JPH0271422A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0271422A
JPH0271422A JP22235488A JP22235488A JPH0271422A JP H0271422 A JPH0271422 A JP H0271422A JP 22235488 A JP22235488 A JP 22235488A JP 22235488 A JP22235488 A JP 22235488A JP H0271422 A JPH0271422 A JP H0271422A
Authority
JP
Japan
Prior art keywords
film
amorphous carbon
recording medium
magnetic material
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22235488A
Other languages
Japanese (ja)
Inventor
Makiko Ito
伊藤 真貴子
Yuichi Kokado
雄一 小角
Makoto Kito
鬼頭 諒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22235488A priority Critical patent/JPH0271422A/en
Publication of JPH0271422A publication Critical patent/JPH0271422A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a protective film having an excellent sliding characteristic by providing an amorphous carbon layer having <=30% molar concn. of the hydrogen bonded to carbon atoms in the film onto a recording layer consisting of a thin film magnetic material. CONSTITUTION:There is an underlying layer B on a substrate A and there are further, an intermediate layer C and the recording layer D thereon. The protective layer E is formed thereon. Gaseous methane is introduced into a vacuum chamber and plasma discharge is generated in the chamber by a high-frequency power source. The protective film E is deposited on the substrate cooled by cooling water. The molar concn. of the hydrogen bonded to the carbon atom in the protective film is confined to <=(25 to 30) in this case, by which the random and dense crosslinking of the carbons with each other is formed. The protective film having the excellent sliding characteristic is obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は摺動特性の、特に耐摩耗性の優れた保護膜を有
する磁気記録媒体に関する・ 〔従来の技術〕 一般に金属薄膜を記録層とする磁気記録媒体において、
ヘットとの接触はスタート時、ストップ時と共に、高速
回転中にも起こると言われている・従って磁気記録媒体
は十分な潤滑性あるいは耐摩耗性等の摺動特性を備え、
磁気八ツ1〜との接触にたえるようなものである必要が
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic recording medium having a protective film with excellent sliding properties, particularly wear resistance. [Prior Art] Generally, a thin metal film is used as a recording layer. In magnetic recording media that
It is said that contact with the head occurs not only when starting and stopping, but also during high-speed rotation. Therefore, magnetic recording media have sliding properties such as sufficient lubricity and wear resistance.
It must be able to withstand contact with magnetic elements.

以上のことから近年では優れた摺動特性をもつ炭素、特
にダイアモンド状炭素膜の研究開発が盛んになっている
。その中でダイアモンド状炭素膜の膜質、特に膜中の水
素と摺動特性の一つである摩擦係数については第34回
応用物理学関係連合講演会予稿集29p−に−1におい
て定性的に論じられている。また、特開昭62−784
8でも膜中の水素について付着力に着目して定性的に述
へられている。
For these reasons, research and development on carbon, especially diamond-like carbon films, with excellent sliding properties has become active in recent years. Among them, the film quality of the diamond-like carbon film, especially the hydrogen in the film and the friction coefficient, which is one of the sliding characteristics, were qualitatively discussed in the proceedings of the 34th Applied Physics Association Conference, p. 29-1. It is being Also, JP-A-62-784
8 also qualitatively discusses hydrogen in the film, focusing on its adhesion.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では最適な摺動特性を示す膜質を見出すに
はいたっていない。従って最適な条件を見出せない可能
性を含んでいる。
The above-mentioned conventional techniques have not yet found a film quality that exhibits optimal sliding characteristics. Therefore, there is a possibility that optimal conditions may not be found.

本発明においては炭素膜質を膜中結合水素とラマンスペ
クトルから定漱的、かつ総合的に捉え、それを摺動特性
と結び付けることによって、確実に、最も優れた摺動特
性をもつ保護膜としての炭素膜を有する磁気記録媒体を
得ることを目的とする。
In the present invention, by understanding the carbon film quality from the hydrogen bonded in the film and the Raman spectrum in a constant and comprehensive manner, and linking this to the sliding properties, we are able to ensure that the carbon film quality is used as a protective film with the best sliding properties. The purpose is to obtain a magnetic recording medium having a carbon film.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成するために、膜中の炭素と結合
している水素のモル濃度(以後、膜中の結合水素と記載
する)と該膜のラマンスペクトルを2つのピークに分離
した場合の各成分の強度比を規定したものである。これ
によって確実に優れた摺動特性を有する保護膜を得られ
ることを見出した。
In order to achieve the above object, the present invention separates the molar concentration of hydrogen bonded to carbon in a film (hereinafter referred to as bonded hydrogen in the film) and the Raman spectrum of the film into two peaks. This specifies the intensity ratio of each component. It has been found that this ensures that a protective film with excellent sliding properties can be obtained.

