JPH0272559A - Distributed power source system - Google Patents

Distributed power source system

Info

Publication number
JPH0272559A
JPH0272559A JP63222379A JP22237988A JPH0272559A JP H0272559 A JPH0272559 A JP H0272559A JP 63222379 A JP63222379 A JP 63222379A JP 22237988 A JP22237988 A JP 22237988A JP H0272559 A JPH0272559 A JP H0272559A
Authority
JP
Japan
Prior art keywords
fuel cell
temperature
secondary battery
batteries
waste heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63222379A
Other languages
Japanese (ja)
Inventor
Hisamichi Inoue
久道 井上
Moriaki Tsukamoto
守昭 塚本
Naohisa Watabiki
直久 綿引
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63222379A priority Critical patent/JPH0272559A/en
Publication of JPH0272559A publication Critical patent/JPH0272559A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To enhance efficiency of a system by utilizing the waste heat of a fuel cell system as the standby energy of high-temperature type secondary batteries and charging the batteries with excess electric power at the rated operating condition of fuel cell. CONSTITUTION:When electric power peak out is made with high-temperature secondary batteries 16, waste heat generated in warming up of a fuel cell system and rated operation time until practical use is supplied to the outside of a secondary battery container 17 through a duct 15, and temperature of an isothermal liquid 16 within the container 17 is controlled with a thermometer 19. Temperature of the high-temperature secondary batteries 16 within the container 17 is made uniform and no inoperative batteries are generated. When the fuel cell system is not operated at night, the duct 15 is closed with dampers 20, 21 for heat insulation. As a result, although temperature slightly decreases, it is sufficiently recovered with waste heat produced by fuel cell operation until the batteries are used. Efficiency of a system is enhanced.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、電力供給設備に係り、特に、揚水発電の代替
設備として、都市近郊に設置し、ピーク負荷時に電力を
供給するのに好適な分散型電源設備に関する。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to power supply equipment, and in particular, as an alternative to pumped storage power generation, it is suitable for installing near cities and supplying power during peak loads. Regarding distributed power supply equipment.

(従来の技術〕 分散型電源設備として、燃料電池発電システムについて
、特開昭58−107024号は、燃料電池の直流出力
側に開閉器を介して二次電池を接続し、燃料電池の出力
が所定値に達するまで二次電池に充電するものである。
(Prior art) Regarding a fuel cell power generation system as a distributed power supply facility, JP-A-58-107024 discloses a system in which a secondary battery is connected to the DC output side of the fuel cell via a switch, and the output of the fuel cell is This charges the secondary battery until it reaches a predetermined value.

特開昭58−133789号は、燃料電池と二次電池を
接続方法を発明したものであり、目的は、応答特性の向
上である。特開昭61−21.516号は、燃料電池の
直流出力側に開閉器を介して二次電池を接続すると共に
開閉器を介して直接負荷に接続する構成となっている。
JP-A-58-133789 discloses a method for connecting a fuel cell and a secondary battery, and its purpose is to improve response characteristics. Japanese Patent Application Laid-Open No. 61-21.516 has a configuration in which a secondary battery is connected to the DC output side of a fuel cell via a switch and is also directly connected to a load via the switch.

目的は、燃料電池低負荷時に発生する余剰電力を二次電
池に充電し、その電力を負荷追随時燃料電池側事故時に
供給すると共に別途直流電源として使用するものである
The purpose is to charge a secondary battery with surplus power generated when the fuel cell is under low load, and to supply that power in the event of a failure on the fuel cell side during load following, and to use it as a separate DC power source.

(発明が解決しようとする課題〕 上記従来技術では、燃料電池システムの廃熱を有効利用
する点について考慮がされておらず、システム効率の低
下に問題がある。また、二次電池の充電方法として、燃
料電池定格運転時の余剰電力の充電について考慮がされ
ておらず、上記と同様にシステム効率の低下に問題があ
る。
(Problems to be Solved by the Invention) The above-mentioned conventional technology does not take into consideration the effective use of waste heat of the fuel cell system, and there is a problem in reducing system efficiency. As such, no consideration is given to the charging of surplus power during rated operation of the fuel cell, and there is a problem of a decrease in system efficiency, similar to the above.

