JPH027412A - Reduction projection aligner - Google Patents

Reduction projection aligner

Info

Publication number
JPH027412A
JPH027412A JP63157593A JP15759388A JPH027412A JP H027412 A JPH027412 A JP H027412A JP 63157593 A JP63157593 A JP 63157593A JP 15759388 A JP15759388 A JP 15759388A JP H027412 A JPH027412 A JP H027412A
Authority
JP
Japan
Prior art keywords
horizontal
vibration
pattern
stage
reduction projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63157593A
Other languages
Japanese (ja)
Inventor
Hiroshi Ota
太田 啓
Yosuke Hamada
浜田 洋介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63157593A priority Critical patent/JPH027412A/en
Publication of JPH027412A publication Critical patent/JPH027412A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/709Vibration, e.g. vibration detection, compensation, suppression or isolation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Springs (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To enhance a throughput by a method wherein an apparatus structure has a spring characteristic as a whole so as to behave in a horizontal-direction translation advance and vibration, the apparatus structure is supported by a stand used to minimize the vibrating time, and a stepwise external force pattern in a horizontal direction is made an optimally controlled pattern in order to optimize the residual vibrating behavior time. CONSTITUTION:A laminated mount 11 (formed by laminating natural rubber sheets and sheet-like steel plates alternately by using an adhesive or the like) is applied in such a way that a horizontal-dirdection translation advance and vibration mode remains with reference to a stepwise feed external force of an X-Y stage 6 during the actually operating time. As a result, a relative displacement amount can be made minimum. When a stepwise feed rate pattern of The X-Y stage 6 is changed as shown by 8, 9, a stepwise feed pattern of the X-Y stage 6 can be made optimum in such a way that a horizontal-direction vibration displacement 10 of a main base 1 can be adjusted in a short time; accordingly, the vibration displacement of the main base 1 can be adjusted at each exposure operation even during a continuous exposure operation. Thereby, a circuit pattern can be exposed with high accuracy and a throughput can be enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は縮小投影露光装置に係り、特に水平方向駆動を
受ける装置構造体の低振動化と残留振動整定時間の短縮
化を実現するのに好適な縮小投影露光装置に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a reduction projection exposure apparatus, and particularly to a reduction projection exposure apparatus, which is particularly useful for realizing low vibration of an apparatus structure subjected to horizontal direction drive and shortening of residual vibration settling time. The present invention relates to a suitable reduction projection exposure apparatus.

〔従来の技術〕[Conventional technology]

現在、実用に供されている空気ばね方式の除振装置の一
例を第3図を用いて概説する。1はメインベースであり
、コラム本体2は、メインベース1に一体に結合されて
いる。3は照明系、4はレティクルで、ウェハ5はメイ
ンベース1に結合されたXYステージ6に保持されてお
り、レティクル4はコラム本体2上に固定されている。
An example of an air spring type vibration isolator currently in practical use will be outlined using FIG. 1 is a main base, and a column body 2 is integrally connected to the main base 1. 3 is an illumination system, 4 is a reticle, the wafer 5 is held on an XY stage 6 connected to the main base 1, and the reticle 4 is fixed on the column body 2.

実露光シーケンスとしては、まず、XYステージ6をス
テップ送りし、所定位置に位置決めした後、レティクル
像を縮小レンズを通しウェハ5上に縮小して転写する。
In the actual exposure sequence, first, the XY stage 6 is moved in steps and positioned at a predetermined position, and then the reticle image is reduced and transferred onto the wafer 5 through a reduction lens.

