JPH0271976A - Abrasive/water/jetting device - Google Patents
Abrasive/water/jetting deviceInfo
- Publication number
- JPH0271976A JPH0271976A JP22389888A JP22389888A JPH0271976A JP H0271976 A JPH0271976 A JP H0271976A JP 22389888 A JP22389888 A JP 22389888A JP 22389888 A JP22389888 A JP 22389888A JP H0271976 A JPH0271976 A JP H0271976A
- Authority
- JP
- Japan
- Prior art keywords
- flow rate
- abrasive
- abrasive grains
- abrasive grain
- control device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 239000006061 abrasive grain Substances 0.000 claims abstract description 49
- 238000001514 detection method Methods 0.000 claims abstract description 17
- 230000004044 response Effects 0.000 claims abstract description 4
- 239000002245 particle Substances 0.000 claims description 4
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 239000000805 composite resin Substances 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000003754 machining Methods 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000003733 fiber-reinforced composite Substances 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 210000004709 eyebrow Anatomy 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920003217 poly(methylsilsesquioxane) Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Landscapes
- Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野〕
本発明はアプレシブ・ウォータ・ジェット加工装置に関
するものであり、例えば、軽量性と強度が要求される航
空機の主翼や尾翼の形成材料として使用されている繊維
強化複合樹脂プレートに精度良く穴明は加工や切断加工
を施す目的で創案された砥粒(アブレシブ)および高圧
水の同時噴射加工装置の改良に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apresive water jet processing device, which is used, for example, as a forming material for the main wings and tail wings of aircraft, which require lightness and strength. This paper relates to improvements in a processing device that simultaneously sprays abrasive grains (abrasive) and high-pressure water, which was created for the purpose of accurately drilling and cutting holes in fiber-reinforced composite resin plates.
航空機や自動車の本体構造の軽量化と物理的強度の向上
を図るため、金属材料の代わりに炭素繊維やアラミド繊
維等で補強された複合樹脂成形品が多用されつつある。In order to reduce the weight and improve the physical strength of the main body structures of aircraft and automobiles, composite resin molded products reinforced with carbon fibers, aramid fibers, etc. are increasingly being used instead of metal materials.
これらの複合樹脂成形品は、強化用繊維の積層に熱硬化
性樹脂、例えばエポキシ樹脂を含浸硬化させることによ
って所定の形状に成形されているが、機体あるいは車体
の本体構造を形成する際に穴明は加工や切断加工を施こ
さなければならない場合がある。例えば航空機の主翼や
主桁を、炭素繊維の積層体にエポキシ樹脂を含浸硬化さ
せることによって成形された複合樹脂プレートから製作
する場合、設計仕様に適合するように、この複合樹脂成
形品に穴明は加工や切断加工を施す。この際に工作機械
やレーザ加工装置を使用すると、加熱によって複合樹脂
成形品に損傷や歪が発生する場合が少なくなかった。上
記加熱による損傷や歪の発生を回避するためには、ウォ
ータ・ジェット加工装置やアブレシブ・ウォータ・ジェ
ット加工装置を使用することが検討されている。殊に、
アブレシプ・ウォータ・ジェット加工装置は、高圧水中
に砥粒(アブレシブ)を併流分散させた加工媒体を使用
することによって、高圧水を単独で使用した場合に比較
して加工速度が一段と向上するため、寸法精度の維持の
みならず加工コストの低減に対しても有利である。These composite resin molded products are molded into a predetermined shape by impregnating and curing a thermosetting resin, such as an epoxy resin, into a laminated layer of reinforcing fibers. In some cases, it may be necessary to perform processing or cutting. For example, when manufacturing the main wing or main spar of an aircraft from a composite resin plate formed by impregnating and curing a carbon fiber laminate with epoxy resin, holes are drilled in the composite resin molded product to meet design specifications. is processed and cut. When machine tools or laser processing equipment are used in this process, the composite resin molded product is often damaged or distorted due to heating. In order to avoid the damage and distortion caused by the heating, the use of water jet processing equipment or abrasive water jet processing equipment is being considered. Especially,
Abrasive water jet machining equipment uses a machining medium in which abrasive grains (abrasive) are co-dispersed in high-pressure water, and the machining speed is further improved compared to when high-pressure water is used alone. This is advantageous not only in maintaining dimensional accuracy but also in reducing processing costs.
