JPH0274795A - Tunnel and construction method for tunnel - Google Patents

Tunnel and construction method for tunnel

Info

Publication number
JPH0274795A
JPH0274795A JP63225885A JP22588588A JPH0274795A JP H0274795 A JPH0274795 A JP H0274795A JP 63225885 A JP63225885 A JP 63225885A JP 22588588 A JP22588588 A JP 22588588A JP H0274795 A JPH0274795 A JP H0274795A
Authority
JP
Japan
Prior art keywords
tunnel
ground
layer
vibration energy
energy absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63225885A
Other languages
Japanese (ja)
Other versions
JPH0663433B2 (en
Inventor
Ichiro Fukai
深井 一郎
Akihiro Moriyoshi
昭博 森吉
Mikio Takeuchi
幹雄 竹内
Yoshiaki Idota
井戸田 芳昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Original Assignee
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp filed Critical Okumura Corp
Priority to JP63225885A priority Critical patent/JPH0663433B2/en
Publication of JPH0274795A publication Critical patent/JPH0274795A/en
Publication of JPH0663433B2 publication Critical patent/JPH0663433B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

PURPOSE:To absorb difference in displacement quantities between the rigid ground and the soft ground when an earthquake occurs by providing a vibration energy absorbing layer softer than the ground and having viscosity and elasticity between the ground excavated and the outer peripheral surface of a tunnel covering layer. CONSTITUTION:A vibration energy absorbing layer 5 is formed in a gap portion between the outer periphery of a covering layer 4 for a submarine tunnel 3 and the ground. A layer mixing bubbles or water into water solution of water soluble asphalt and solidifying the same is disirable for the vibration energy absorbing layer 5, but a compression deformable layer as such uniform and having flexibility like rubber state of solidified material or sponge state material will do besides this layer. When an earthquake occurs and the ground is dis placed, it is possible that the vibration energy absorbing layer is compressed in accordance to the variation quantity, quake acting to the tunnel covering layer is damped and stress generated in the tunnel covering layer is lowered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は減震構造を有するトンネル及びその築造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a tunnel having an earthquake-reducing structure and a method for constructing the same.

〔従来の技術〕[Conventional technology]

近年、シールド工法の目覚ましい進歩により10メート
ル以上の大口径のトンネルが構築されるようになった。
In recent years, remarkable advances in shield construction methods have enabled the construction of large-diameter tunnels of 10 meters or more.

このような大口径のトンネルを構築するシールド工法と
しては、従来から、シールド掘削機によって地盤を掘削
しながら、その掘進に従ってシールド掘削機のテール部
後方にセグメントを組立てていくと共に掘削された壁面
とセグメント間に生じる空隙部にトンネル内からモルタ
ル等の裏込材料を注入、固化させてセグメントによるト
ンネル覆工と掘削地盤との一体化を計り、且つその裏込
材料によって地盤の崩壊を防止すると共に地盤からトン
ネル内に地下水等の浸入を防止することが行われている
Conventionally, the shield construction method for constructing such large-diameter tunnels involves excavating the ground with a shield excavator, and assembling segments behind the tail of the shield excavator as the excavation progresses. A backing material such as mortar is injected from inside the tunnel into the gap created between the segments and solidified to integrate the tunnel lining with the excavated ground using the segments, and the backing material prevents the ground from collapsing. Measures are being taken to prevent groundwater from entering the tunnel from the ground.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、世界有数の地震国である我が国において
は、当然のことながらトンネルを高い耐震構造にして安
全性を確保しなければならないが、上記したような従来
のトンネル構造によれば、トンネル自体に耐震性を付与
しているにすぎないために、軟質地盤や地盤急変部、特
に、海底トンネルのように陸地部から海底部へと地質の
異なる層に亘ってトンネルを築造する場合には、地震が
発生した際に、異なる地層の変形量に大きな差異が生じ
てその境界部では変形量の差に応じた応力がトンネル構
造体に作用し、そのため、トンネルが破壊する虞れがあ
るという問題点を有する。
However, in Japan, one of the world's most earthquake-prone countries, tunnels must naturally have a highly earthquake-resistant structure to ensure safety. Therefore, when building tunnels over different geological layers from the land to the seabed, such as undersea tunnels, earthquakes can occur in soft ground or in sudden changes in the ground. When this occurs, there is a large difference in the amount of deformation between different strata, and at the boundary, stress corresponding to the difference in the amount of deformation acts on the tunnel structure, which can cause the tunnel to collapse. have

又、掘削された壁面とセグメント間に注入する裏込材料
はセメント系であるから、地震動等によってクランクが
生じ易く、トンネル内に漏水が発生することになる。
Furthermore, since the backfilling material injected between the excavated wall surface and the segment is cement-based, it is likely to be cranked by earthquake vibrations, etc., resulting in water leakage within the tunnel.