ウェハ5上の所定位置への転写再現精度を保証するため
には、露光時間帯において、照明系3.レティクル4及
びウェハ5の基準点が常に同一露光光軸7上に一致する
ことが理想的である。しかし、空気ばね方式マウント1
2のばね特性は、水平方向ばね剛性に比べ、上下方向ば
ね剛性が小さいため、XYステージ6のステップ送りに
ともなう外力が作用すると1図示2点鎖線の如き剛体ロ
ッキング振動挙動となる。したがって、照明系3とメイ
ンベース1とが互いに逆位相の強制力を受け、上記の理
想条件に対して不利となる。
In order to guarantee the accuracy of transfer reproduction to a predetermined position on the wafer 5, the illumination system 3. Ideally, the reference points of the reticle 4 and the wafer 5 always align on the same exposure optical axis 7. However, air spring type mount 1
As for the spring characteristics of No. 2, since the vertical spring stiffness is smaller than the horizontal spring stiffness, when an external force accompanying step feeding of the XY stage 6 acts, a rigid body rocking vibration behavior as shown by the two-dot chain line in Fig. 1 occurs. Therefore, the illumination system 3 and the main base 1 receive forced forces having opposite phases to each other, which is disadvantageous compared to the above-mentioned ideal conditions.

また、空気ばね方式マウント12が初期設定水平レベル
値をオーバした場合、レベル調整機構が動作するが、調
整機構の不感体の限界、空気の伝達特性の限界により、
連続ステップ送りサイクルタイムの短縮化にも限界が生
じる。
In addition, when the air spring type mount 12 exceeds the initial set horizontal level value, the level adjustment mechanism operates, but due to the limits of the insensitive body of the adjustment mechanism and the limits of the air transmission characteristics,
There is also a limit to reducing the continuous step feed cycle time.

第2図(a)は、xYステージ6をステップ送りした場
合の残留振動状況の概略を示したものである0図におい
て、8はステージ位置信号、9はXYステージ速度信号
を示しており、加速、減速により所定位置に位置決めし
た場合の1例えば、メインベース1の水平方向振動変位
が10である。
Figure 2 (a) shows an outline of the residual vibration situation when the xY stage 6 is fed step by step. In Figure 0, 8 indicates the stage position signal, 9 indicates the XY stage speed signal, and For example, the horizontal vibration displacement of the main base 1 is 10 when the main base 1 is positioned at a predetermined position by deceleration.

残留振動変位が零となる時刻においては、レティクル4
及びウェハ5の基準点とが同一露光光軸7上に一致する
理想条件を満足するので、この時刻帯に露光すればよい
が、しかし、スループット(単位時間当りのウェハ処理
枚数)の制約があり、実際にはある許容残留振動変位時
刻帯で露光を行っており、スループット向上及び位置決
め精度向上をはかるためには、従来方式には限界があっ
た。
At the time when the residual vibration displacement becomes zero, the reticle 4
Since this satisfies the ideal condition that the reference point of the wafer 5 and the reference point of the wafer 5 are on the same exposure optical axis 7, exposure can be performed during this time period, but there is a restriction on throughput (the number of wafers processed per unit time). In reality, exposure is performed within a certain allowable residual vibration displacement time range, and conventional methods have limitations in improving throughput and positioning accuracy.

〔従来が解決しようとする課題〕[Problems that conventional methods try to solve]

上記従来技術は、水平方向と比べ上下方向のばね剛性が
小さい空気ばね方式除振台を使用しているため、XYス
テージステップ送り外力により剛体ロッキングモード、
すなわち、装置構造体全体系の上部と下部とが互いに逆
位相となる慣性力を受け、それによる強制変化が生じ、
同一露光光軸からの相対ずれが大きくなるという欠点を
有していた。また、空気の伝送遅れ及びレベル調整機構
に避けることができない不感帯があり、その狭小化に限
界があり、したがって、スループット向上に限界があっ
た。
The above conventional technology uses an air spring type vibration isolation table with lower spring stiffness in the vertical direction than in the horizontal direction.
In other words, the upper and lower parts of the entire device structure receive inertial forces that are in opposite phases to each other, resulting in forced changes.
This has the disadvantage that the relative deviation from the same exposure optical axis becomes large. In addition, there is an unavoidable dead zone in the air transmission delay and level adjustment mechanism, and there is a limit to how narrow the dead zone can be.Therefore, there is a limit to how much throughput can be improved.