上記の如く有用性に優れたアブレシブ・ウォータ・ジェ
ット加工装置ではあるが、反面、高圧水中に分散状態で
供給される砥粒の量によって被加工部材の寸法精度や切
断形態が影響を受けるという問題点がある。例えば第4
図に示すように恒速移動する噴射ノズル(1)から被加
工部材(2)の表面に噴射される高圧水が一定の流量を
持っていても単独時間当たりの砥粒の供給量が予め設定
された基準値よりも多くなれば被加工部材の切断溝幅が
広くなり、反対に単位時間当たりの砥粒の供給量が前記
基準値よりも少なくなれば被加工部材には、その裏面迄
加工媒体が貫流しない不完全切断状態が引起こされる。As mentioned above, abrasive water jet machining equipment has excellent usefulness, but on the other hand, it has the problem that the dimensional accuracy and cutting form of the workpiece are affected by the amount of abrasive grains supplied in a dispersed state in high-pressure water. There is a point. For example, the fourth
As shown in the figure, even if the high-pressure water sprayed onto the surface of the workpiece (2) from the spray nozzle (1) that moves at a constant speed has a constant flow rate, the amount of abrasive grains supplied per unit time is preset. If the amount of abrasive grains supplied per unit time is less than the reference value, the cutting groove width of the workpiece will be widened, and conversely, if the amount of abrasive grains supplied per unit time is less than the reference value, the workpiece will be machined to the back side. An incomplete cut condition is created in which no medium flows through.
この結果、被加工部材が繊維強化複合樹脂成形品である
場合には、積層された繊維相互間に眉間剥離が発生し、
再使用不能な廃材となってしまう。また、第5図に示す
ように砥粒の単位時間当たり供給量が予め設定された許
容範囲LuおよびLDから外れると、第4図に二点鎖線
で示すように被加工部材(2)の切断溝(13)の幅寸
法が変動し、これによって切断面が平坦面とならず、寸
法精度の低下が引起こされる。しかるに、在来のアブレ
シブ・ウォータ・ジェット加工装置においては、砥粒供
給量の計測調整手段が全く設けられておらず、このため
上記の如き寸法精度の低下や複合材料の層間剥離等によ
る素材の廃材化事故が頻発していた。As a result, when the workpiece is a fiber-reinforced composite resin molded product, separation between the laminated fibers occurs between the eyebrows,
It becomes waste material that cannot be reused. Furthermore, as shown in Fig. 5, if the supply amount of abrasive grains per unit time deviates from the preset tolerance ranges Lu and LD, the workpiece (2) will be cut as shown by the two-dot chain line in Fig. 4. The width dimension of the groove (13) varies, and as a result, the cut surface does not become a flat surface, causing a decrease in dimensional accuracy. However, conventional abrasive water jet processing equipment is not equipped with any means for measuring and adjusting the amount of abrasive grains supplied, and as a result, the above-mentioned reduction in dimensional accuracy and delamination of the composite material due to delamination may occur. Accidents involving waste materials were occurring frequently.
本発明の主要な目的は、高圧水中に導入される砥粒の分
量が経時的に変動することに起因する上記被加工部材の
寸法精度の低下や複合材料の眉間剥離等による素材の廃
材化を防止することのできる砥粒供給量の計測調整手段
を具えたアブレシブ・ウォータ・ジェット加工装置を提
供することにある。The main purpose of the present invention is to reduce the dimensional accuracy of the workpiece due to fluctuations in the amount of abrasive grains introduced into high-pressure water over time, and to reduce the amount of waste material caused by flaking of composite materials. An object of the present invention is to provide an abrasive water jet processing device equipped with a means for measuring and adjusting the amount of abrasive grains supplied that can prevent the above problems.