本発明はこのような問題点を解消したトンネル及びトン
ネルの築造方法の提供を目的とするものである。
It is an object of the present invention to provide a tunnel and a method for constructing a tunnel that eliminates such problems.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明のトンネル構造は、
掘削地盤とトンネル覆工外周面との間に地盤よりも柔軟
で粘性及び弾性を有する振動エネルギー吸収層を設けた
ものであり、このような振動エネルギー吸収層としては
水溶性アスファルトの水溶液に気泡や水分を混在させて
固化させた層が望ましく、さらに、掘削地盤とトンネル
覆工外周面との間の複数個所に弾性スペーサ部材を介在
させてトンネル覆工外周に均一な厚みを有する振動エネ
ルギー吸収層を形成することが好ましい。
In order to achieve the above object, the tunnel structure of the present invention has the following features:
A vibration energy absorption layer that is softer, more viscous, and more elastic than the ground is provided between the excavated ground and the outer circumferential surface of the tunnel lining, and this vibration energy absorption layer is made by adding air bubbles and A layer that is solidified with moisture mixed therein is desirable, and elastic spacer members are interposed at multiple locations between the excavated ground and the outer circumferential surface of the tunnel lining to create a vibration energy absorbing layer having a uniform thickness around the outer circumference of the tunnel lining. It is preferable to form

又、このようなトンネルの築造方法としては、シールド
掘削機によって地盤を掘削すると共に該シールド掘削機
のテール部後方に掘進に従ってセグメントを組立てるこ
とによりトンネル覆工を形成していく際に、シールド掘
削機のテール部の後端又はセグメントの適所から掘削地
盤と覆工外周面との隙間に水溶性アスファルト水溶液等
の裏込材料を注入し、該裏込材料の固化によって地盤よ
りも柔らかい振動エネルギー吸収層を形成することを特
徴とするものである。
In addition, as a method for constructing such a tunnel, when forming a tunnel lining by excavating the ground with a shield excavator and assembling segments behind the tail of the shield excavator according to the excavation, the shield excavation is carried out. A backing material such as a water-soluble asphalt solution is injected into the gap between the excavated ground and the outer circumferential surface of the lining from the rear end of the machine's tail or at an appropriate point in the segment, and the solidification of the backing material absorbs vibration energy that is softer than the ground. It is characterized by forming a layer.

この際、セグメントの組立時に、該セグメントの複数個
所に配設したスペーサ部材を掘削地盤に向かって突出さ
せて掘削地盤の壁面に当接させることにより、セグメン
トを掘削地盤の壁面に対して所望間隔を存した状態に°
保持し、この間隔部に上記裏込材料を注入してトンネル
覆工外周に均一な厚みを有する振動エネルギー吸収層を
形成するものである。
At this time, when assembling the segments, spacer members arranged at multiple locations on the segment are made to protrude toward the excavated ground and come into contact with the wall of the excavated ground, thereby allowing the segment to be spaced at a desired distance from the wall of the excavated ground. °
The vibration energy absorbing layer having a uniform thickness is formed on the outer periphery of the tunnel lining by injecting the above-mentioned lining material into this space.

〔作  用〕[For production]

上記のように構成したトンネルの構造によれば、地震が
発生した場合、地盤が変位するが、その変動量に応じて
振動エネルギー吸収層が圧縮し、トンネル覆工に作用す
る地震動を減震させてトンネル覆工に発生する応力を低
下させる。
According to the tunnel structure configured as described above, when an earthquake occurs, the ground displaces, but the vibration energy absorption layer compresses according to the amount of displacement, reducing the seismic motion acting on the tunnel lining. This reduces the stress generated in the tunnel lining.

