結果を示し、図中の直線はこ
れらを結んだものである。
(Results) The correlation between the obtained Dmax and TP is shown in FIG. In the figure, Mu indicates the result obtained using the test sample stock solution as the sample, Δ indicates the result obtained using the test sample diluted 10 times, and Kaku and Kuchi each indicate the result obtained using PMB at 0.2 rag. /m
The results obtained with the sample prepared by adding 0.25 EU/ml of ET are shown as the results obtained with the sample prepared by adding 0.25 EU/ml of ET, respectively. In addition, ○ in the figure indicates the results obtained with the GL warm solution (GL containing curdlan) at a predetermined concentration used in Experimental Example 1, and the straight line in the figure connects these results.

第10図より明らかな如く、被検試料及びそれを10倍
希釈したものを検体として得られたD max −T 
pをプロットした場合、GL温溶液より得られたDma
xとTpとの相関関係を示す直線上にプロットされ、被
検試料に含まれている物質はGL又は/及びG L D
と推察された。
As is clear from Fig. 10, the D max -T obtained using the test sample and its 10-fold dilution as the test sample.
When plotting p, the Dma obtained from the GL warm solution
Plotted on a straight line showing the correlation between x and Tp, the substance contained in the test sample is GL or/and GL D
It was inferred that.

更に、PMBを添加した検体により得られたDwaxと
TpはPMB無添加の検体の測定結果と良く一致し、こ
のことから被検試料中に含まれているゲル化物質はGL
又は/及びGLDのみであると推察された。また、ここ
で得られたDmaxを、予め作成しておいたGL(カー
ドラン)il1度とDmaxとの検量線に外挿したとこ
ろ、被検試料中のG L又は/及びGLD濃度はカード
ランとして約110g/mlと算出された。
Furthermore, the Dwax and Tp obtained from the sample to which PMB was added were in good agreement with the measurement results for the sample to which no PMB was added.
It was inferred that it was only GLD or/and GLD. In addition, when the Dmax obtained here was extrapolated to a previously prepared calibration curve of GL (curdlan) 1 degree and Dmax, it was found that the GL and/or GLD concentration in the test sample was It was calculated to be about 110 g/ml.

また、ETを添加した検体により得られたDmaxを、
予め作成しておいたET濃度とDmaxとの検量線に外
挿し、各々のET濃度を算出したところ、被検試料原液
を基に調製された検体中のET濃度は0.384 Eυ
/ml、10倍希釈した被検試料を基に調製された検体
中のET濃度は0.214 EU/m1と、添加された
ET濃度とほぼ一致した。
In addition, the Dmax obtained from the sample to which ET was added is
By extrapolating to the calibration curve of ET concentration and Dmax created in advance and calculating each ET concentration, the ET concentration in the sample prepared based on the test sample stock solution was 0.384 Eυ
The ET concentration in the sample prepared based on the test sample diluted 10 times with 0.214 EU/ml was 0.214 EU/ml, which was almost the same as the added ET concentration.