上記目的の達成手段として本発明は、高圧水の噴射ノズ
ルに砥粒の負圧吸引装置を接続してなるジェット加工装
置において、砥粒を収納したホッパから前記高圧水の噴
射ノズルに向かって延びる砥粒気送管路の一部を透明チ
ューブから構成し、この透明チューブを挟んでその両側
に発光素子と受光素子を対向配置して流量検出回路を構
成し、この流量検出回路に砥粒流量の制御装置を接続す
ると共に、前記砥粒の気送管路に流i調整弁を内蔵させ
、前記砥粒流量の制御装置から発信される信号に応動し
て砥粒気送管路の横断面積が変化する流量調整手段を形
成せしめたアブレシブ・ウォータ・ジェット加工装置を
提供するものである。As a means for achieving the above object, the present invention provides a jet processing apparatus in which a negative pressure suction device for abrasive particles is connected to a high-pressure water injection nozzle. A part of the abrasive grain pneumatic conveying conduit is made up of a transparent tube, and a light emitting element and a light receiving element are arranged facing each other on both sides of the transparent tube to constitute a flow rate detection circuit. A control device is connected to the abrasive grain pneumatic feed pipe, and a flow i adjustment valve is built in the abrasive grain pneumatic feed pipe, and the cross-sectional area of the abrasive grain pneumatic feed pipe is adjusted in response to a signal transmitted from the abrasive grain flow rate control device. The present invention provides an abrasive water jet machining device in which a flow rate adjusting means is formed to change the flow rate.
〔作用]
透明チューブ内を気送される砥粒の流量をこの透明チュ
ーブの両側に対設された投受光素子からなる検出回路で
検出し、この検出信号によって当該検出回路に接続され
た流量制御装置および流量調整手段を作動させ、高圧水
中に導入される砥粒の分量を所定の基準値に合致させる
。[Operation] The flow rate of the abrasive particles pneumatically fed through the transparent tube is detected by a detection circuit consisting of light emitting/receiving elements installed on both sides of the transparent tube, and this detection signal is used to control the flow rate connected to the detection circuit. The device and flow rate adjusting means are operated to match the amount of abrasive grains introduced into the high pressure water to a predetermined reference value.
第1図は本発明装置の一具体例を示す正面図、第2図は
投受光素子からなる検出系の光量と砥粒の@量との関係
を示す線図、第3図は光量と時間の関係を示す線図であ
る。第1図において、(1)はベンチュリ式の負圧吸引
機構を具えた高圧水(12)および砥粒(10)の噴射
ノズル、(2)は被加工部材たる繊維強化複合樹脂成形
品、(3)は砥粒(10)の収納用ホッパ、(4)は砥
粒の気送管路、(5)は砥粒気送管路(4)と高圧水噴
射ノズル(1)の間に接続された硬質のガラスもしくは
合成樹脂製の透明チューブである。透明チューブ(5)
を挟んでその両側には、発光素子(6)と受光素子(7
)を対向配置してなる流量検出回路(11)が形成され
ており、この流量検出回路(11)には、発光素子(6
)から受光素子(7)に向かって投射される光線が透明
チューブ(5)内の気送砥粒(10a)を横切る際の光
量の変化に応動して収納ホッパ(3)内からの砥粒(1
0)の流量を変化させる制御装置(8)が接続されてお
り、また、この制御装置(8)に対応して砥粒(10)
の気送管路(4)には、流量調整手段として、制御装置
(8)から発信される砥粒(10)の流量検出信号に応
動して基準値L0を中心として気送管路(4)の横断面
積を上限値しUまたは下限値り、側から変化させる回転
ロータリ型の流量調整弁(9)が内蔵されている。Fig. 1 is a front view showing a specific example of the device of the present invention, Fig. 2 is a diagram showing the relationship between the amount of light of the detection system consisting of light emitting and receiving elements and the amount of abrasive grains, and Fig. 3 is a diagram showing the relationship between the amount of light and the amount of abrasive grains. FIG. In Fig. 1, (1) is a high-pressure water (12) and abrasive grain (10) injection nozzle equipped with a venturi-type negative pressure suction mechanism, (2) is a fiber-reinforced composite resin molded product that is a workpiece, ( 3) is a hopper for storing abrasive grains (10), (4) is a pneumatic pipe for abrasive grains, and (5) is connected between a pneumatic pipe for abrasive grains (4) and a high-pressure water injection nozzle (1). It is a transparent tube made of hard glass or synthetic resin. Transparent tube (5)
A light emitting element (6) and a light receiving element (7) are placed on both sides of the
) are arranged facing each other, a flow rate detection circuit (11) is formed, and this flow rate detection circuit (11) includes a light emitting element (6).
