JPH027411Y2 - - Google Patents

Info

Publication number
JPH027411Y2
JPH027411Y2 JP19317582U JP19317582U JPH027411Y2 JP H027411 Y2 JPH027411 Y2 JP H027411Y2 JP 19317582 U JP19317582 U JP 19317582U JP 19317582 U JP19317582 U JP 19317582U JP H027411 Y2 JPH027411 Y2 JP H027411Y2
Authority
JP
Japan
Prior art keywords
temperature side
low
evaporator
temperature
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19317582U
Other languages
Japanese (ja)
Other versions
JPS59167369U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19317582U priority Critical patent/JPS59167369U/en
Publication of JPS59167369U publication Critical patent/JPS59167369U/en
Application granted granted Critical
Publication of JPH027411Y2 publication Critical patent/JPH027411Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は互いに独立の二つの冷凍サイクルを用
い、一方の冷凍サイクル(高温側冷凍サイクル)
の蒸発器と他方の冷凍サイクル(低温側冷凍サイ
クル)の凝縮器とが熱的に結合することによりカ
スケードコンデンサーを構成し、上記二つの冷凍
サイクルの圧縮機を運転させて庫内の超低温状態
に保つ二元冷凍装置に関するものである。
[Detailed description of the invention] [Industrial application field] The invention uses two mutually independent refrigeration cycles, one of which is the high-temperature side refrigeration cycle.
The evaporator of one refrigeration cycle and the condenser of the other refrigeration cycle (low-temperature side refrigeration cycle) are thermally coupled to form a cascade condenser, and the compressors of the two refrigeration cycles are operated to maintain the ultra-low temperature inside the refrigerator. This relates to a dual refrigeration system.

〔従来の技術〕[Conventional technology]

従来、二元冷凍装置としては、高温側、低温側
の両冷凍サイクルとも圧縮機、凝縮器、蒸発器を
順次連結し、高温側冷凍サイクルの蒸発器と低温
側冷凍サイクルの凝縮器を熱的に結合してカスケ
ードコンデンサーを構成するものが知られてい
た。そして、低温側冷凍サイクルの凝縮器を高温
側冷凍サイクルの蒸発器で冷却して、低温側冷却
サイクルで使用される低温用冷媒を介して低温側
冷凍サイクルの蒸発器で庫内を超低温状態に冷却
していた。また、このような二元冷凍装置の起動
方法としては、最初高温側圧縮機を運転しカスケ
ードコンデンサーを十分に冷却してから低温側圧
縮機を運転して庫内を冷却するのが一般的であつ
た。
Conventionally, in a binary refrigeration system, the compressor, condenser, and evaporator are connected in sequence for both the high-temperature side and low-temperature side refrigeration cycles, and the evaporator of the high-temperature side refrigeration cycle and the condenser of the low-temperature side refrigeration cycle are connected thermally. It was known that a cascade capacitor was constructed by combining the Then, the condenser of the low-temperature side refrigeration cycle is cooled by the evaporator of the high-temperature side refrigeration cycle, and the inside of the refrigerator is brought to an ultra-low temperature state by the evaporator of the low-temperature side refrigeration cycle via the low-temperature refrigerant used in the low-temperature side cooling cycle. It was cooling down. In addition, the general method for starting up such a dual refrigeration system is to first operate the high-temperature side compressor to sufficiently cool the cascade condenser, and then operate the low-temperature side compressor to cool the inside of the refrigerator. It was hot.

〔考案が解決しようとする課題〕[The problem that the idea aims to solve]

上記のような二元冷凍装置においては、低温側
圧縮機が運転を開始した後に庫内を常温状態から
超低温状態にまで冷却するので、初期起動から庫
内を冷却するまでの時間がかかるとともに低温側
圧縮機にも負担がかかつていた。
In the above-mentioned dual refrigeration system, the inside of the refrigerator is cooled from room temperature to ultra-low temperature after the low-temperature side compressor starts operating, so it takes time from the initial startup to cool down the inside of the refrigerator, and The side compressor was also under strain.