このような減震作用は、海底トンネルのように地質の異
なる層に亘って築造されたトンネルの場合において効果
的に行われ、両地層の変位量が異なってもこれらの両地
層間に亘って一連に設けた振動エネルギー吸収層により
両地層からの振動エネルギーが平均化されるように吸収
され、トンネル覆工の長さ方向に亘って発生する応力を
均一的に低下させて地層境界部における局部的な応力発
生をなくするものである。
This seismic attenuation effect is effective in tunnels constructed across different geological layers, such as undersea tunnels, and even if the amount of displacement between the two strata is different, the Vibration energy from both strata is absorbed by a series of vibration energy absorption layers so as to be averaged, reducing the stress generated uniformly along the length of the tunnel lining and reducing stress locally at the stratum boundary. This eliminates the generation of stress.

又、このような地盤よりも柔らかい振動エネルギー吸収
層を形成するには、トンネルを構築する際に、シールド
掘削機のテール部の後端又はセグメントの適所から掘削
地盤と覆工外周面との隙間に水溶性アスファルト水溶液
等の裏込材料を注入し、該裏込材料の固化によって容易
に形成でき、この際、セグメントの外周と掘削地盤間を
スペーサ部材によって所望間隔を存した状態に保持し、
この間隔部に上記裏込材料を注入することによってトン
ネル覆工外周に均一な厚みを有する振動エネルギー吸収
層を形成することができる。
In addition, in order to form a vibration energy absorption layer that is softer than the ground, when constructing a tunnel, the gap between the excavated ground and the outer circumferential surface of the lining should be It can be easily formed by injecting a backing material such as a water-soluble asphalt aqueous solution and solidifying the backing material, and at this time, maintaining a desired distance between the outer periphery of the segment and the excavated ground with a spacer member,
By injecting the backing material into this space, a vibration energy absorbing layer having a uniform thickness can be formed on the outer periphery of the tunnel lining.

〔実 施 例〕〔Example〕

本発明の実施例を図面について説明すると、(1)は陸
地の地盤であって剛性の高い地質を有し、(2)は海底
部の軟弱地盤であって剛性の小さい堆積層から成ってい
る。
To explain the embodiment of the present invention with reference to the drawings, (1) is the ground on land and has a geological structure with high rigidity, and (2) is the soft ground on the ocean floor and is made up of a sedimentary layer with low rigidity. .

(3)は陸地の剛性地盤(1)から海底部の軟質地盤(
2)に亘って築造された海底トンネルで、その覆工(4
)の外周と地盤(1)(2)との間隙部に所望厚さを有
する振動エネルギー吸収層(5)がトンネル(3)の全
長に亘って略均−な厚みで形成されである。
(3) varies from the rigid ground on land (1) to the soft ground on the ocean floor (
This is an undersea tunnel constructed over 2), and its lining (4)
) A vibration energy absorbing layer (5) having a desired thickness is formed in the gap between the outer periphery of the tunnel (3) and the ground (1) and (2) with a substantially uniform thickness over the entire length of the tunnel (3).

この振動エネルギー吸収層(5)は、地層(1)(2)
よりも柔らかい粘性及び弾性を有する材料からなり、こ
のような振動エネルギー吸収層としては、水溶性アスフ
ァルトの水溶液に気泡や水分を混在させて固化させた層
が好ましいが、これ以外にゴム状固化物やスポンジ状物
のように均一で柔軟性を有する圧縮変形可能層であれば
よい。
This vibrational energy absorption layer (5) is formed by the geological formations (1) and (2).
The vibration energy absorbing layer is preferably made of a material with softer viscosity and elasticity, and is preferably a layer made by mixing an aqueous solution of water-soluble asphalt with air bubbles and water and solidifying it. Any layer that can be compressed and deformed is uniform and flexible, such as a sponge-like material.

(6)はトンネルの掘削地盤とトンネル覆工外周面との
間の間隔部において、周方向及び長さ方向に所定間隔毎
に配設した複数個のスペーサ部材で、上記振動エネルギ
ー吸収層(5)を形成するための間隔を保持すると共に
地震時における地盤変位がトンネルに伝達される量を減
少させる目的で設けられである。
(6) is a plurality of spacer members arranged at predetermined intervals in the circumferential direction and length direction in the space between the excavated ground of the tunnel and the outer peripheral surface of the tunnel lining; ) is provided for the purpose of maintaining the spacing for forming the tunnel and reducing the amount of ground displacement transmitted to the tunnel during an earthquake.