) toward the light receiving element (7) crosses the pneumatic abrasive grains (10a) in the transparent tube (5). (1
A control device (8) that changes the flow rate of the abrasive grains (10) is connected to the control device (8) that changes the flow rate of the abrasive grains (10).
The pneumatic pipe (4) has a flow rate adjusting means that adjusts the flow rate of the abrasive grains (10) around the reference value L0 in response to a flow rate detection signal of the abrasive grains (10) transmitted from the control device (8). ) has a built-in rotary type flow rate regulating valve (9) that changes the cross-sectional area from the upper limit to the lower limit.
流量検出回路(11)で検出された砥粒(10a)の流
量の変化は、光学的な検出信号として制御装置(8)に
送出され、この制御装置(8)に予め設定されている基
準値L0と比較される。The change in the flow rate of the abrasive grains (10a) detected by the flow rate detection circuit (11) is sent to the control device (8) as an optical detection signal, and the change in the flow rate of the abrasive grains (10a) detected by the flow rate detection circuit (11) is sent to the control device (8) as a reference value set in advance in this control device (8). It is compared with L0.
この基準値L0と実測値との比較演算結果は、流量調整
弁(9)にフィードバックされ、そのロータリ弁(9a
)を、砥粒(10)の実流量を基準値L0に一致させる
方向に回転させる。即ち、ホッパ(3)から噴射ノズル
(1)に向かって気送される砥粒(10)の実流量が基
準値L0よりも大きい場合には、流量調整弁(9)の弁
開度を小さくする方向にロータリ弁(9a)を回転させ
、また、砥粒(10)の実流量が基準値し。The comparison calculation result between the reference value L0 and the actual measurement value is fed back to the flow rate adjustment valve (9), and the rotary valve (9a
) is rotated in a direction to make the actual flow rate of abrasive grains (10) match the reference value L0. That is, when the actual flow rate of abrasive grains (10) pneumatically fed from the hopper (3) toward the injection nozzle (1) is larger than the reference value L0, the opening degree of the flow rate adjustment valve (9) is decreased. The rotary valve (9a) is rotated in the direction to adjust the actual flow rate of the abrasive grains (10) to the reference value.
よりも小さい場合には、流量調整弁(9)の弁開度を大
きくする方向にロータリ弁(9a)を回転させる。これ
によって砥粒(10)の流量は、予め設定された上限値
し。と下限値LDの間に維持される。一方、第3図に陰
影を付した部分として示すように砥粒(10)の流量が
許容範囲を超えて変動した場合には、ホッパ(3)や気
送管路(4)に詰まりその他の異常が発生したことを意
味し、気送状態の不安定化による繊維強化複合樹脂成形
品(2)の加工精度、例えば切断溝(13)の寸法精度
の低下を防止するため、高圧水(12)の供給手段を含
むアブレシブ・ウォータ・ジェット加工装置の全体を即
時停止させる。If it is smaller than , the rotary valve (9a) is rotated in a direction to increase the valve opening of the flow rate regulating valve (9). As a result, the flow rate of the abrasive grains (10) reaches a preset upper limit value. and the lower limit value LD. On the other hand, if the flow rate of the abrasive grains (10) fluctuates beyond the permissible range, as shown by the shaded area in Figure 3, the hopper (3) or pneumatic pipe (4) may become clogged or the like. This means that an abnormality has occurred, and in order to prevent a decrease in the processing accuracy of the fiber-reinforced composite resin molded product (2), such as the dimensional accuracy of the cutting groove (13), due to the instability of the air supply condition, high-pressure water (12 ) immediately stops the entire abrasive water jet processing equipment, including the supply means.