また、庫内温度を比較的高い強度(−30℃以
上)に保つ場合、冷却能力が余剰となるため低温
側圧縮機の運転−停止の繰り返しが激しくシヨー
トサイクルとなり、油あがりが発生し、低温側圧
縮機内の電動機各部の摩耗や巻線の焼損などが生
ずる。
In addition, when maintaining the internal temperature at a relatively high level (-30°C or higher), the cooling capacity becomes redundant and the low-temperature side compressor repeatedly starts and stops, resulting in a short cycle and oil leakage. This causes wear and tear on various parts of the electric motor in the low-temperature side compressor and burnout of the windings.

さらに、低温側冷凍サイクルが停止した場合、
庫内の冷却は全く行われなくなつてしまう。
Furthermore, if the low temperature side refrigeration cycle stops,
The interior of the refrigerator is no longer cooled at all.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本考案は、高温側
冷凍サイクルは高温側圧縮機、高温側凝縮器、庫
内を冷却するための第2の高温側蒸発器、カスケ
ードコンデンサーを構成する第1の高温側蒸発器
を順次連結するとともに、高温側凝縮器の出口側
と第1の高温側蒸発器の入口側とを冷媒の切換手
段を設けたバイパス管で連結することにより構成
され、また低温側冷凍サイクルは低温側圧縮機、
カスケードコンデンサーを構成する低温側凝縮
器、庫内を冷却するための低温側蒸発器を順次連
結することにより構成され、さらに初期起動時お
よび庫内を比較的高温に保つ場合には低温側圧縮
機のみを運転させるとともに冷媒の切換手段によ
つて高温側冷凍サイクルの冷媒を第2の高温側蒸
発器に供給し、庫内を超低温状態に保つ場合には
高温側、低温側両圧縮機を運転させるとともに、
冷媒の切換手段によつて高温側冷凍サイクルの冷
媒をバイパス管を通じて第1の蒸発器のみに供給
する制御手段を有する二元冷凍装置である。
In order to solve the above problems, the present invention provides a high-temperature side refrigeration cycle that includes a high-temperature side compressor, a high-temperature side condenser, a second high-temperature side evaporator for cooling the inside of the refrigerator, and a first cascade condenser. The high-temperature side evaporator is connected in sequence, and the outlet side of the high-temperature side condenser and the inlet side of the first high-temperature side evaporator are connected by a bypass pipe provided with refrigerant switching means. The refrigeration cycle uses a low-temperature side compressor,
The cascade condenser consists of a low-temperature side condenser, a low-temperature side evaporator for cooling the inside of the refrigerator, and a low-temperature side compressor for initial startup and when keeping the inside of the refrigerator at a relatively high temperature. At the same time, the refrigerant switching means supplies refrigerant from the high-temperature side refrigeration cycle to the second high-temperature side evaporator, and when keeping the inside of the refrigerator in an ultra-low temperature state, both the high-temperature side and low-temperature side compressors are operated. Along with letting
This is a dual refrigeration system having a control means that uses a refrigerant switching means to supply the refrigerant of the high temperature side refrigeration cycle only to the first evaporator through a bypass pipe.

〔実施例〕〔Example〕

次に本考案の実施例を第1図(冷却回路)およ
び第2図(電気回路)を参照して説明する。
Next, an embodiment of the present invention will be described with reference to FIG. 1 (cooling circuit) and FIG. 2 (electric circuit).

第2図において、保冷温度切り換えスイツチ
SWを1側にする、高温側サーモスタツトTh1
庫内温度を感知して接点を切り換える接点方式で
あり、ある設定温度まで冷却されるとb接点側に
切り換わり、ある設定温度まで上昇するとa接点
側に切り換わる。初期運転時には、高温側サーモ
スタツトTh1はa接点側と接続され,リレーR1
コイルが励磁され、高温側圧縮機compHは運転を
開始し高温側冷凍サイクルの冷媒の切換手段であ
る三方弁も通電され、三方弁内の流路は→と
なる。この時の冷凍サイクルは第1図より次のよ
うになる。
In Figure 2, the cold storage temperature switch
The high-temperature side thermostat Th 1 , which sets the SW to the 1 side, is a contact type that detects the temperature inside the refrigerator and switches the contact.When the temperature has cooled to a certain set temperature, it switches to the B contact side, and when the temperature rises to a certain set temperature, it switches to the B contact side. Switches to the a contact side. During initial operation, the high-temperature side thermostat Th1 is connected to the a contact side, the coil of the relay R1 is energized, the high-temperature side compressor comp H starts operating, and the high-temperature side compressor comp H starts operating. The valve is also energized and the flow path inside the three-way valve becomes →. The refrigeration cycle at this time is as follows from Figure 1.