本発明の目的は、上記二つの問題点を解決し、システム
効率の向上を図ることにある。
An object of the present invention is to solve the above two problems and improve system efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、燃料電池システムと充放電効率が良い高温
型二次電池とを組合せた分散型電源設備において、燃料
電池システムの廃熱を高温型二次電池の待機エネルギと
して有効利用し、燃料電池定格運転時の余剰電力を充電
することで達成される。
The above purpose is to effectively use the waste heat of the fuel cell system as standby energy for the high-temperature secondary battery in a distributed power supply facility that combines a fuel cell system and a high-temperature secondary battery with good charge/discharge efficiency. This is achieved by charging with surplus power during rated operation.

〔作用〕[Effect]

高温型二次電池で電力ピークカットを行う場合、使用時
間帯が12時をはさみ約二時間程度であるので、燃料電
池システムの立ち上げ、及び、使用時間までの定格運転
時間により発生する廃熱(入熱の約14%)をダクト内
を通して高温二次電池収納容器の外側に供給し、温度計
信号によりダクト内通過廃熱を調節して、高温二次電池
収納容器内側の熱伝導良導体である等温液体の温度管理
を行うので、高温二次電池収納容器内に収納されている
多数の高温二次電池は全て−様な温度になり、不作動の
電池が発生することはない。燃料電池システムを運転し
ない夜間は、廃熱を導くダクトをダンパによりシャット
アウトして断熱する。これによって、若干の温度低下は
するが、電池使用時までには燃料電池運転による廃熱に
より充分温度回復が可能である。短時間で発生し変動の
大きい負荷電力のピークを高温型二次電池で補うため、
燃料電池システムの定格容量を小さくすることができる
When performing peak power cuts with high-temperature secondary batteries, the operating time is approximately two hours including 12 o'clock, so the waste heat generated during startup of the fuel cell system and the rated operating time until the time of use. (approximately 14% of the heat input) is supplied to the outside of the high-temperature secondary battery storage container through the duct, and the waste heat passing through the duct is adjusted by the thermometer signal. Since the temperature of a certain isothermal liquid is controlled, all of the large number of high-temperature secondary batteries stored in the high-temperature secondary battery storage container reach a temperature similar to -, and no batteries are inoperable. At night, when the fuel cell system is not in operation, the duct that carries waste heat is shut off using a damper and insulated. This causes a slight temperature drop, but by the time the battery is used, the temperature can be recovered sufficiently by waste heat from fuel cell operation. In order to compensate for the peak load power that occurs in a short time and has large fluctuations, using a high-temperature secondary battery,
The rated capacity of the fuel cell system can be reduced.

〔実施例〕〔Example〕

第1図に溶融炭素塩型燃料電池発電システムに高温二次
電池としてナトリウム−硫黄電池を取り付けた一実施例
を示す。燃料電池による発電は、注入口1より化石燃料
を注入口2より水を、また。
FIG. 1 shows an example in which a sodium-sulfur battery is attached as a high-temperature secondary battery to a molten carbon salt fuel cell power generation system. Power generation using a fuel cell involves injecting fossil fuel into inlet 1, water in inlet 2, and so on.

注入口3より空気を石炭ガス化炉4に注入し、水素と一
酸化炭素を主成分とするガスを発生させる。
Air is injected into the coal gasifier 4 through the injection port 3 to generate gas whose main components are hydrogen and carbon monoxide.

このガスを規定温度に下げるための熱交換器5を介して
ガス精製装置6に導く。ガス精製装置6では、硫化水素
のような硫黄化合物やダストを除去する。ガス精製装置
6を出たガスは、燃料電池7の負極に供給される。電池
反応を以下に示す。
This gas is guided to a gas purification device 6 via a heat exchanger 5 for lowering the temperature to a specified temperature. The gas purification device 6 removes sulfur compounds such as hydrogen sulfide and dust. The gas exiting the gas purification device 6 is supplied to the negative electrode of the fuel cell 7. The battery reaction is shown below.