〔発明の効果]
本発明によれば、高圧水の噴射ノズルに向かってホッパ
から負圧吸引式で気送される砥粒の流量が自動的にフィ
ードバック制御される。[Effects of the Invention] According to the present invention, the flow rate of abrasive particles pneumatically fed from a hopper by negative pressure suction toward a high-pressure water injection nozzle is automatically feedback-controlled.
従って、被加工部材の加工精度が向上し、砥粒流量の変
動に起因する不良品の発生や複合材料の眉間剥離による
廃材化も効果的に回避される。Therefore, the processing accuracy of the workpiece is improved, and the occurrence of defective products due to fluctuations in the flow rate of abrasive grains and waste due to peeling of the composite material between the eyebrows can be effectively avoided.
【図面の簡単な説明】
第1図は本発明装置の一具体例を示す正面図、第2図は
投受光素子からなる検出系の光量と砥粒の流量との関係
を示す線図、第3図は光量と時間の関係を示す線図であ
る。また、第4図は被加工部材における寸法精度の変動
状態を説明する上面図、第5図は砥粒の流量と時間の関
係を説明する線図である。
(1)・−高王水の噴射ノズル、
(2) −被加工部材、 < 3 ) −・ホッパ、
(4) −砥粒気送管路、(5)・−透明チューブ、(
6) −投光素子、 (7) −受光素子、(8)
−・制御装置、 (9)・−流量調整弁、(10
) (10a )−・−砥粒。[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a front view showing a specific example of the device of the present invention, Fig. 2 is a diagram showing the relationship between the amount of light of the detection system consisting of light emitting/receiving elements and the flow rate of abrasive grains. FIG. 3 is a diagram showing the relationship between light amount and time. Further, FIG. 4 is a top view illustrating the fluctuation state of dimensional accuracy in the workpiece, and FIG. 5 is a diagram illustrating the relationship between the flow rate of abrasive grains and time. (1) - High aqua regia injection nozzle, (2) - Workpiece member, < 3) - Hopper,
(4) - Abrasive pneumatic pipeline, (5) - Transparent tube, (
6) - Light emitting element, (7) - Light receiving element, (8)
-・Control device, (9)・-Flow rate adjustment valve, (10
) (10a) --- Abrasive grain.
Claims (1)
してなるジェット加工装置において、砥粒を収納したホ
ッパから前記高圧水の噴射ノズルに向かって延びる砥粒
気送管路の一部を透明チューブから構成し、 この透明チューブを挟んでその両側に発光素子と受光素
子を対向配置して流量検出回路を構成し、 この流量検出回路に砥粒流量の制御装置を接続すると共
に、前記砥粒の気送管路に流量調整弁を内蔵させ、前記
砥粒流量の制御装置から発信される信号に応動して砥粒
気送管路の横断面積が変化する流量調整手段を形成した
ことを特徴とするアブレシブ・ウォータ・ジェット加工
装置。(1) In a jet processing device in which a negative pressure suction device for abrasive grains is connected to a high-pressure water jet nozzle, an abrasive grain pneumatic feed line extending from a hopper containing abrasive grains toward the high-pressure water jet nozzle is provided. A part of the tube is made up of a transparent tube, and a light-emitting element and a light-receiving element are arranged facing each other on both sides of the transparent tube to form a flow rate detection circuit, and an abrasive particle flow rate control device is connected to this flow rate detection circuit. , a flow rate adjustment valve is built into the abrasive grain pneumatic conveyance conduit, and a flow rate adjustment means is formed in which the cross-sectional area of the abrasive grain pneumatic conduit changes in response to a signal transmitted from the abrasive grain flow rate control device. This is an abrasive water jet processing device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22389888A JPH0271976A (en) | 1988-09-06 | 1988-09-06 | Abrasive/water/jetting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22389888A JPH0271976A (en) | 1988-09-06 | 1988-09-06 | Abrasive/water/jetting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0271976A true JPH0271976A (en) | 1990-03-12 |
JPH0565316B2 JPH0565316B2 (en) | 1993-09-17 |
Family