compH(高温側圧縮機)→condH(高温側凝縮器)
→レシーバー→ドライヤー→三方弁(→)→
キヤピラリーチユーブCH1→evaH′(第2の高温側
蒸発器)→逆止弁→evaH(カスケードコンデンサ
ー、第1の高温側蒸発器)→低圧レシーバー→
compH 第2の高温側蒸発器evaH′は断熱箱体に巻かれ
た冷却パイプであり、上記の冷凍サイクルにおい
て庫内を冷却することになる。同時に第1の高温
側蒸発器evaHを通じて、カスケードコンデンサー
が冷却される。次に庫内温度が高温側サーモスタ
ツトTh1によつて設定された温度まで冷却される
と第2図より高温側サーモスタツトTh1はb接点
側と接続される。この時リレーR2のコイルが励
磁され、低温側圧縮機compLと高温側圧縮機
compHが2基とも運転となり、また同時に三方弁
SVの通電状態が解かれ三方弁内の流路は→
から→となり、第1図に示す二元冷凍サイク
ルを構成する。即ち、 高温側冷凍サイクル compH→condH→レシーバー→ドライヤー→三
方弁(→)→バイパス管→キヤピラリーチユ
ーブCH2→evaH(カスケードコンデンサー、第1の
高温蒸発器)→低圧レシーバー→compH 低温側冷凍サイクル compL(低温側圧縮機)→オイルセパレータ→
condL(カスケードコンデンサー、低温側凝縮器)
→ドライヤー→キヤピラリーチユーブCL1→evaL
(低温側蒸発器)→compL 高温側冷凍サイクルにおいては、上記のように
第1の高温蒸発器のみに冷媒が供給され、第2の
高温蒸発器への冷媒供給は停止することになる。
comp H (high temperature side compressor) → cond H (high temperature side condenser)
→ Receiver → Dryer → Three-way valve (→) →
Capillary reach tube C H1 → eva H ′ (second high temperature side evaporator) → check valve → eva H (cascade condenser, first high temperature side evaporator) → low pressure receiver →
The comp H second high temperature side evaporator eva H ' is a cooling pipe wrapped around a heat insulating box, and cools the inside of the refrigerator in the above-mentioned refrigeration cycle. At the same time, the cascade condenser is cooled through the first hot side evaporator eva H. Next, when the temperature inside the refrigerator is cooled to the temperature set by the high temperature side thermostat Th1 , the high temperature side thermostat Th1 is connected to the b contact side as shown in FIG. At this time, the coil of relay R2 is energized, and the low-temperature side compressor comp L and the high-temperature side compressor
Both comp H units are in operation, and at the same time the three-way valve
When the SV is de-energized, the flow path inside the three-way valve is →
From →, a binary refrigeration cycle shown in FIG. 1 is constructed. That is, high temperature side refrigeration cycle comp H → cond H → receiver → dryer → three-way valve (→) → bypass pipe → capillary reach tube C H2 → eva H (cascade condenser, first high temperature evaporator) → low pressure receiver → comp H Low temperature side refrigeration cycle comp L (low temperature side compressor) → Oil separator →
cond L (cascade condenser, low temperature side condenser)
→ Dryer → Capillary reach tube C L1 →eva L
(Low temperature side evaporator)→comp LIn the high temperature side refrigeration cycle, refrigerant is supplied only to the first high temperature evaporator as described above, and refrigerant supply to the second high temperature evaporator is stopped.