負極: I−Iz+COa”−−+COz+HzO+2e正極: 1/20z+COz+2e−−)COa”−電池反応と
して Hz+1/20x−+HzO 負極側からの排出ガスの一部は触媒燃焼器8に導かれ、
二酸化炭素を生成し、コンプレッサ9から供給される空
気と混合し燃料電池7の正極側に供給する。この時、正
極からの排出ガス一部も熱交換器10で冷却され、混合
ガスとして燃料電池7の正極側に供給される。正極から
排出されたガスで熱交換器10を経由しないガスは、温
度が650℃以上の高温になっており、圧力も約10k
g/cdになっているため、ガスタービン11に供給さ
れて発電を行う。なお、熱交換器5.1oで冷却水とし
て使用した水は、水蒸気となり然気タービン12に供給
され、発電を行う。電池反応で得られた電気は、直流で
あるため、インバータ13で交流に変換され負荷に供給
される。以上が現状の燃料電池システムである。
Negative electrode: I-Iz+COa"--+COz+HzO+2e Positive electrode: 1/20z+COz+2e--)COa"-Hz+1/20x-+HzO as a battery reaction A part of the exhaust gas from the negative electrode side is led to the catalytic combustor 8,
Carbon dioxide is generated, mixed with air supplied from the compressor 9, and supplied to the positive electrode side of the fuel cell 7. At this time, a part of the exhaust gas from the positive electrode is also cooled by the heat exchanger 10 and supplied to the positive electrode side of the fuel cell 7 as a mixed gas. The gas discharged from the positive electrode that does not pass through the heat exchanger 10 has a temperature of 650°C or higher and a pressure of about 10k.
g/cd, it is supplied to the gas turbine 11 to generate electricity. Note that the water used as cooling water in the heat exchanger 5.1o becomes steam and is supplied to the natural air turbine 12 to generate electricity. Since the electricity obtained by the battery reaction is direct current, it is converted into alternating current by the inverter 13 and supplied to the load. The above is the current fuel cell system.

本発明による二次電池システム14は、ガスタービン1
1の高温排出ガスライン15と接続されており、この高
温排出ガスにより予熱される。二次電池システム14の
詳細を第2図に示す。まず、この図を用いて構成を説明
する。二次電池16は、高温槽容器17の中に貯蔵され
ている等温液体(ナトリウム等)18中に挿入されてい
る。この等温液体18としてナトリウムを選択すると、
万、電池が破損した場合でも、電池からのナトリウム及
び硫黄が、等温液体18の中に流出するので、高温稽古
@17の圧力が、若干、上昇するだけでナトリウム火災
等の事故に発展す゛ることはない。この等温液体(ナト
リウム等)は、温度計19により温度監視され、ダンパ
19,20の開閉を制御し、温度管理が行なわれる。な
お、二次電池を使用しない場合は、ダンパ20,21を
閉め、外気への熱の流出を防ぐ。ここで、高温排出ガス
は、高温槽容器1Gと外壁タンク22の間を通る。この
外壁タンク22は保温材23で保温されている。二次電
池システムからの電力の供給は、真空遮断器24を接続
し、燃料な池7で発生した電力の内、負荷に供給しない
余剰電力を充電したものを負荷のピーク時に放電する。
The secondary battery system 14 according to the present invention includes a gas turbine 1
1, and is preheated by this high temperature exhaust gas. Details of the secondary battery system 14 are shown in FIG. First, the configuration will be explained using this diagram. The secondary battery 16 is inserted into an isothermal liquid (such as sodium) 18 stored in a high temperature bath container 17 . If sodium is selected as this isothermal liquid 18,
In the unlikely event that the battery is damaged, sodium and sulfur from the battery will flow out into the isothermal liquid 18, so even a slight increase in the pressure in the high temperature practice @ 17 could lead to an accident such as a sodium fire. There isn't. The temperature of this isothermal liquid (sodium, etc.) is monitored by a thermometer 19, and the opening and closing of dampers 19 and 20 are controlled to perform temperature management. Note that when the secondary battery is not used, the dampers 20 and 21 are closed to prevent heat from leaking into the outside air. Here, the high temperature exhaust gas passes between the high temperature tank container 1G and the outer wall tank 22. This outer wall tank 22 is kept warm by a heat insulating material 23. To supply power from the secondary battery system, a vacuum circuit breaker 24 is connected, and surplus power that is not supplied to the load, out of the power generated in the fuel pond 7, is charged and discharged at peak load times.