なお、ここでいう膜中結合水素とは炭素原子と結合して
いるすべての水素のことをさしており、結合様式は規定
しない。結合水素濃度[H]は赤外吸収スペクトルのC
−H伸縮振動起因のバンドの積分強度Sと膜の密度ρか
ら時式で求められる。
Note that the term "hydrogen bonded in the film" as used herein refers to all hydrogen bonded to carbon atoms, and the bonding mode is not specified. The bonded hydrogen concentration [H] is C in the infrared absorption spectrum.
-H It is determined by the time formula from the integrated intensity S of the band caused by stretching vibration and the density ρ of the film.

[+11 = 100S/((1,68X 105)ρ
+0.9165)また、2つのピークに分離したラマン
スペクトルの各成分の強度比は次のようにして求めるこ
ととする。すなわち、Ar+レーザー(514,5nm
)をもちいて測定した該保護膜のラマンスペクトルをピ
ーク位置として1350am−1付近と1540c[1
I−1付近(それぞれのピーク位置は±IO印−1の変
動を示す)。
[+11 = 100S/((1,68X 105)ρ
+0.9165) Furthermore, the intensity ratio of each component of the Raman spectrum separated into two peaks is determined as follows. That is, Ar+ laser (514,5 nm
) was used to measure the Raman spectrum of the protective film, with peak positions around 1350 am-1 and 1540 am-1
Near I-1 (each peak position shows a fluctuation of ±IO mark-1).

しかも前者の半値幅を後者のそれの約2倍になるような
ガウス関数で分離する。この時の後者の強度に対する前
者の強度の比をIとして範囲を規定する。ただし、スペ
クトルに蛍光が現れていない場合に限る。−例を第2図
に示す。また、本発明の炭素膜は、次に述べるような方
法で作成できるる。すなわち、水素を含むガスでグラフ
ァイトターゲットをスパッタする反応性スパッタリング
、種々の電源を用いて(マイクロ波、高周波等)プラズ
マを発生させ、炭素を含むガスを分解して成膜を行うプ
ラズマCVD法、あるいはイオン銃内で発生させた炭素
イオンを電圧をかけて引き出して成膜するイオンビーム
デポジション法などである。
Furthermore, the half width of the former is separated by a Gaussian function that is approximately twice that of the latter. At this time, the range is defined as I, which is the ratio of the former intensity to the latter intensity. However, this is limited to cases where no fluorescence appears in the spectrum. - An example is shown in FIG. Further, the carbon film of the present invention can be created by the method described below. Namely, reactive sputtering involves sputtering a graphite target with a gas containing hydrogen; plasma CVD, which generates plasma using various power supplies (microwaves, radio frequency, etc.) and decomposes gas containing carbon to form a film; Alternatively, there is an ion beam deposition method in which carbon ions generated in an ion gun are drawn out by applying a voltage to form a film.

〔作用〕[Effect]

本発明にかかる膜中で炭素原子に結合している水素のモ
ルa度が25%以下で、ラマンスペクトル(アルゴンレ
ーザー励起による)に蛍光が見られないときに、該ラマ
ンスペクトルをガウス関数で2つのピークに分離すると
1350an−’付近の成分の強度の1540■−1付
近の成分の強度に対する比が55%以下の非晶質炭素膜
においては優れた摺動特性が得られることが実験の結果
で判った。逆に、前記の水素濃度が25%よりも高いと
きには有機物的な膜になり、炭素同志の架橋度が低くな
って機械的に弱い膜になると考えられる。実験結果(第
3図)より相対摩耗量の値が8を超えない場合の膜中結
合水素の臨界値は25−30%であった。
When the molar degree of hydrogen bonded to carbon atoms in the film according to the present invention is 25% or less and no fluorescence is observed in the Raman spectrum (by argon laser excitation), the Raman spectrum is converted to 2 by Gaussian function. When separated into two peaks, the experimental results show that excellent sliding properties can be obtained in an amorphous carbon film where the ratio of the intensity of the component around 1350an-' to the intensity of the component around 1540an-1 is 55% or less. I found out. On the other hand, when the hydrogen concentration is higher than 25%, the film becomes organic, and the degree of cross-linking between carbon atoms is considered to be low, resulting in a mechanically weak film. According to the experimental results (FIG. 3), the critical value of bound hydrogen in the film was 25-30% when the relative wear amount did not exceed 8.