このスペーサ部材(6)は、トンネル覆工を形成するセ
グメント(4a)に内外周面間に螺進した前後−対の螺
筒(4b)と、該螺筒(4b)に内装したスプリング(
図示せず)の先端部に連結して該スプリングにより常時
弾圧されているピン(4c)と、該ビン(4c) (4
c)間に架設状態で固着した当接板(4d)とからなり
、セグメント(4a)の内側から螺筒(4b)を螺進さ
せることにより当接板(4d)を掘削地盤の内周壁面に
押接させているものである。
This spacer member (6) includes a pair of front and rear screw tubes (4b) screwed between the inner and outer peripheral surfaces of the segment (4a) forming the tunnel lining, and a spring (4b) installed inside the screw tube (4b).
A pin (4c) connected to the tip of the bottle (4c) (not shown) and constantly pressed by the spring;
c) It consists of an abutting plate (4d) that is fixed in an erected state between the segments, and by screwing the spiral tube (4b) from the inside of the segment (4a), the abutting plate (4d) is attached to the inner peripheral wall surface of the excavated ground. It is pressed against the

このようなトンネルを築造するには、シールド掘削機(
7)によって例えば、陸地の剛性地盤(1)から海底部
の軟質地盤(2ンに向かって掘進していくものであるが
、シールド掘削機(7)による地盤の掘削と共にシール
ド掘削機(7)のテール部内でセグメント(4a) (
4a)・・・(4a)を円環状に組立て、組立てたセグ
メントに反力を受止させてシールド掘削機(7)を推進
、掘削させ、この掘進により組立てたセグメントはテー
ル部内から掘削地盤側に露出する。
To build such a tunnel, a shield excavator (
For example, the shield excavator (7) excavates the ground from the rigid ground (1) on land to the soft ground (2) on the ocean floor. Segment (4a) (
4a)... (4a) are assembled in a circular shape, the assembled segments receive the reaction force, and the shield excavator (7) is propelled and excavated. Through this excavation, the assembled segments are moved from inside the tail part to the excavated ground side. be exposed to.

このように、セグメント(4a)の組立てとシールド掘
削機(7)の掘進とを繰り返し行って掘削地盤に組立て
セグメントによるトンネル覆工(4)を形成していくも
のである。
In this way, the assembly of the segments (4a) and the excavation of the shield excavator (7) are repeated to form the tunnel lining (4) using the assembled segments in the excavated ground.

この際、シールド掘削機(7)の前進によってテール部
内から掘削地盤側に位置させられたセグメン) (4a
)の外周面と掘削地盤間には隙間が生じるので、セグメ
ント(4a)に配設している複数個の螺筒(4b)をセ
グメント(4a)の内側から螺進させることにより当接
jIi(4d)を掘削地盤の内周壁面に押接させ、セグ
メン) (4a)の外周面と掘削地盤間に所定の間隔(
8)を設けた状態で円環状に組立てたセグメント(4a
)を固定する。
At this time, the segment located from inside the tail part to the excavated ground side by the advance of the shield excavator (7)
) Since there is a gap between the outer circumferential surface of the segment (4a) and the excavated ground, the abutment jIi ( 4d) is pressed against the inner peripheral wall surface of the excavated ground, and a predetermined interval (
8) assembled in an annular shape with the segments (4a
) to be fixed.

次いで、該セグメント(4a)の適所に予め内外周面間
に亘って貫設しておいた注入孔(9)(9)から前記掘
削地盤との間隔部(8)に裏込材料として水溶性アスフ
ァルトの水溶液00)を注入する。
Next, a water-soluble backfilling material is injected into the gap (8) from the excavated ground through the injection hole (9) (9), which has been penetrated in advance between the inner and outer circumferential surfaces of the segment (4a), at a suitable location. Inject an aqueous asphalt solution 00).

この水溶性アスファルトの水溶液θ0)は、通常のアス
ファルト乳剤に適宜な助剤を添加させることにより液状
体をなしているもので、容易に水と懸濁しく比重1.0
)、酸素を吸収して固化し、固化後はあたかもゴムのよ
うな弾性体を有し、且つ適度な粘性を有する層を形成す
るものである。
This aqueous solution θ0) of water-soluble asphalt is made into a liquid by adding appropriate auxiliary agents to a normal asphalt emulsion, and is easily suspended in water with a specific gravity of 1.0.
), it absorbs oxygen and solidifies, and after solidifying, it forms a layer that has an elastic body like rubber and has an appropriate viscosity.