この際、第1の高温蒸発器evaHによりあらかじ
め、カスケードコンデンサー部、および庫内が冷
却されているため、低圧側圧縮機に対する負荷は
極端に低減され、容易に初期起動を乗り切ること
が可能となる。また庫内は、低温側蒸発器evaL
よる冷却に切り換わり、庫内が冷却されているた
め庫内温度は従来のものに比べ急激に低下してい
く。ここで第1の高温側蒸発器evaHと低温側凝縮
器condLはカスケードコンデンサーを形成してお
り、また低温側蒸発器evaLは第2の高温側蒸発器
evaH′とは並列にかつ独立して断熱箱体に巻かれ
た冷却パイプである。第2の高温側蒸発器
evaH′が初期起動時および単段サイクル時に高温
側冷媒によつて冷却されるのに対し、低温側蒸発
器evaLは二元冷凍サイクル時における低温側冷媒
によつて冷却される。
At this time, the first high-temperature evaporator EVA H cools the cascade condenser section and the inside of the refrigerator in advance, so the load on the low-pressure side compressor is extremely reduced, making it possible to easily survive the initial startup. Become. In addition, the inside of the refrigerator has been cooled by switching to the low-temperature side evaporator EVA L , which causes the temperature inside the refrigerator to drop rapidly compared to the previous model. Here, the first high temperature side evaporator EVA H and the low temperature side condenser cond L form a cascade condenser, and the low temperature side evaporator EVA L is connected to the second high temperature side evaporator cond L.
eva H ′ is a cooling pipe wrapped in parallel and independently in an insulated box. Second high temperature side evaporator
While eva H ' is cooled by the hot side refrigerant during initial start-up and during the single stage cycle, the cold side evaporator eva L is cooled by the cold side refrigerant during the dual refrigeration cycle.

なお、逆止弁は、二元冷凍サイクルにおける高
温側冷凍サイクルにおいて、回路中を循環する冷
媒が、第2の高温側蒸発器evaH′にまわりこむこ
とを防止するためのものであり、冷媒循環量の確
保に必要となる。なお低温側冷凍サイクルにおい
ては前記オイルセパレータは分岐し、オイル戻り
調整用キヤピラリーチユーブCL2を介して低温側
圧縮機compLと低温側蒸発器evaLの間に配設され
ている。
The check valve is for preventing the refrigerant circulating in the circuit from going around to the second high temperature side evaporator eva H ' in the high temperature side refrigeration cycle of the binary refrigeration cycle. Necessary to ensure the amount of circulation. In the low-temperature side refrigeration cycle, the oil separator is branched and disposed between the low-temperature side compressor comp L and the low-temperature side evaporator eva L via an oil return adjustment capillary reach tube C L2 .

超低温時には、保冷温度スイツチSWが1側、
高温側サーモスタツトTh1がb側で、低温側サー
モスタツトTh2によつて−30〜−80℃に制御する
ことになるが、比較的高い温度(−30℃以上)に
冷凍する場合には、第2図より保冷温度切り換え
スイツチSWを2側にする。これにより、リレー
R3のコイルが励磁され、低温側圧縮機compL
停止し、高温側圧縮機compHは高温側サーモスタ
ツトTh1の動作により運転−停止が行われる。ま
た三方弁が通電され、三方弁内の流路は第1図よ
り→から→となり、二元冷凍サイクルの
初期起動時の高温側冷凍サイクルと同様となり、
単段冷凍サイクルが形成され冷却が行われる。な
お、高温側サーモスタツトTh1と低温側Th2の動
作温度が重複しないようにする。
At extremely low temperatures, the cold storage temperature switch SW is set to the 1 side,
The high temperature side thermostat Th1 is on the b side, and the low temperature side thermostat Th2 controls the temperature between -30 and -80℃, but when freezing to a relatively high temperature (-30℃ or higher) , From Figure 2, set the cold storage temperature switch SW to the 2 side. This will cause the relay
The coil R3 is energized, the low temperature side compressor comp L is stopped, and the high temperature side compressor comp H is operated and stopped by the operation of the high temperature side thermostat Th1 . In addition, the three-way valve is energized, and the flow path inside the three-way valve changes from → to → as shown in Figure 1, which is similar to the high temperature side refrigeration cycle at the initial startup of the binary refrigeration cycle.
A single-stage refrigeration cycle is formed to perform cooling. Note that the operating temperatures of the high-temperature side thermostat Th1 and the low-temperature side Th2 should not overlap.