本発明の目的は、XYステージステップ送り外力に対し
て装置全体系の上部及び下部とが同一位相となる併進モ
ードを残留させるようにし、同一露光光軸からの相対ず
れ量を最小化することにより位置決め精度の向上をはか
り、かつ、XYステージのステップ送りパターンの最適
化により装置全体系の残留振動整定時間を最小化し、ス
ループット向上をはかることができる縮小投影露光装置
を提供することにある。
The purpose of the present invention is to maintain a translation mode in which the upper and lower parts of the entire system are in the same phase with respect to the external force of XY stage step feed, and to minimize the amount of relative deviation from the same exposure optical axis. To provide a reduction projection exposure apparatus capable of improving positioning accuracy, minimizing residual vibration settling time of the entire system by optimizing the step feed pattern of an XY stage, and improving throughput.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、露光光軸にかかわる各構成品部位の強制振
動変位による相対変位量を最小にするために水平方向の
ステップ外力の作用に対し装置構造体全系が水平方向併
進振動挙動をとるようなばね特性を有し、かつ、上記振
動挙動時間を最小化する架台で上記装置構造体を支え、
上記水平方向のステップ外力パターンを最適制御パター
ン化して残留振動時間の短縮化をはかる構成として達成
するようにした。
The above purpose is to minimize the amount of relative displacement due to forced vibration displacement of each component part related to the exposure optical axis, so that the entire system of the apparatus structure takes horizontal translational vibration behavior in response to the action of an external step force in the horizontal direction. supporting the device structure with a frame that has elastic properties and minimizes the vibration behavior time;
The above-mentioned horizontal step external force pattern is made into an optimal control pattern to achieve a configuration that aims to shorten the residual vibration time.

〔作用〕[Effect]

積層ゴムマウントは、例えば、シート状の天然ゴムとシ
ート状の鋼板とを交互に接着などにより積層したもので
、水平方向と上下方向のばね剛性は、これを構成するシ
ート状の天然ゴム及び鋼板の板厚あるいは積層枚数の組
み合わせ等により比較的広い領域に設計可能であり、縮
小投影露光装置の場合には、実用的なスループット仕様
から判断して水平方向の共振点が少なくとも4 Hz以
上でなければならず、従来の空気式ばねでは限界があり
、これを積層ゴムマウントにして上記スループット実現
を可能とした。
A laminated rubber mount is made by laminating, for example, sheet-like natural rubber and sheet-like steel plates alternately by adhesion, etc., and the spring stiffness in the horizontal and vertical directions depends on the sheet-like natural rubber and steel plates that make up the mount. It is possible to design a relatively wide area depending on the thickness of the plate or the combination of the number of layers, and in the case of a reduction projection exposure system, the resonance point in the horizontal direction must be at least 4 Hz or higher, judging from practical throughput specifications. However, conventional pneumatic springs have their limitations, so we made it possible to achieve the above throughput by using a laminated rubber mount.

また、装置構造全体系の残留振動整定時間を短縮化する
ためには、XYステージステップ送り外力を最小限に抑
制する必要があり、これらを実現するために1例えば、
装置構造体の水平方向変化が最小、かつ、残留振動変位
整定時間が最短となるステップパターンを与えることに
よって所定のスループットを実現できるようにした。
In addition, in order to shorten the residual vibration settling time of the entire device structure, it is necessary to suppress the external force of XY stage step feed to a minimum, and in order to achieve this, for example,
A predetermined throughput can be achieved by providing a step pattern that minimizes horizontal changes in the device structure and minimizes residual vibration displacement settling time.

〔実施例〕〔Example〕

以下本発明の一実施例を第1図、第2図にょって詳細に
説明する。
An embodiment of the present invention will be described in detail below with reference to FIGS. 1 and 2.