第3図を用いて、この電力需給状況を説明する。ここで
、縦軸は、各電力を横軸は、−日の時刻を表している。
This power supply and demand situation will be explained using FIG. 3. Here, the vertical axis represents each electric power, and the horizontal axis represents the time of -day.

ここに示す破線はピーク負荷電力を、−点鎖線は従来の
燃料電池7による発生電力を、実線は1本発明による燃
料電池7の発生電力を示している。
The broken line shown here shows the peak load power, the dashed line shows the power generated by the conventional fuel cell 7, and the solid line shows the power generated by the fuel cell 7 according to the present invention.

また、ここで、左下がりの斜線で示を範囲は1本発明に
よる燃料電池7で賄う負荷電力を示し、右下がりの斜線
は、燃料電池7が発生する電力の内、余剰電力で二次電
池16に充′屯する電力を示し、破線で表す範囲は、二
次電池から放電し負荷を賄う範囲を表している。燃料電
池7は、化学反応を制御して電力を得るものであるから
、その応答性は若干悪いため、使用する電力量」二の電
力を発生させなければならない。そのため余剰電力が発
生する。本発明では、前日に発生するこの余剰電力を二
次電池16に充電し、翌日、その電力をピーク負荷時に
放電する。これによって、本発明では、構成する燃料電
池容量を少なくでき、余剰電力を有効に使用することが
できる。このシステ11を有効に作動させるための問題
点として、高温二次電池16の予熱がある。高温二次電
池でナトリウム−硫黄’、i!池を考えると、電池作動
時の温度を350℃で一定に保持しなければならない。
In addition, here, the range indicated by the diagonal line downward to the left indicates the load power covered by the fuel cell 7 according to the present invention, and the range indicated by the diagonal line downward to the right indicates the surplus power from the power generated by the fuel cell 7 to the secondary battery. 16, and the range represented by the broken line represents the range in which the secondary battery is discharged to cover the load. Since the fuel cell 7 obtains electric power by controlling a chemical reaction, its responsiveness is somewhat poor, so it must generate electric power that is twice as much as the amount of electric power used. Therefore, surplus power is generated. In the present invention, this surplus power generated on the previous day is charged to the secondary battery 16, and the next day, this power is discharged at peak load. As a result, in the present invention, the capacity of the fuel cell to be configured can be reduced, and surplus power can be used effectively. Preheating of the high-temperature secondary battery 16 is a problem in operating this system 11 effectively. Sodium-sulfur' in high-temperature secondary batteries, i! Considering the battery, the temperature during battery operation must be kept constant at 350°C.