また、水素濃度のみではわかりにくい、炭素間の骨格構
造の様子を知る手段としてラマンスペクトルを用いるが
、前記の2つのピークの強度比の値が大きくなるとグラ
ファイト構造に近くなることが知られている。この場合
も実験から相対摩耗量の値が8を超えない強度比の臨界
値は55−60%であった(第3図を参照)。以上のよ
うな理由から本発明の規定範囲外の炭素膜では摺動特性
が劣っている。それに対して本発明の保護膜においては
、炭素同志のランダムで密な架橋によって優れた摺動特
性が得られる。
In addition, Raman spectra are used as a means to understand the state of the skeletal structure between carbons, which is difficult to understand from hydrogen concentration alone, and it is known that as the intensity ratio of the two peaks increases, the structure approaches that of graphite. . In this case as well, experiments have shown that the critical value of the strength ratio at which the relative wear amount does not exceed 8 is 55-60% (see FIG. 3). For the above reasons, carbon films outside the specified range of the present invention have poor sliding properties. In contrast, in the protective film of the present invention, excellent sliding properties are obtained due to random and dense cross-linking between carbon atoms.

一方、保護膜の膜厚が50人より薄い場合には膜が島状
に成膜されず不連続である確率か高く、効果が小さくな
る。逆に1000人より厚いと磁気ヘットと記録層との
距離が増大し、電磁変換特性が悪化するので好ましくな
い。これらのことから保護層の膜厚は50〜1000人
の範囲が好ましい。
On the other hand, if the thickness of the protective film is less than 50, there is a high probability that the film will not be formed in an island shape and will be discontinuous, and the effect will be small. On the other hand, if it is thicker than 1,000 mm, the distance between the magnetic head and the recording layer increases, which deteriorates the electromagnetic conversion characteristics, which is not preferable. For these reasons, the thickness of the protective layer is preferably in the range of 50 to 1000 layers.

〔実施例〕〔Example〕

以下、本発明の実施例及び比較例について述へる。いず
れも同様な構造の金属薄膜磁気ディスク上に炭素膜を成
膜し、評価は以下の方法によった。
Examples and comparative examples of the present invention will be described below. In each case, a carbon film was formed on a metal thin film magnetic disk having a similar structure, and evaluation was performed using the following method.

すなわち、サンプルを周速4m/secで回転させるピ
ン−オン−ディスク試験による摩耗量、動摩擦係数測定
、 CS S (Contact  5tart  5
top)テストによって摺動特性を評価した。炭素と結
合した水素のモル1度はFT−IR(フーリエ変換赤外
吸収スペクトル)の測定から求めた。また、ラマンスペ
クトルを411定した。
That is, the amount of wear and coefficient of dynamic friction were measured by a pin-on-disk test in which the sample was rotated at a circumferential speed of 4 m/sec.
top) The sliding characteristics were evaluated by a test. The molar degree of hydrogen bonded to carbon was determined from FT-IR (Fourier transform infrared absorption spectrum) measurement. In addition, 411 Raman spectra were determined.

実施例1 第1図は磁気ディスクの切断面を示す模式図である。図
に示すように基板Aの上に下地NBがあり、さらにその
上に中間7fl Cがある。C/Lfの上には記録層り
があり、この上に保護層Eを作成する。
Example 1 FIG. 1 is a schematic diagram showing a cut surface of a magnetic disk. As shown in the figure, there is a base layer NB on top of the substrate A, and further thereon there is a middle layer 7flC. There is a recording layer on top of C/Lf, and a protective layer E is formed on this.

それぞれ、基板Aはアルミニウム、下地MBはニッケル
ーリン、中間層Cはクロム、記録層りはコバルト−ニッ
ケルを材質としている。ただし、A層からD層までは別
の材質であってもかまわない。
The substrate A is made of aluminum, the base MB is made of nickel-phosphorus, the intermediate layer C is made of chromium, and the recording layer is made of cobalt-nickel. However, layers A to D may be made of different materials.