〔考案の効果〕[Effect of idea]

以上のように本考案は、初期起動時には高温側
圧縮機のみを運転し、第2の高温側蒸発器によつ
てあらかじめ庫内を冷却しているので、低温側圧
縮機を運転して低温側蒸発器によつて庫内を超低
温状態に冷却する際に低温側圧縮機に負荷がかか
らず、冷却時間も少なくなる。
As described above, the present invention operates only the high-temperature side compressor at the initial startup, and the second high-temperature side evaporator cools the inside of the refrigerator in advance, so the low-temperature side compressor is operated and the low-temperature side compressor is operated. When the evaporator cools the inside of the refrigerator to an ultra-low temperature state, no load is placed on the low-temperature side compressor, and the cooling time is shortened.

また、比較的高い温度(−30℃以上)で庫内を
冷却する時には、初期起動時と同様、高温側圧縮
機のみを運転し、第2の高温側蒸発器で庫内を冷
却するようにしたので、従来の二元冷凍装置のよ
うに低温側圧縮機の運転−停止を激しく繰り返し
てシヨートサイクルとなり、油あがりや低温側圧
縮機内の電動機各部の摩耗、巻線の焼損などが生
ずることがない。
Also, when cooling the inside of the refrigerator at a relatively high temperature (-30℃ or higher), only the high-temperature side compressor is operated, and the second high-temperature side evaporator is used to cool the inside of the refrigerator, as in the case of initial startup. As a result, unlike conventional dual refrigeration equipment, the low-temperature side compressor repeatedly starts and stops, resulting in a short cycle, which causes oil spillage, wear of various parts of the motor in the low-temperature side compressor, and burnout of the windings. There is no.

さらに、高温側冷凍サイクルのみによる単段冷
凍が可能なので、低温側冷凍サイクルが故障した
場合にも庫内の冷却が全く不可能になるというこ
ともない。
Furthermore, since single-stage refrigeration is possible using only the high-temperature side refrigeration cycle, even if the low-temperature side refrigeration cycle fails, cooling inside the refrigerator will not become impossible at all.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案による冷却回路を、第2図はそ
の電気回路を示す。 図において、compH……高温側圧縮機、compL
……低温側圧縮機、condH……高温側フインチユ
ーブ形凝縮器、condL……低温側凝縮器、CH1
CH2,CL1,CL2……キヤピラリーチユーブ、evaH
evaH′……高温側蒸発器、evaL……低温側蒸発器、
CMH……高温側圧縮機、CML……低温側圧縮機、
CFH……高温側フアンモータ、SV……三方弁、
Th1……高温側サーモスタツト、Th2……低温側
サーモスタツト、SW……保冷温度切り換えスイ
ツチ(手動スイツチ)、R1,R2,R3……リレーコ
イル部、R1a,R2a,R3a……リレー接点、R2b,
R3b……リレー接点。
FIG. 1 shows a cooling circuit according to the invention, and FIG. 2 shows its electrical circuit. In the figure, comp H ...high temperature side compressor, comp L
...low temperature side compressor, cond H ...high temperature side Finch-Eube condenser, cond L ...low temperature side condenser, C H1 ,
C H2 , C L1 , C L2 ... Capillary reach tube, eva H ,
eva H ′...High temperature side evaporator, eva L ...Low temperature side evaporator,
CM H ...High temperature side compressor, CM L ...Low temperature side compressor,
CF H ...High temperature side fan motor, SV...Three-way valve,
Th 1 ...High temperature side thermostat, Th 2 ...Low temperature side thermostat, SW...Cool temperature selection switch (manual switch), R 1 , R 2 , R 3 ...Relay coil section, R 1 a, R 2 a, R 3 a……Relay contact, R 2 b,
R 3 b……Relay contact.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 高温側冷凍サイクルの蒸発器と低温側冷凍サイ
クルの凝縮器とがカスケードコンデンサーを構成
している二元冷凍装置において、該高温側冷凍サ
イクルは高温側圧縮機、高温側凝縮器、庫内を冷
却するための第2の高温側蒸発器、該カスケード
コンデンサーを構成するための第1の蒸発器を順
次連結するとともに、該高温側凝縮器の出口側と
該第1の蒸発器の入口側とを冷媒の切換手段を設
けたバイパス管で連結され、また前記低温側冷凍
サイクルは低温側圧縮機、前記カスケードコンデ
ンサーを構成する低温側凝縮器、庫内を冷却する
ための低温側蒸発器を順次連結し、さらに初期起
動時および庫内を比較的高温に保つ場合には前記
高温側圧縮機のみを運転させるとともに前記切換
手段によつて冷媒を前記第2の高温側蒸発器に供
給し、庫内を超低温状態に保つ場合には高温側、
低温側両圧縮機を運転させるとともに前記切換手
段によつて冷媒を前記バイパス管を通じて前記第
1の高温側蒸発器のみに供給するようにした制御
手段を有することを特徴とする二元冷凍装置。
In a binary refrigeration system in which the evaporator of the high-temperature side refrigeration cycle and the condenser of the low-temperature side refrigeration cycle constitute a cascade condenser, the high-temperature side refrigeration cycle cools the high-temperature side compressor, the high-temperature side condenser, and the inside of the refrigerator. A second high-temperature side evaporator for forming the cascade condenser and a first evaporator for forming the cascade condenser are sequentially connected, and the outlet side of the high-temperature side condenser and the inlet side of the first evaporator are connected in sequence. They are connected by a bypass pipe provided with a refrigerant switching means, and the low-temperature side refrigeration cycle is sequentially connected to a low-temperature side compressor, a low-temperature side condenser forming the cascade condenser, and a low-temperature side evaporator for cooling the inside of the refrigerator. Furthermore, at the time of initial startup and when keeping the interior of the refrigerator at a relatively high temperature, only the high-temperature side compressor is operated, and the refrigerant is supplied to the second high-temperature side evaporator by the switching means. When keeping the temperature at an ultra-low temperature, the high temperature side
A binary refrigeration system comprising control means for operating both low-temperature side compressors and for causing the switching means to supply refrigerant only to the first high-temperature side evaporator through the bypass pipe.
JP19317582U 1982-12-22 1982-12-22 dual refrigeration equipment Granted JPS59167369U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19317582U JPS59167369U (en) 1982-12-22 1982-12-22 dual refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19317582U JPS59167369U (en) 1982-12-22 1982-12-22 dual refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS59167369U JPS59167369U (en) 1984-11-09
JPH027411Y2 true JPH027411Y2 (en) 1990-02-22