ID=16805434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22389888A Granted JPH0271976A (en) | 1988-09-06 | 1988-09-06 | Abrasive/water/jetting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0271976A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04146080A (en) * | 1990-10-05 | 1992-05-20 | Shibuya Kogyo Co Ltd | Water jet working machine |
JP2007130716A (en) * | 2005-11-10 | 2007-05-31 | Hitachi Ltd | Method and device for generating abrasive water jet |
JP2010069566A (en) * | 2008-09-18 | 2010-04-02 | Disco Abrasive Syst Ltd | Water jet machining device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS572468A (en) * | 1980-06-04 | 1982-01-07 | Mitsubishi Motors Corp | Induced voltage grounding ignition unit |
JPS62193799A (en) * | 1986-02-20 | 1987-08-25 | 川崎重工業株式会社 | Water-jet cutting method |
-
1988
- 1988-09-06 JP JP22389888A patent/JPH0271976A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS572468A (en) * | 1980-06-04 | 1982-01-07 | Mitsubishi Motors Corp | Induced voltage grounding ignition unit |
JPS62193799A (en) * | 1986-02-20 | 1987-08-25 | 川崎重工業株式会社 | Water-jet cutting method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04146080A (en) * | 1990-10-05 | 1992-05-20 | Shibuya Kogyo Co Ltd | Water jet working machine |
JP2007130716A (en) * | 2005-11-10 | 2007-05-31 | Hitachi Ltd | Method and device for generating abrasive water jet |
JP2010069566A (en) * | 2008-09-18 | 2010-04-02 | Disco Abrasive Syst Ltd | Water jet machining device |
Also Published As
Publication number | Publication date |
---|---|
JPH0565316B2 (en) | 1993-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180099378A1 (en) | High-pressure waterjet cutting head systems, components and related methods | |
US11292147B2 (en) | Methods of cutting fiber reinforced polymer composite workpieces with a pure waterjet | |
US20090198369A1 (en) | Adaptive control of composite plycutting | |
AU665949B2 (en) | Blasting apparatus and method | |
Hashish et al. | Trimming of CFRP aircraft components | |
JPH0872051A (en) | Wheel cutter type cutting apparatus | |
EP3658332A1 (en) | Air flow management systems and methods to facilitate the delivery of abrasives to an abrasive fluid jet cutting head | |
JPH0271976A (en) | Abrasive/water/jetting device | |
JP5272249B2 (en) | Metal saw for curve cutting, its processing method and processing equipment | |
EP3197605A1 (en) | Dust and gas ejection valve | |
CN201016108Y (en) | Three-dimensional glass cutting machine floated cutting head | |
CN105773442B (en) | A kind of ultra-high pressure water fluid jet milling water cutter head and its milling process | |
JP2597862B2 (en) | Composite material processing method | |
US12053938B2 (en) | System and method for forming a composite stiffener | |
CN114474713B (en) | Material-increasing and material-decreasing composite manufacturing equipment | |
CN210818740U (en) | Machining coolant nozzle | |
CN201824251U (en) | Sand blast machine | |
CN209888105U (en) | Precise film coating device for film processing | |
CN206216055U (en) | The adjusting means that a kind of Wire-cut Electrical Discharge Machining is supplied with aerosol | |
CA1255339A (en) | Vacuum transfer head | |
CN118176089A (en) | Abrasive fluid jet with abrasive recovery system and method of using the same | |
FR2994853A1 (en) | Respiratory protection equipment for protection assembly used to protect operator from dust, in aircraft manufacturing industry, has mask equipped with external pipe for injecting portion of air into external surface of visor | |
CN114986400A (en) | Prevent stifled pressure boost's rivers cutting device | |
CN117962326A (en) | Composite material with adhesive layer control structure, forming die and process method | |
Iemma et al. | Laser machining of composite materials |