[発明の効果] 以上述べた如く、本発明は、試料中のAL温溶液反応し
てゲル化反応を起こす物質が、ETであるか否かを容易
に判別できる方法、或は試料中のETとGL又は/及び
GLDの濃度を推定或は測定できる方法、更には得られ
たET濃度の測定値の信頼性を検定できる方法を提供す
るものであり、従来の方法では判別及び定量の難しかっ
た、試料中に共存するETとGL又は/及びGLDの判
別及び定量を簡便に且つ精度良く行える点に甚だ顕著な
効果を奏するものであり、斯業に貢献するところ大なる
発明である。
[Effects of the Invention] As described above, the present invention provides a method for easily determining whether or not a substance that reacts with an AL hot solution in a sample to cause a gelation reaction is ET, or This method provides a method for estimating or measuring the concentration of ET and GL and/or GLD, and also a method for testing the reliability of the obtained measured value of ET concentration, which was difficult to distinguish and quantify using conventional methods. This invention has a remarkable effect in that it is possible to easily and accurately discriminate and quantify ET and GL and/or GLD coexisting in a sample, and it is a great invention that contributes to this industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実験例1に於いて得られた。エンドトキシン
(以下、ETと略記する。)を含む検体とカブトガニの
血球成分抽出液(以下、AL温溶液略記する。)とを反
応させた際の反応液の所定経過時間に於ける透過光量の
変化を測定した結果を示し、各検体毎に横軸の各経過時
間(分)に対して得られた透過光量比(%)(AL温溶
液検体との混合直後の透過光量を100%とした場合の
、所定経過時間に於ける透過光量の相対値。)の値を縦
軸に沿ってプロットした点を結んだものである。 また、Thは透過光量比のある特定の値を示す。 第2図は、実験例1に於いて得られた、β−1,3−グ
ルカン(以下、GLと略記する。)を含む検体とAL温
溶液を反応させた際の反応液の所定経適時間に於ける透
過光量の変化を測定した結果を示し、各検体毎に、横軸
の各経過時間(分)に対して得られた透過光量比(%)
の値を縦軸に沿ってプロットした点を結んだものである
。また、Thは透過光量比のある特定の値を示す。 第3図は、本発明に於いて用いられる、DmaxとTp
の求め方を示した図であり、図中、aはETを含む検体
とA L溶液とを反応させた際の反応液の所定経過時間
に於ける透過光量比の変化を測定した結果(曲線)を示
し、横軸の各経過時間に対して得られた透過光量比の値
を縦軸に沿ってプロットした点を結んだものであり、b
は曲線を微分することにより得られる微分係数の曲線を
示し。 横軸の各経過時間に対して得られた微分係数の値を、縦
軸に沿ってプロットした点を結んだものである。また、
T hは透過光量比のある特定の値を示す。 第4図は、実験例1に於いて得られた、所定のET又は
GLを含む検体により得られたDmaxとTpの相関関
係を示したものであり、横軸の各TP(分)に対して得
られたDmaxを縦軸に沿ってプロンl−した点を結ん
だものである。図中、・はETを含む検体により得られ
た測定の結果を、OはGLを含む検体により得られた結
果を夫々示す。 第5図は、実験例2に於いて得られた、所定のET、G
L、又はET及びGLを含む検体により得られたDma
xとTPの相関関係を示したものであり、横軸の各T 
p (分)に対して得られたDmaxを縦軸に沿ってプ
ロットしたものである。図中、・はETを含む検体によ
り得られた測定の結果を、OはGLを含む検体により得
られた結果を、ΔはETとGLとを含む検体により得ら
れた結果を夫々示す。 第6図は、実験例2に於いて得られた所定のET又はE
TとGLとを含む検体のDmaxとET濃度(El/m
1.)との相関関係を示したものであり、・はETのみ
を含む検体により得られた結果を、Oは所定のETと0
.1 ng/mlのGLを含む検体により得られた結果
を、ムは所定のETと 1 ng/mlのGLを含む検
体により得られた結果を、△は所定のETと 10 B
/mlのGLを含む検体により得られた結果を、口は所
定のETと100 ng/mlの6丁7を含む検体によ
り得られた結果を夫々示す。 第7図は、実験例3に於いて得られた、ETを含む検体
とAL温溶液を反応させる際に、ポリミキシンB CJ
EA下、PMBと略記する。)を添加した場合としなか
った場合の、反応液の所定経過時間に於ける透過光量の
変化を測定した結果を示し、横軸の各経過時間(分)に
対して得られた透過光量比(%)の値を縦軸に沿ってプ
ロットした点を結んだものである。図中、(1)はPM
Bを添加していない場合を、(2)はPMBを添加した
場合を夫々示す。また、Thは透過光量比のある特定の
値を示す。 第8図は、実験例3に於いて得られた、カルボキシメチ
ル化GL(以下、CMGLと略記する。)を含む検体と
AL温溶液を反応させる際に、PMBを添加した場合と
しなかった場合の反応液の所定経過時間に於ける透過光
量の変化を測定した結果を示し、横軸の各経過時間(分
)に対して得られた透過光量比(%)の値を縦軸に沿っ
てプロットした点を結んだものである。図中、(1)は
PMBを添加していない場合を、(2)はPMBを添加
した場合を夫々示す。また、Thは透過光量比のある特
定の値を示す。 第9図は、実験例4に於いて得られた、CMGL、CM
GLとET、或はCMGI、ET及びPMBとを含む検
体とAL温溶液を反応させた結果得られた、各反応液の
透過光量比が5%減少するのに要する時間Tg5とCM
GL211度との関係を示し、横軸の各CMGL濃度(
ng/ml)に対して得られたTg5(分)を縦軸に沿
ってプロットした点を結んだものである。図中、−・−
はCMGLのみを含む検体を、−〇−はCMGLとET
を含む検体を、−△−はCMGLとETとPMBとを含
む検体を用いた場合の結果を夫々示す。 第10図は、実施例2において得られたDmaxとTp
(分)との相関関係を示す図であり、ムは被検試料原液
の結果を、Δは10倍希釈被検試料の結果を、■と口は
夫々にPMBを0.2 B/ml添加して調製した検体
により得られた結果を、また、マとは夫々にE Tを0
.25 EU/ml添加して調製した検体により得られ
た結果を夫々示す。また、図中の○は実験例1で用いた
所定濃度のGL温溶液GLとしてカードラン含有)によ
り得られた結果を示し、図中の直線はこれらを結んだも
のである。 特許出願人 和光純薬工業株式会社 第 図 第 図 (#) 工−ンドト”+ > ンi!(ELJ/m I )第 図 第 図 経 ↓時開 (炉) 第 図 第 図 p (分) 平成元年12月 4日
FIG. 1 was obtained in Experimental Example 1. Change in the amount of transmitted light of a reaction solution over a predetermined elapsed time when a specimen containing endotoxin (hereinafter abbreviated as ET) is reacted with a horseshoe crab blood cell component extract (hereinafter abbreviated as AL warm solution) The results are shown for the transmitted light amount ratio (%) obtained for each elapsed time (minutes) on the horizontal axis for each sample (when the transmitted light amount immediately after mixing with the AL warm solution sample is taken as 100%). The relative value of the amount of transmitted light over a predetermined elapsed time.) is plotted along the vertical axis and the points are connected. Further, Th indicates a specific value of the transmitted light amount ratio. Figure 2 shows the predetermined dosage of the reaction solution obtained in Experimental Example 1 when the sample containing β-1,3-glucan (hereinafter abbreviated as GL) was reacted with the AL warm solution. Shows the results of measuring changes in the amount of transmitted light over time, and shows the ratio (%) of the amount of transmitted light obtained for each elapsed time (minutes) on the horizontal axis for each specimen.
It connects the points where the values of are plotted along the vertical axis. Further, Th indicates a specific value of the transmitted light amount ratio. FIG. 3 shows Dmax and Tp used in the present invention.