Family

ID=30415538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19317582U Granted JPS59167369U (en) 1982-12-22 1982-12-22 dual refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS59167369U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5222494B2 (en) * 2007-06-22 2013-06-26 エスペック株式会社 Environmental tester
US10655895B2 (en) * 2017-05-04 2020-05-19 Weiss Technik North America, Inc. Climatic test chamber with stable cascading direct expansion refrigeration system

Also Published As

Publication number Publication date
JPS59167369U (en) 1984-11-09

Similar Documents

Publication Publication Date Title
US4785640A (en) Freezing apparatus using a rotary compressor
US3444923A (en) Heat pumps with electric booster heaters
US2080358A (en) Refrigerating apparatus
JPH027411Y2 (en)
US3063251A (en) Starting relay system for heat pumps
US3214931A (en) Thermostatic control for refrigeration systems
US3276220A (en) Fan speed control for refrigeration system
US2200477A (en) Refrigeration control system
US2366188A (en) Refrigerating apparatus
JPH09318165A (en) Electric refrigerator
US1953941A (en) Refrigerator control
US2133955A (en) Control for two-temperature refrigerators
JPH05340619A (en) Low pressure stage refrigerant system in double-pressure type freezer device
JPS6332989B2 (en)
JPH0829011A (en) Heat pump system
JPS6022260Y2 (en) air conditioner
JPS5835982Y2 (en) Refrigeration cycle operating equipment
JPH0330777Y2 (en)
JPH0216074Y2 (en)
JPS6015849B2 (en) air conditioner
JPS58221349A (en) Refrigeration cycle device
CA1145578A (en) Low temperature fail-safe cascade cooling apparatus
JPH05288410A (en) Freezer device
JPH025334Y2 (en)
JPS6038857Y2 (en) Air conditioner control circuit