本発明では、この温度管理に燃料′a池7で発生する廃
熱を利用する。第4図に廃熱量と高温二次電池の温度関
係を示す。燃料電池からの高温(650℃)廃熱は、燃
料電池の運転状況に比例し、ガスとして、燃料入熱の1
4%(第5図参照)が排出される。第4図では、実線で
廃熱量を示した。また、使用する高温二次電池の温度は
、破線で示した。電池の温度は、燃料電池を使用しない
時間帯(夜間及び朝夕)は、低下(電池システムでダン
パ20+ 21、保温材23で断熱するためさほど低]
ニジない。)するが、燃料電池の運転が開始されると、
高温排出ガスにより予熱するため高温二次電池を使用す
る12時をはさんで二時間は規定の温度(ナトリウム−
硫汝電池の場合約350℃)になり、電池からの放電が
可能となる。このように、高温二次電池を動作させるた
めに必要な待機エネルギ(保有電力量の19%)として
燃料電池からの廃熱を利用すると高温二次電池の効率を
さらにと昇することができる。
In the present invention, waste heat generated in the fuel tank 7 is utilized for this temperature control. Figure 4 shows the relationship between the amount of waste heat and the temperature of the high-temperature secondary battery. High-temperature (650°C) waste heat from the fuel cell is proportional to the operating status of the fuel cell, and as a gas, it accounts for 1 of the fuel heat input.
4% (see Figure 5) is discharged. In Fig. 4, the solid line indicates the amount of waste heat. Furthermore, the temperature of the high-temperature secondary battery used is indicated by a broken line. The temperature of the battery decreases during times when the fuel cell is not in use (nighttime, morning and evening) (not so low because the battery system is insulated with dampers 20+21 and heat insulating material 23)
No difference. ), but when the fuel cell starts operating,
The temperature is kept at the specified temperature (sodium-
In the case of a sulfuric acid battery, the temperature is approximately 350°C), and the battery can be discharged. In this way, the efficiency of the high-temperature secondary battery can be further increased by using the waste heat from the fuel cell as the standby energy (19% of the retained power) required to operate the high-temperature secondary battery.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高温二次電池の待機エネルギとして燃
料電池の廃熱を利用することで、待機エネルギ不要とし
、また、二次電池でピーク負荷をカットし、燃料電池の
容量を低減できる。
According to the present invention, waste heat of the fuel cell is used as standby energy for the high-temperature secondary battery, thereby eliminating the need for standby energy, cutting the peak load on the secondary battery, and reducing the capacity of the fuel cell.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の分散型電源設備のブロッ
ク図、第2図は、高温二次電池システムの説明図、第3
図は、本発明と従来の燃料電池の運用法の比較図、第4
図は、電池システムの温度管理状態図、第5図は石炭入
熱に対する出力説明図である。 1.5・・・高温排出ガス導入管、16・・・高温二次
電池。 17・・・高温槽容器、18・・・等温液体、19・・
・温度計、20.21・・・ダンパ。 1z 時幻1 第4図 第 区
FIG. 1 is a block diagram of a distributed power supply facility according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of a high-temperature secondary battery system, and FIG.
Figure 4 is a comparison diagram of the present invention and the conventional fuel cell operation method.
The figure is a temperature management state diagram of the battery system, and FIG. 5 is an explanatory diagram of output with respect to coal heat input. 1.5... High temperature exhaust gas introduction pipe, 16... High temperature secondary battery. 17... High temperature tank container, 18... Isothermal liquid, 19...
・Thermometer, 20.21...Damper. 1z Jigen 1 Figure 4 Ward

Claims (1)

【特許請求の範囲】 1、燃料電池システムに二次電池を接続し、前記二次電
池で電力系統のピーク負荷をカットし、前記燃料電池シ
ステムの容量を低減したことを特徴とする分散型電源設
備。 2、特許請求の範囲第1項において、 前記燃料電池システムに高温型二次電池を使用し、前記
燃料電池システムの廃熱を前記高温型二次電池の待機エ
ネルギに用いたことを特徴とする分散型電源設備。 3、ナトリウム−硫黄電池の温度を一定に保つのに等温
液体として、ナトリウムを用いたことを特徴とする分散
型電源設備。
[Claims] 1. A distributed power source characterized in that a secondary battery is connected to a fuel cell system, and the peak load of the power system is cut by the secondary battery, thereby reducing the capacity of the fuel cell system. Facility. 2. In claim 1, the fuel cell system is characterized in that a high-temperature secondary battery is used, and waste heat of the fuel cell system is used as standby energy for the high-temperature secondary battery. Distributed power equipment. 3. Distributed power supply equipment characterized in that sodium is used as an isothermal liquid to keep the temperature of a sodium-sulfur battery constant.
JP63222379A 1988-09-07 1988-09-07 Distributed power source system Pending JPH0272559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63222379A JPH0272559A (en) 1988-09-07 1988-09-07 Distributed power source system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63222379A JPH0272559A (en) 1988-09-07 1988-09-07 Distributed power source system

Publications (1)

Publication Number Publication Date
JPH0272559A true JPH0272559A (en) 1990-03-12

Family

ID=16781435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63222379A Pending JPH0272559A (en) 1988-09-07 1988-09-07 Distributed power source system

Country Status (1)