In the figure, a is the result of measuring the change in the ratio of transmitted light over a predetermined elapsed time of the reaction solution when a sample containing ET was reacted with the AL solution (curve ), which connects the points obtained by plotting the transmitted light amount ratio values obtained for each elapsed time on the horizontal axis along the vertical axis, and b
shows the curve of the differential coefficient obtained by differentiating the curve. The value of the differential coefficient obtained for each elapsed time on the horizontal axis is plotted along the vertical axis, and the points are connected. Also,
T h indicates a specific value of the transmitted light amount ratio. Figure 4 shows the correlation between Dmax and Tp obtained from samples containing predetermined ET or GL obtained in Experimental Example 1, and for each TP (minutes) on the horizontal axis. It connects the points obtained by plotting Dmax along the vertical axis. In the figure, * indicates the measurement results obtained with the sample containing ET, and O indicates the results obtained with the sample containing GL. FIG. 5 shows the predetermined ET, G obtained in Experimental Example 2.
Dma obtained from samples containing L, or ET and GL
It shows the correlation between x and TP, and each T on the horizontal axis
The obtained Dmax is plotted along the vertical axis against p (min). In the figure, * indicates the measurement results obtained with the sample containing ET, O indicates the results obtained with the sample containing GL, and Δ indicates the results obtained with the sample containing ET and GL. FIG. 6 shows the predetermined ET or E obtained in Experimental Example 2.
Dmax and ET concentration (El/m
1. ) indicates the correlation between the sample containing only ET and O indicates the correlation between the predetermined ET and 0.
.. △ indicates the results obtained with the sample containing 1 ng/ml GL, △ indicates the predetermined ET and 10B.
The results obtained with a sample containing GL/ml are shown, and the results obtained with a sample containing a given ET and 100 ng/ml of 6-7 are shown. FIG. 7 shows that when reacting the sample containing ET obtained in Experimental Example 3 with the AL warm solution, polymyxin B CJ
Under EA, it is abbreviated as PMB. ) is added and not added, the results of measuring the change in the amount of transmitted light over a predetermined elapsed time of the reaction solution are shown, and the ratio of the amount of transmitted light obtained for each elapsed time (minutes) on the horizontal axis ( %) values plotted along the vertical axis. In the figure, (1) is PM
(2) shows the case where B is not added, and (2) shows the case where PMB is added. Further, Th indicates a specific value of the transmitted light amount ratio. Figure 8 shows the cases in which PMB was added and not when reacting the sample containing carboxymethylated GL (hereinafter abbreviated as CMGL) with the AL warm solution obtained in Experimental Example 3. It shows the results of measuring the change in the amount of transmitted light of the reaction solution over a predetermined elapsed time, and the value of the ratio of transmitted light amount (%) obtained for each elapsed time (minutes) on the horizontal axis is plotted along the vertical axis. The plotted points are connected. In the figure, (1) shows the case where PMB is not added, and (2) shows the case where PMB is added. Further, Th indicates a specific value of the transmitted light amount ratio. Figure 9 shows CMGL, CM obtained in Experimental Example 4.
Time required for the transmitted light amount ratio of each reaction solution to decrease by 5% Tg5 and CM obtained as a result of reacting a sample containing GL and ET, or CMGI, ET, and PMB with an AL warm solution
The relationship with GL211 degrees is shown, and each CMGL concentration (
ng/ml) versus Tg5 (min) plotted along the vertical axis. In the figure, −・−
indicates a sample containing only CMGL, -〇- indicates a sample containing CMGL and ET
-Δ- indicates the results when using a sample containing CMGL, ET, and PMB. FIG. 10 shows Dmax and Tp obtained in Example 2.
This is a diagram showing the correlation with (min), where MU is the result of the test sample stock solution, Δ is the result of the 10-fold diluted test sample, and ■ and 0.2 B/ml of PMB are added to each. The results obtained with the samples prepared by
.. The results obtained with samples prepared by adding 25 EU/ml are shown. In addition, ○ in the figure indicates the results obtained with the GL warm solution (GL containing curdlan) at a predetermined concentration used in Experimental Example 1, and the straight line in the figure connects these results. Patent applicant: Wako Pure Chemical Industries, Ltd. December 4, 1989