保護膜は高周波プラズマCVD法によって作成した。以
下、作成方法について述べる。先ず、真空ポンプによっ
て真空チャンバー内をLXIO−’T orrまで排気
する。次にメタンガスを導入し、真空チャンバー内圧が
60m T orrとなるように調節する。そして13
.56MHzの高周波電源により500Wを投入し、チ
ャンバー内にプラズマ放電を発生させる。この時、冷却
水によって冷却された基板上に保護膜が堆積する。膜質
の評価をFT−I Rとラマンスペクトルで行ったとこ
ろ、FT−I Rから膜中結合水素濃度は15%で、ラ
マンスペクトルから1350CIl+ ’付近の分離ピ
ークの強度の1540Cm−’付近の分離ピークの強度
に対する割合は45%となった。また、この膜のC8s
テストを行ったところ35に回でクラッシュし、ピン−
オン−ディスクによる相対的摩耗量は5であった。
The protective film was created by high frequency plasma CVD method. The creation method will be described below. First, the inside of the vacuum chamber is evacuated to LXIO-'Torr using a vacuum pump. Next, methane gas is introduced and the internal pressure of the vacuum chamber is adjusted to 60 m Torr. and 13
.. A 56 MHz high frequency power supply supplies 500 W to generate plasma discharge within the chamber. At this time, a protective film is deposited on the substrate cooled by the cooling water. When the film quality was evaluated using FT-IR and Raman spectra, the FT-IR showed that the concentration of bonded hydrogen in the film was 15%, and the Raman spectrum showed a separated peak near 1540 Cm-', which is the intensity of the separated peak near 1350 CIl+'. The ratio of this to the strength was 45%. In addition, C8s of this film
When I tested it, it crashed at 35 times and pinned.
Relative on-disc wear was 5.

実施例2 実施例1と同様の磁気ディスク上にイオンビームデポジ
ション法によって炭素膜を作成した。真空チャンバー内
を5 X 1O−7Torrまで排気したのち、メタン
、水素混合ガスを導入し、ガス圧を1mTorrとする
。次にイオン銃内でプラズマ放電を発生させ、そこに3
00 Vの引き出し電圧をかけてイオンを引き出して成
膜した。膜質の評価を実施例1と同様にFT−IRとラ
マンスペクトルで行ったところ、膜中結合水素濃度は1
0%で、135゜■−1付近の分離ピークの強度の15
40an−”付近の分離ピークの強度にたいする割合は
40%となった。
Example 2 A carbon film was formed on the same magnetic disk as in Example 1 by the ion beam deposition method. After evacuating the inside of the vacuum chamber to 5 x 10-7 Torr, a mixed gas of methane and hydrogen is introduced, and the gas pressure is set to 1 mTorr. Next, a plasma discharge is generated inside the ion gun, and 3
A film was formed by applying an extraction voltage of 0.00 V to extract ions. When the film quality was evaluated using FT-IR and Raman spectra in the same manner as in Example 1, the bonded hydrogen concentration in the film was 1.
At 0%, the intensity of the separated peak near 135°■-1 is 15%
The ratio of the separated peak near 40 an-'' to the intensity was 40%.

また、この膜のC8Sテストを行ったところ40に回で
クラッシュし、ピン−オン−ディスクによる相対的摩耗
量は3であった。なお、実施例では磁気ディスクについ
てのみ述べたが、フレキシブルディスク、磁気テープ、
磁気カードにも同様の効果があることは明らかである。
Further, when this film was subjected to a C8S test, it crashed in 40 cycles, and the relative wear amount due to pin-on-disk was 3. In addition, although only magnetic disks were described in the examples, flexible disks, magnetic tapes,
It is clear that magnetic cards have a similar effect.

比較例1 炭素層以外は実施例1,2と同様の磁気ディスク上に高
周波プラズマCVD法によって炭素膜を作成した。実施
例1とほとんど同様にして、ただし、RF高出力50W
におとして成膜した。膜質の評価を実施例1,2と同様
に行ったところ膜中結合水素濃度は30%、1350a
n−”付近の分離ピークの強度の1540an−1付近
の分離ピークの強度にたいする割合は35%となった。
Comparative Example 1 A carbon film was formed on the same magnetic disk as in Examples 1 and 2 except for the carbon layer by high-frequency plasma CVD. Almost the same as Example 1, except that the RF high output was 50W.
A film was formed after drying. When the film quality was evaluated in the same manner as in Examples 1 and 2, the bonded hydrogen concentration in the film was 30%, 1350a.
The ratio of the intensity of the separated peak near 1540an-1 to the intensity of the separated peak near 1540an-1 was 35%.