このような層を形成する手段としては、第2図に示すよ
うに、水溶性アスファルトの水溶液0口)をトンネル内
に設置した貯溜タンク(11)内から加圧・混合タンク
θ′IJに必要量供給し、該加圧・混合タンク0りにコ
ンプレッサ側によって圧縮空気を気泡発生装置θ滲を介
して吹き込むと共にタンクQ2)内に配設した攪拌翼θ
つを回転させることによって水溶性アスファルトと気泡
との混合を促進させ、適度な粘度に調整したのち注入ポ
ンプOωによって上記注入孔(9)(9)からセグメン
トと掘削地盤との間隔部(8)に圧送する手段を採用す
ることができる。
As shown in Fig. 2, the means for forming such a layer is to transfer an aqueous solution of water-soluble asphalt from a storage tank (11) installed in the tunnel to a pressurized/mixed tank θ'IJ. The compressor side blows compressed air into the pressurized/mixing tank through the bubble generator θ, and the stirring blade θ disposed inside the tank Q2).
After adjusting the viscosity to an appropriate level by rotating the water-soluble asphalt and air bubbles, the injection pump Oω is used to connect the segment to the space between the segment and the excavated ground (8) from the injection hole (9) (9). It is possible to adopt a means of pressure-feeding.

なお、振動エネルギー吸収層(5)は、セグメント(4
a)に設けている注入孔(9)からの間隔部(8)への
供給により形成する以外に、シールド掘削機のテール部
の後端部分に間隔部(8)に向かって開口した注入孔(
図示せず)を設けておき、この注入孔から間隔部(8)
に裏込材料を圧送することによって形成してもよい。
Note that the vibration energy absorption layer (5) consists of segments (4
In addition to the injection hole (9) provided in a), which is formed by supplying water to the gap (8), an injection hole opened toward the gap (8) at the rear end of the tail of the shield excavator. (
(not shown) is provided, and from this injection hole there is a gap (8).
It may also be formed by pumping the backing material into the lining.

こうしてセグメントにより形成されたトンネル覆工(4
)の外周面と掘削地盤間の間隔部(8)に供給された水
溶性アスファルトは気泡中の酸素と反応して徐々に固化
し、上記振動エネルギー吸収層(5)を形成するもので
ある。
The tunnel lining (4
) The water-soluble asphalt supplied to the space (8) between the outer peripheral surface of the excavated ground reacts with the oxygen in the bubbles and gradually solidifies to form the vibration energy absorbing layer (5).

なお、このような振動エネルギー吸収層(5)は、水溶
性アスファルトにより形成する以外に、適宜な発泡材料
又は粘性を有する材料によって形成してもよいことは勿
論であり、要するに適度な弾性と粘性を有し、且つ上記
軟質地盤(2)よりも柔らかい層を形成すれば本発明を
充分に満足させることができるものであり、又、振動エ
ネルギー吸収層(5)は、剛性地盤(1)と軟質地盤(
2)間に設けたトンネルに限定されることなく、このよ
うなトンネル以外、例えば、剛性地盤(1)中の1−ン
ネルや軟質地盤(2)中のトンネルにおいても、地震に
対する滅震効果を発揮することができるものである。
It should be noted that such a vibration energy absorbing layer (5) may, of course, be formed of an appropriate foam material or a material having viscosity, in addition to being formed of water-soluble asphalt. The present invention can be fully satisfied by forming a layer that has the above-mentioned soft ground (2) and is softer than the above-mentioned soft ground (2). Soft ground (
2) It is not limited to tunnels installed in between, but also in tunnels other than such tunnels, such as tunnels in rigid ground (1) and tunnels in soft ground (2), to have a damping effect against earthquakes. It is something that can be demonstrated.

なお、振動エネルギー吸収層(5)は、上記したような
注入工法で形成しなくても、例えば、予めセグメントの
外表面にスポンジ等の柔軟な材料を貼着等によって取り
付けておいてもよい。
Note that the vibration energy absorbing layer (5) does not have to be formed by the above-mentioned injection method, but may be formed by, for example, attaching a flexible material such as a sponge to the outer surface of the segment in advance by pasting or the like.