Claims (7)

【特許請求の範囲】[Claims] (1)被検試料とカブトガニ血球成分抽出液(以下、A
L溶液と略記する。)とを反応させた際に生ずるゲル化
反応に基づく光学的変化を測定し、所定経過時間に於け
るゲル化反応に基づく光学的変化の程度を表わす曲線の
形から、被検試料中に含まれるゲル化反応を生じさせる
物質がエンドトキシン(以下、ETと略記する。)であ
るか否かを判別する方法。
(1) Test sample and horseshoe crab blood cell component extract (hereinafter referred to as A
It is abbreviated as L solution. ) is measured, and from the shape of the curve representing the extent of the optical change due to the gelation reaction over a predetermined elapsed time, it is determined whether the sample contains A method for determining whether a substance that causes a gelation reaction is endotoxin (hereinafter abbreviated as ET).
(2)所定経過時間に於けるゲル化反応に基づく光学的
変化の程度を表わす曲線を微分して得られる微分係数の
最大値とその最大値に到達するまでの経過時間を指標と
することにより行う、請求項1に記載の判別方法。
(2) By using as an index the maximum value of the differential coefficient obtained by differentiating the curve representing the degree of optical change due to the gelation reaction over a predetermined elapsed time and the elapsed time until reaching that maximum value. The discrimination method according to claim 1, wherein the discrimination method is performed.
(3)被検試料中に含まれる、該ゲル化反応を生じさせ
るET以外の物質がβ−1,3−グルカン(以下、GL
と略記する。)又は/及びその誘導体(以下、GLDと
略記する。)である、請求項1又は2に記載の判別方法
(3) The substance other than ET that causes the gelation reaction contained in the test sample is β-1,3-glucan (hereinafter, GL
It is abbreviated as ) or/and a derivative thereof (hereinafter abbreviated as GLD), the discrimination method according to claim 1 or 2.
(4)被検試料とAL溶液とを反応させた際に生ずるゲ
ル化反応に基づく光学的変化を測定することにより、被
検試料中のET濃度及びGL又は/及びGLD濃度を測
定する方法に於いて、所定経過時間に於けるゲル化反応
に基づく光学的変化の程度を表わす曲線を微分して得ら
れる微分係数の最大値とその最大値に到達するまでの経
過時間から、被検試料中のET濃度及び、GL又は/及
びGLD濃度を推定する方法。
(4) A method for measuring the ET concentration and GL or/and GLD concentration in a test sample by measuring the optical change based on the gelation reaction that occurs when the test sample and AL solution are reacted. Based on the maximum value of the differential coefficient obtained by differentiating the curve representing the degree of optical change due to the gelation reaction over a predetermined elapsed time and the elapsed time until the maximum value is reached, the A method for estimating the ET concentration and GL or/and GLD concentration of.
(5)被検試料とAL溶液とを反応させた際に生ずるゲ
ル化反応に基づく光学的変化を測定することにより、被
検試料中のET濃度を測定する方法に於いて、所定経過
時間に於けるゲル化反応に基づく光学的変化の程度を表
わす曲線を微分して得られる微分係数の最大値から、被
検試料中のET濃度を測定する方法。
(5) In the method of measuring the ET concentration in a test sample by measuring the optical change based on the gelation reaction that occurs when the test sample and the AL solution are reacted, A method for measuring the ET concentration in a test sample from the maximum value of the differential coefficient obtained by differentiating a curve representing the degree of optical change due to a gelation reaction.
(6)ポリミキシンBの共存下に被検試料とAL溶液と
を反応させた際に生ずるゲル化反応に基づく光学的変化
を測定することにより、被検試料中のGL又は/及びG
LDの濃度を測定し、得られた被検試料中のGL又は/
及びGLDの濃度から、請求項5に記載の方法により得
られた被検試料中のET濃度の信頼性を検定する方法。
(6) By measuring the optical change based on the gelation reaction that occurs when the test sample and AL solution are reacted in the presence of polymyxin B, GL or/and G
The concentration of LD is measured, and the concentration of GL or/in the obtained test sample is measured.
A method for testing the reliability of the ET concentration in a test sample obtained by the method according to claim 5 from the concentration of ET and GLD.
(7)ポリミキシンBの共存下に被検試料とAL溶液と
を反応させた際に生ずるゲル化反応に基づく光学的変化
を測定することにより、被検試料中のGL又は/及びG
LDの濃度を測定する方法。
(7) By measuring the optical change based on the gelation reaction that occurs when the test sample and AL solution are reacted in the presence of polymyxin B, GL or/and G
A method of measuring the concentration of LD.
JP22596788A 1988-09-09 1988-09-09 Separate measurement method Expired - Lifetime JPH07117543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22596788A JPH07117543B2 (en) 1988-09-09 1988-09-09 Separate measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22596788A JPH07117543B2 (en) 1988-09-09 1988-09-09 Separate measurement method