第1図は本発明の縮小投影露光装置の一実施例を示す構
成概略図である。第1図において、メインベース1上に
コラム本体2が結合されており、別途に支持された照明
系3が最上部に配置されており、その露光光軸7に沿っ
てレティクル4及びメインベース1上に固定されるウェ
ハ5搭載用のXYステージ6がある。これら装置全体系
が積層ゴムマウント11により支持されている。実露光
時には、まず、XYステージ6をステップ送り(図示省
略)により所定距離だけ移動してウェハ5を所定位置に
位置決めし、別途手段によりレティクル4の基準点との
相対位置合わせを行う。次に、この位置合わせ量が許容
値内にあることを確認した後、露光操作により実露光を
行う。このようにXYステージ6をX、Y方向に連続的
にステップ送りし、順次露光を繰り返し実施する。高精
度に回路パターンをウェハ5上の所定位置に露光転写す
るためには、露光光軸7に沿って固定配置されたレティ
クル4とウェハ5との相対ずれ量を限りなく零に近づけ
ることが重要である。このためには両者の相対位置ずれ
量の検出タイミング時及び実露光時間帯には振動変位零
が理想的である。
FIG. 1 is a schematic diagram showing an embodiment of a reduction projection exposure apparatus of the present invention. In FIG. 1, a column body 2 is coupled to a main base 1, a separately supported illumination system 3 is arranged at the top, and a reticle 4 and a main base 1 are disposed along its exposure optical axis 7. There is an XY stage 6 fixed above for mounting a wafer 5. The entire system of these devices is supported by a laminated rubber mount 11. During actual exposure, first, the XY stage 6 is moved by a predetermined distance by step feed (not shown) to position the wafer 5 at a predetermined position, and the relative position of the reticle 4 with the reference point is performed by a separate means. Next, after confirming that this positioning amount is within an allowable value, actual exposure is performed by an exposure operation. In this way, the XY stage 6 is continuously moved in steps in the X and Y directions, and exposure is sequentially and repeatedly carried out. In order to expose and transfer the circuit pattern to a predetermined position on the wafer 5 with high precision, it is important to make the relative deviation between the reticle 4 fixedly arranged along the exposure optical axis 7 and the wafer 5 as close to zero as possible. It is. For this purpose, it is ideal that the vibration displacement be zero at the timing of detecting the amount of relative positional deviation between the two and during the actual exposure time.

この理想状態はXYステージ6のステップ送り後。This ideal state is after the step feed of XY stage 6.

振動整定に至るまで待ち時間を設けることにより実現で
きるが、ユーザの要求する実用上のスループットを満足
させることはできない状況となる。
Although this can be achieved by providing a waiting time until the vibration settles, the practical throughput required by the user cannot be satisfied.

本実施例における積層マウント11(シート状の天然ゴ
ムとシート状の鋼板とを交互に接着などにより積層した
もの)の適用は、実稼動時におけるXYステージ6のス
テップ送り外力に対し、水平方向併進振動モードを残留
するようにし、その結果、上記の相対位置ずれ量を最小
化できる構成とすることができる。
In this embodiment, the laminated mount 11 (made by laminating sheet-like natural rubber and sheet-like steel plates alternately by adhesion, etc.) is applied so that it can move horizontally in translation against the step feed external force of the XY stage 6 during actual operation. The vibration mode is made to remain, and as a result, the above-mentioned relative positional deviation amount can be minimized.

次に、従来の一定速度パターンによるXYステージ6の
ステップ送りをした場合には、第2図(a)に例示した
如く、例えば、メインベースの水平方向振動10の整定
時間はステージ位置信号8、ステージ速度信号9に対し
て図示の如く大きくなる。スループットを満足させる連
続露光操作時の振動変位は第2図(a)の右側の10で
示すが、必ずしも振動整定していないため、不規則な振
動状態を呈し、安定した相対ずれが再現されず、また、
相対ずれ量も大きくなる。
Next, when the XY stage 6 is fed in steps according to the conventional constant speed pattern, as illustrated in FIG. 2(a), for example, the settling time of the horizontal vibration 10 of the main base is It becomes larger than the stage speed signal 9 as shown in the figure. The vibration displacement during continuous exposure operation that satisfies the throughput is shown by 10 on the right side of Figure 2 (a), but since the vibration is not necessarily stabilized, it exhibits an irregular vibration state and a stable relative displacement cannot be reproduced. ,Also,
The amount of relative deviation also increases.