トンネル覆工(4)の外周をこのような振動エネルギー
吸収層(5)によって全面的に被覆しておくと、地震が
生じた場合には、上記剛性地盤(1)と軟質地盤(2)
との変位量の差(ひずみ)を吸収すると共に振動エネル
ギーを吸収してトンネルに伝達される地震動を減じさせ
ることができるものである。
If the outer periphery of the tunnel lining (4) is completely covered with such a vibration energy absorption layer (5), in the event of an earthquake, the rigid ground (1) and the soft ground (2)
It is possible to absorb the difference in displacement (strain) between the tunnel and the tunnel, as well as absorb vibration energy, thereby reducing the seismic motion transmitted to the tunnel.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明のトンネル構造によれば、掘削地盤
とトンネル覆工外周面との間に地盤よりも柔軟で粘性及
び弾性を有する振動エネルギー吸収層を設けているので
、地震が発生して地盤が変位した場合、その変動量に応
じて振動エネルギー吸収層が圧縮し、トンネル覆工に作
用する震動を截置させてトンネル覆工に発生する応力を
低下させることができ、地震に対して安全なトンネルを
堤供することができるものであり、特に、海底トンネル
のように地質の異なる層に亘って築造されたトンネルの
場合においては、両地層の変位量が異なってもこれらの
両地層間に亘って一連に設けた振動エネルギー吸収層に
より両地層からの振動エヱルギーを平均的に吸収し、ト
ンネル覆工の長さ方向に亘って発生する応力を均一的に
低下させて地層境界部における局部的な応力発生をなく
することができるものである。
As described above, according to the tunnel structure of the present invention, a vibration energy absorption layer that is softer, more viscous, and more elastic than the ground is provided between the excavated ground and the outer peripheral surface of the tunnel lining, so that earthquakes do not occur. When the ground displaces, the vibration energy absorption layer compresses according to the amount of displacement, suppressing the vibrations that act on the tunnel lining, and reducing the stress generated in the tunnel lining, making it possible to resist earthquakes. It is possible to provide safe tunnels, and especially in the case of tunnels built across different geological layers, such as undersea tunnels, even if the amount of displacement between the two geological layers is different, the distance between the two geological layers is A series of vibration energy absorption layers installed across the tunnel absorb vibration energy from both strata on average, uniformly reducing the stress generated along the length of the tunnel lining, and reducing localized stress at the stratum boundary. It is possible to eliminate the generation of stress.

又、このようなトンネルの築造方法としては、シールド
掘削機によって地盤を掘削すると共に該シールド掘削機
のテール部後方に掘進に従ってセグメントを組立てるこ
とによりトンネル覆工を形成していく際に、シールド掘
削機のテール部の後端又はセグメントの適所から掘削地
盤と覆工外周面との隙間に水溶性アスファルト水溶液等
の裏込材料を注入し、該裏込材料の固化によって地盤よ
りも柔らかい振動エネルギー吸収層を形成するものであ
るから、トンネルを築造しながら容易に振動エネルギー
吸収層を形成することができるものである。
In addition, as a method for constructing such a tunnel, when forming a tunnel lining by excavating the ground with a shield excavator and assembling segments behind the tail of the shield excavator according to the excavation, the shield excavation is carried out. A backing material such as a water-soluble asphalt solution is injected into the gap between the excavated ground and the outer circumferential surface of the lining from the rear end of the machine's tail or at an appropriate point in the segment, and the solidification of the backing material absorbs vibration energy that is softer than the ground. Since it forms a layer, it is possible to easily form a vibration energy absorbing layer while building a tunnel.