Publications (2)

Publication Number Publication Date
JPH0274864A true JPH0274864A (en) 1990-03-14
JPH07117543B2 JPH07117543B2 (en) 1995-12-18

Family

ID=16837692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22596788A Expired - Lifetime JPH07117543B2 (en) 1988-09-09 1988-09-09 Separate measurement method

Country Status (1)

Country Link
JP (1) JPH07117543B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2261642A1 (en) * 2008-03-19 2010-12-15 Toru Obata Gel particle measuring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2261642A1 (en) * 2008-03-19 2010-12-15 Toru Obata Gel particle measuring apparatus
EP2261642A4 (en) * 2008-03-19 2011-10-26 Toru Obata Apparatus for measuring formation of gel particles
US8462340B2 (en) 2008-03-19 2013-06-11 Toru Obata Gel particle measuring apparatus

Also Published As

Publication number Publication date
JPH07117543B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
Smith et al. Colorimetric method for the assay of heparin content in immobilized heparin preparations
JPH0715474B2 (en) Endotoxin assay
US3485587A (en) Protein indicator
US5155032A (en) Horseshoe crab amebocyte lysate factor g activation inhibitor
US4839295A (en) Measurement of protein using bicinchoninic acid
US5474984A (en) Horseshoe crab amebocyte lysate factor G activation inhibitor
US4485176A (en) Turbidimetric method for measuring protein in urine and cerebrospinal fluid
CA1144461A (en) Chromogenic detection of endotoxin in human serum and plasma
JP4154072B2 (en) Endotoxin specific assay
JPH0274864A (en) Fractional measurement
CN109632740B (en) Method for detecting citric acid in aqueous solution
CN111190003A (en) Retinol binding protein detection kit and preparation method thereof
JP2688773B2 (en) Endotoxin inactivation method
JP3822974B2 (en) Method for producing endotoxin-specific lysate
Wilson et al. Improvements in the determination of small amounts of sulphur
CN115420716B (en) Method for detecting content of white hanging block and application thereof
Golden et al. A method for the quantitative determination of bilirubin in urine
CN114441661B (en) Method for measuring content of polyacrylamide network structure
CN114149593B (en) Metal organic framework UiO-66-NH 2 And preparation method and application thereof
Chiamori et al. Determination of calcium in biologic material by the chloranilate method
Lawrie A simple turbidimetric method of estimating blood urea
CN1595154B (en) Refined citric acid quantitative determination reagent
Hoffpauir et al. Determination of Glycosidic Methoxyl
Laitinen et al. Molecular Weight and Mercaptan Content of Mixtures of Primary Mercaptans. Gravimetric Determination
Van Slyke et al. Determination of polyglucose in blood and urine.