本実施例では、例えば、第2図(b)に示す如く、XY
ステージ6のステップ送り速度パターンを8,9の如く
変更することにより、メインベース1の水平方向振動変
位10を短時間で整定できるようにXYステージ6のス
テップ送りパターンの最適化をはかるようにしたので、
連続露光操作においても第2図(b)の右側の10に図
示する如く、各露光操作毎にメインベース1の振動変位
が整定される。これにより、従来の一定速度パターンス
テップ送りの欠点を改善することができ、高精度の回路
パターン露光を実現できるとともに、スループット向上
に効果がある。なお、最適ステップ送りパターンは、実
験及び振動シミュレータによって求めることが可能であ
る。
In this embodiment, for example, as shown in FIG. 2(b),
By changing the step feed rate pattern of stage 6 to 8 and 9, the step feed pattern of XY stage 6 is optimized so that the horizontal vibration displacement 10 of main base 1 can be stabilized in a short time. So,
Even in continuous exposure operations, the vibration displacement of the main base 1 is stabilized for each exposure operation, as shown at 10 on the right side of FIG. 2(b). This makes it possible to improve the drawbacks of conventional constant speed pattern step feeding, realize highly accurate circuit pattern exposure, and improve throughput. Note that the optimal step feeding pattern can be determined through experiments and a vibration simulator.

なお、積層ゴムマウント11を水平方向に運動可能な平
行リンク機構を備えたものとしてもよく。
Note that the laminated rubber mount 11 may be provided with a parallel link mechanism that allows movement in the horizontal direction.

同一効果が得られる。The same effect can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、装置全体系が水
平方向併進残留振動モードとなるようにできるので、露
光光軸からの各部位の強制ずれ量を最小限にでき、また
、残留モードの共振点が少なくとも4Hz以上となるよ
うに、積層ゴムマウントに水平方向ばね剛性を与えるこ
とにより、実用的なスループット実現に有効となり、ま
た、XYステージのステップ送りパターンの最適化によ
り、残留振動変位を最小化でき、かつ、整定時間の短縮
化に効果がある。
As explained above, according to the present invention, the entire system of the apparatus can be set to the horizontal translational residual vibration mode, so the amount of forced deviation of each part from the exposure optical axis can be minimized, and the residual mode By giving horizontal spring stiffness to the laminated rubber mount so that the resonance point of the can be minimized, and is effective in shortening the settling time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の縮小投影露光装置の一実施例を示す構
成概略図、第2図は従来の空気ばね方式除振システムと
本発明に係る積層ゴムマウント方式の除振システムとに
xYステージのステップ送り外力が作用する場合の残留
振動状態を示した図。 第3図は従来例の概略構成図である。 1・・・メインベース、2・・・コラム本体、3・・・
照明系、4・・・レティクル、 5・・・ウェハ、 6・・・XYステージ、 7・・・露光光軸、 11・・・積層ゴムマウント。
FIG. 1 is a schematic configuration diagram showing an embodiment of the reduction projection exposure apparatus of the present invention, and FIG. 2 shows a conventional air spring type vibration isolation system and a laminated rubber mount type vibration isolation system according to the present invention on an xY stage. FIG. 3 is a diagram showing a residual vibration state when a step feed external force is applied. FIG. 3 is a schematic diagram of a conventional example. 1... Main base, 2... Column body, 3...
Illumination system, 4... Reticle, 5... Wafer, 6... XY stage, 7... Exposure optical axis, 11... Laminated rubber mount.