このような振動エネルギー吸収層としては、水溶性アス
ファルト、の水溶液に気泡や水分を混在させて固化させ
た層を採用することにより、滅震を効果的に行わせるこ
とができる適度な弾性と粘性とを有する層を形成するこ
とができ、従って、クラックが入ることがないから地下
水がトンネル内に漏水する虞れもなくすることができ、
さらに、掘削地盤とトンネル覆工外周面との間の複数個
所に弾性スペーサ部材を介在させることによって、トン
ネル覆工外周に均一な厚みを有する振動エネルギー吸収
層を形成することができる。
As such a vibration energy absorption layer, a layer made of water-soluble asphalt mixed with air bubbles and moisture is used to create a layer with appropriate elasticity and viscosity that can effectively dampen earthquakes. Therefore, since cracks do not occur, there is no risk of underground water leaking into the tunnel.
Furthermore, by interposing elastic spacer members at a plurality of locations between the excavated ground and the outer circumferential surface of the tunnel lining, it is possible to form a vibration energy absorbing layer having a uniform thickness on the outer circumference of the tunnel lining.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図はトンネル
の闇路縦断側面図、第2図はシールド掘削機によってト
ンネルを築造している状態の縦断側面図、第3図及び第
4図は第2図A−A線、B−B線における縦断正面図で
ある。 (1)(2)・・・地盤、(3)・・・トンネル、(4
)・・・トンネル覆工、(5)・・・振動エネルギー吸
収層、(6)・・・スペーサ部材、(力・・・シールド
掘削機、(8)・・・間隔部。 七べ FΔ )?て 菱へ
The drawings show an embodiment of the present invention, and FIG. 1 is a vertical side view of a dark road in a tunnel, FIG. 2 is a vertical side view of a tunnel being constructed by a shield excavator, and FIGS. The figure is a longitudinal sectional front view taken along line A-A and line B-B in FIG. (1) (2)...Ground, (3)...Tunnel, (4
)...Tunnel lining, (5)...Vibration energy absorption layer, (6)...Spacer member, (Force...Shield excavator, (8)...Spacing part. Seven-beam FΔ) ? To Tebishi

Claims (5)

【特許請求の範囲】[Claims] (1)、掘削地盤とトンネル覆工外周面との間に地盤よ
りも柔軟で粘性及び弾性を有する振動エネルギー吸収層
を設けてなることを特徴とするトンネル。
(1) A tunnel characterized in that a vibration energy absorbing layer that is softer, more viscous, and more elastic than the ground is provided between the excavated ground and the outer peripheral surface of the tunnel lining.
(2)、振動エネルギー吸収層は、水溶性アスファルト
の水溶液に気泡や水分を混在させて固化させたものであ
ることを特徴とする請求項(1)記載のトンネル。
(2) The tunnel according to claim 1, wherein the vibrational energy absorbing layer is made of an aqueous solution of water-soluble asphalt mixed with air bubbles and water and solidified.
(3)、掘削地盤とトンネル覆工外周面との間の複数個
所に弾性スペーサ部材を介在させたことを特徴とするト
ンネル。
(3) A tunnel characterized in that elastic spacer members are interposed at multiple locations between the excavated ground and the outer peripheral surface of the tunnel lining.
(4)、シールド掘削機によって地盤を掘削すると共に
該シールド掘削機のテール部後方に掘進に従ってセグメ
ントを組立てることによりトンネル覆工を形成していく
トンネルの築造方法において、シールド掘削機のテール
部の後端又はセグメントの適所から掘削地盤と覆工外周
面との隙間に水溶性アスファルト水溶液等の裏込材料を
注入し、該裏込材料の固化によって地盤よりも柔らかい
振動エネルギー吸収層を形成することを特徴とするトン
ネルの築造方法。
(4) In a tunnel construction method in which a tunnel lining is formed by excavating the ground with a shield excavator and assembling segments behind the tail part of the shield excavator as the tunnel progresses, the tail part of the shield excavator is A backing material such as a water-soluble asphalt solution is injected into the gap between the excavated ground and the outer circumferential surface of the lining from the rear end or appropriate location of the segment, and the backing material solidifies to form a vibration energy absorbing layer that is softer than the ground. A tunnel construction method characterized by:
(5)、セグメントの組立時に、該セグメントの複数個
所に配設したスペーサ部材を掘削地盤に向かって突出さ
せて掘削地盤の壁面に当接させることにより、セグメン
トを掘削地盤の壁面に対して所望間隔を存した状態に保
持することを特徴とする請求項(4)記載のトンネルの
築造方法。
(5) When assembling a segment, the spacer members arranged at multiple locations on the segment are made to protrude toward the excavated ground and come into contact with the wall of the excavated ground, so that the segment can be attached to the wall of the excavated ground as desired. 5. The method for constructing a tunnel according to claim 4, wherein the tunnel is maintained in a state in which there is a gap.
JP63225885A 1988-09-08 1988-09-08 Tunnel structure Expired - Lifetime JPH0663433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63225885A JPH0663433B2 (en) 1988-09-08 1988-09-08 Tunnel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63225885A JPH0663433B2 (en) 1988-09-08 1988-09-08 Tunnel structure