Country Link
JP (1) JPH0272559A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229961A (en) * 2000-02-17 2001-08-24 Electric Power Dev Co Ltd Power generation system
WO2003034523A1 (en) * 2001-10-11 2003-04-24 Hitachi, Ltd. Home-use fuel cell system
JP2004048895A (en) * 2002-07-11 2004-02-12 Toyota Motor Corp Private energy generating system
JP2006040604A (en) * 2004-07-23 2006-02-09 Honda Motor Co Ltd Fuel cell system and its control method
JP2006302886A (en) * 2005-04-21 2006-11-02 Samsung Sdi Co Ltd Electric power supply device using fuel cell, control method of electric power supply device, and computer readable recording medium
JP2013062217A (en) * 2011-09-15 2013-04-04 Honda Motor Co Ltd Fuel cell system
CN106159297A (en) * 2016-09-27 2016-11-23 北京新能源汽车股份有限公司 A kind of fuel cell and the heat-exchange system of electrokinetic cell, control method and automobile

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229961A (en) * 2000-02-17 2001-08-24 Electric Power Dev Co Ltd Power generation system
WO2003034523A1 (en) * 2001-10-11 2003-04-24 Hitachi, Ltd. Home-use fuel cell system
JP2004048895A (en) * 2002-07-11 2004-02-12 Toyota Motor Corp Private energy generating system
JP2007312597A (en) * 2002-07-11 2007-11-29 Toyota Motor Corp Energy generating system for home consumption
JP2006040604A (en) * 2004-07-23 2006-02-09 Honda Motor Co Ltd Fuel cell system and its control method
JP4563098B2 (en) * 2004-07-23 2010-10-13 本田技研工業株式会社 Fuel cell system and control method thereof
JP2006302886A (en) * 2005-04-21 2006-11-02 Samsung Sdi Co Ltd Electric power supply device using fuel cell, control method of electric power supply device, and computer readable recording medium
JP2013062217A (en) * 2011-09-15 2013-04-04 Honda Motor Co Ltd Fuel cell system
CN106159297A (en) * 2016-09-27 2016-11-23 北京新能源汽车股份有限公司 A kind of fuel cell and the heat-exchange system of electrokinetic cell, control method and automobile
CN106159297B (en) * 2016-09-27 2018-08-07 北京新能源汽车股份有限公司 A kind of heat-exchange system, control method and the automobile of fuel cell and power battery

Similar Documents

Publication Publication Date Title
CN101473507B (en) Power compensator and method for providing black startup through the compensator
Kawakami et al. Development and field experiences of stabilization system using 34MW NAS batteries for a 51MW wind farm
JP2009153295A (en) Method of controlling hybrid power supply system
CN204497336U (en) Multikilowatt fuel cell lithium ion battery hybrid power device
JP2004530874A (en) Apparatus and method for providing emergency power to auxiliary components of a nuclear power plant
JP2013009548A (en) Uninterruptible power supply system
CN105391164A (en) Micro-grid type uninterrupted power system
JPH0272559A (en) Distributed power source system
JP2001143736A (en) Power supply system
CN105280990A (en) Kilowatt-scale fuel cell/lithium-ion cell hybrid power device and energy management method thereof
JP2018182905A (en) Power supply system
RU2402133C1 (en) Power compensator and method for providing reduction start-up with this compensator
JPH10210685A (en) Controlling method for system-interconnected power converter for fuel cell
JPH11155244A (en) System and method for self-completing type thermoelectric concurrent supply system
US11451064B2 (en) Energy management system, independent system, and method for operating independent system
JP2004355860A (en) Combined power generation system, power generation plant, heat insulation method of secondary battery
JP3821574B2 (en) Self-contained combined heat and power system
JP3821572B2 (en) Self-contained cogeneration system
JP3322113B2 (en) Distributed power generation system
Ondrejička et al. Fuel cells as backup power supply for production processes
JP7285608B1 (en) Composite battery and composite battery system including the same
CN101119038A (en) System and method for using proton exchanging film fuel battery as emergency power supply of transforming plant
CN212518528U (en) Standby power supply system of nuclear power plant
JP7447063B2 (en) power supply system
JP3821573B2 (en) Charging device and self-contained combined heat and power system