Claims (1)

【特許請求の範囲】 1、半導体製造用縮小投影露光装置の水平方向のステッ
プ外力を受ける装置構造体において、露光光軸にかかわ
る各構成品部位の強制振動変位による相対変位量を最小
にするために前記水平方向のステップ外力の作用に対し
前記装置構造体全系が水平方向併進振動挙動をとるよう
なばね特性を有し、かつ、前記振動挙動時間を最小化す
る架台で前記装置構造体を支え、前記水平方向のステッ
プ外力パターンを最適制御パターン化して残留振動整定
時間の短縮化をはかる構成としたことを特徴とする縮小
投影露光装置。 2、前記架台は、水平方向に運動可能な平行リンク機構
を備えている特許請求の範囲第1項記載の縮小投影露光
装置。 3、前記架台は、水平方向に比較して上下方向ばね剛性
が大きい積層ゴムマウントよりなる特許請求の範囲第1
項記載の縮小投影露光装置。
[Claims] 1. To minimize the amount of relative displacement due to forced vibration displacement of each component part related to the exposure optical axis in an apparatus structure that receives an external force from a step in the horizontal direction of a reduction projection exposure apparatus for semiconductor manufacturing. The device structure is mounted on a frame that has spring characteristics such that the entire system of the device structure takes horizontal translational vibration behavior in response to the action of the horizontal step external force, and minimizes the vibration behavior time. A reduction projection exposure apparatus characterized in that the reduction projection exposure apparatus is configured to shorten residual vibration settling time by converting the step external force pattern in the horizontal direction into an optimal control pattern. 2. The reduction projection exposure apparatus according to claim 1, wherein the pedestal is provided with a parallel link mechanism movable in the horizontal direction. 3. The pedestal is comprised of a laminated rubber mount having higher spring rigidity in the vertical direction than in the horizontal direction.
Reduction projection exposure apparatus as described in .
JP63157593A 1988-06-25 1988-06-25 Reduction projection aligner Pending JPH027412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63157593A JPH027412A (en) 1988-06-25 1988-06-25 Reduction projection aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63157593A JPH027412A (en) 1988-06-25 1988-06-25 Reduction projection aligner

Publications (1)

Publication Number Publication Date
JPH027412A true JPH027412A (en) 1990-01-11

Family

ID=15653102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63157593A Pending JPH027412A (en) 1988-06-25 1988-06-25 Reduction projection aligner

Country Status (1)

Country Link
JP (1) JPH027412A (en)

Similar Documents

Publication Publication Date Title
US6327024B1 (en) Vibration isolation apparatus for stage
EP1069477B1 (en) Exposure apparatus and device manufacturing method using the same
US7126674B2 (en) Positioning device and device manufacturing method
US7383929B2 (en) Anti-vibration technique
US20070268476A1 (en) Kinematic chucks for reticles and other planar bodies
JPH11315883A (en) Vibration damping device, exposing device and manufacture of device
JPH11226823A (en) Stage device, exposure device and manufacture of device
TW200908081A (en) Exposure apparatus and method of manufacturing device
KR100401353B1 (en) Stage driving control device and stage driving control method
JPH08293459A (en) Stage driving control method and its device
US6069931A (en) Mask structure and mask holding mechanism for exposure apparatus
US11243476B2 (en) Stage apparatus, lithographic apparatus, control unit and method
JPH027412A (en) Reduction projection aligner
JP3193586B2 (en) Semiconductor exposure equipment
KR20000006321A (en) Lithographic projection apparatus and method of manufacture using the apparatus and device manufactured by the method
US6226072B1 (en) Stage system and exposure apparatus with the same
KR20090035433A (en) Exposure apparatus and device manufacturing method
JPH11195578A (en) Lapping plate supporter and aligner
CN111736298B (en) Optical device, exposure device, and article manufacturing method
JPH02199813A (en) Aligner
JP2753893B2 (en) Exposure equipment
JP2715182B2 (en) Exposure equipment
JPH02110953A (en) High-accuracy positioning
JP2023179277A (en) Positioning device, lithography device and method for manufacturing article
KR20230168140A (en) Exposure device, control method of exposure device, and article manufacturing method