Publications (2)

Publication Number Publication Date
JPH0274795A true JPH0274795A (en) 1990-03-14
JPH0663433B2 JPH0663433B2 (en) 1994-08-22

Family

ID=16836391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63225885A Expired - Lifetime JPH0663433B2 (en) 1988-09-08 1988-09-08 Tunnel structure

Country Status (1)

Country Link
JP (1) JPH0663433B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203198A (en) * 1990-11-30 1992-07-23 Kumagai Gumi Co Ltd Earthquake proofing device of underground line shape structure
CN104047612A (en) * 2014-06-25 2014-09-17 安徽理工大学 Stretchable combined support structure for deep roadway
CN109098208A (en) * 2018-08-31 2018-12-28 郭毅轩 A kind of seabed tunnel and its construction method
CN114810127A (en) * 2022-05-06 2022-07-29 中国水利水电科学研究院 Tunnel surrounding rock composite lining structure with internal restoration capability

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124037A (en) * 1974-08-21 1976-02-26 Minoru Yamamoto
JPS5443815A (en) * 1977-09-16 1979-04-06 Kawasaki Steel Co Production of reduced iron
JPS5452836A (en) * 1978-06-28 1979-04-25 Kumagai Gumi Co Ltd Structure of covering construction tunnel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124037A (en) * 1974-08-21 1976-02-26 Minoru Yamamoto
JPS5443815A (en) * 1977-09-16 1979-04-06 Kawasaki Steel Co Production of reduced iron
JPS5452836A (en) * 1978-06-28 1979-04-25 Kumagai Gumi Co Ltd Structure of covering construction tunnel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203198A (en) * 1990-11-30 1992-07-23 Kumagai Gumi Co Ltd Earthquake proofing device of underground line shape structure
CN104047612A (en) * 2014-06-25 2014-09-17 安徽理工大学 Stretchable combined support structure for deep roadway
CN109098208A (en) * 2018-08-31 2018-12-28 郭毅轩 A kind of seabed tunnel and its construction method
CN109098208B (en) * 2018-08-31 2024-04-26 郭毅轩 Submarine tunnel and construction method thereof
CN114810127A (en) * 2022-05-06 2022-07-29 中国水利水电科学研究院 Tunnel surrounding rock composite lining structure with internal restoration capability

Also Published As

Publication number Publication date
JPH0663433B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
JPS61294085A (en) Method and device for moving and forming underground path insoil
CN108678772A (en) A kind of multilevel hierarchy suspension device and its construction method for rich water sandy gravel stratum tunnel
CN104481549B (en) Bentonite injection method and system for blocking gushing water and sand
JPH0274795A (en) Tunnel and construction method for tunnel
CN213175663U (en) Shock-absorbing structure and tunnel lining structure of crossing active fault tunnel
JP5672673B2 (en) Method of digging a curved section with earth pressure shield machine
JPH03247896A (en) Tunnel and constructing method therefor
CN208502786U (en) Multilevel hierarchy suspension device for rich water sandy gravel stratum tunnel
KR102455059B1 (en) Caulking packer simultaneous injection steel pipe and construction method using it
JP4868365B2 (en) Ground vibration propagation suppression structure
KR101745363B1 (en) complex Temporary utility and its construction Method
CN108360556A (en) A kind of novel fabricated anti-seismic anchor rod retaining wall and its construction method
CN109441478B (en) Method for damping and reinforcing IV-type and V-type surrounding rock advanced rod system arch of tunnel
CN221322431U (en) Flexible connection structure of shield tunnel and working well
JPH07300851A (en) Countermeasure of liquefaction of buried pipe in the ground
JPH0312633B2 (en)
JP2001011849A (en) Liquefaction prevention structure of ground, its construction method, and ground improving method
EP0179038B1 (en) Method of increasing the compressibility of liquid-saturated material
JP4322688B2 (en) Construction method of large section tunnel
JP2536638B2 (en) Ground improvement method
JP2675858B2 (en) Vertical shaft excavation method
CN214145514U (en) Advance support reinforcement system for tunnel
CN209144808U (en) Prestressed anchor cable stress protection device under fill condition
JP2762158B2 (en) Synchronization method and equipment for ground structure and land subsidence
CN114183148A (en) Excavation construction method applied to high-ground-stress deep-buried tunnel broken belt

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 15