また、この膜のcssテストを行ったところ13に回で
クラッシュし、ピン−オン−ディスクによる相対的摩耗
量は15であった。
Further, when this film was subjected to a CSS test, it crashed in 13 cycles, and the relative wear amount due to pin-on-disk was 15.

比較例2 炭素層以外は実施例1,2と同様の磁気ディスり上にD
Cマクネトロンスパッタ法によって炭素膜を作成した。
Comparative Example 2 D was placed on the same magnetic disk as in Examples 1 and 2 except for the carbon layer.
A carbon film was created by C-macnetron sputtering.

ます、真空チャンバー内をI×10−’ Torrまで
排気したのち、そこに20mTorrのアルゴンガスを
導入し、直流電源によってIKWを投入しプラズマを発
生させ、グラファイトターゲットをスパッタして成膜し
た。膜質の評価を実施例1,2と同様に行ったところ膜
中結合水素濃度は3%、 1350■−1付近の分離ピ
ークの強度の1540■−゛付近の分離ピークの強度に
たいする割合は85%となった。また、この膜のC8S
テストを行ったところ8に回でクラッシュし、ビン−オ
ン−ディスクではクラッシュがおこり、摩耗量はill
!1定できなかった。
First, the inside of the vacuum chamber was evacuated to I×10 −' Torr, then argon gas of 20 mTorr was introduced therein, IKW was turned on using a DC power source to generate plasma, and a graphite target was sputtered to form a film. When the membrane quality was evaluated in the same manner as in Examples 1 and 2, the concentration of bound hydrogen in the membrane was 3%, and the ratio of the intensity of the separated peak near 1350 ゛ to the intensity of the separated peak near 1540 ゛ was 85%. It became. In addition, C8S of this film
When we tested it, it crashed after 8 turns, and the bin-on-disc crash occurred, and the amount of wear was ill.
! I couldn't get it fixed.

以下余白 表 表 〔発明の効果〕 本発明によれば、以上の結果から明らかなように、摺動
特性□、特に耐摩耗性に優れた磁気記録媒体が得られる
Margin Table Below [Effects of the Invention] According to the present invention, as is clear from the above results, a magnetic recording medium having excellent sliding properties, particularly excellent wear resistance, can be obtained.

また、非破壊評価によって成膜条件へのフィードバック
も行える。
In addition, feedback on film formation conditions can be provided through non-destructive evaluation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁気記録媒体の切断面の模式図である
。第2図は非晶質炭素膜のラマンスペクトルのピーク分
離例である。第31Aは膜質(膜中結合水素濃度、ラマ
ンスペクトルの分離ピークの強度比)と摩耗量の関係を
示すものである。 A・・・基板、      B・・・下地層。 C・・・中間層、      D・・・記録層、E・・
保護層。 % ■ 図
FIG. 1 is a schematic cross-sectional view of the magnetic recording medium of the present invention. FIG. 2 is an example of peak separation of a Raman spectrum of an amorphous carbon film. No. 31A shows the relationship between film quality (concentration of bonded hydrogen in the film, intensity ratio of separated peaks in the Raman spectrum) and the amount of wear. A...Substrate, B...Underlayer. C...Intermediate layer, D...Recording layer, E...
protective layer. % ■ Figure

Claims (1)

【特許請求の範囲】 1、薄膜磁性体からなる記録層上に膜中で炭素原子に結
合している水素のモル濃度が30%以下である非晶質炭
素層を設けたことを特徴とする磁気記録媒体。 2、薄膜磁性体からなる記録層上に、1000〜200
0cm^−^1附近のラマンスペクトル(アルゴンレー
ザー励起による)に蛍光が見られないときに、ガウス関
数で該ラマンスペクトルを2つのピークに分離すると、
1350cm^1付近の成分の強度の1540cm^1
付近の成分の強度に対する比が60%以下の膜質の非晶
質炭素層を設けたことを特徴とする磁気記録媒体。 3、薄膜磁性体からなる記録層上に請求項1及び2の特
性を同時に満たす膜質の非晶質炭素層を設けたことを特
徴とする磁気記録媒体。 4、前記の炭素保護膜の膜厚が50Å以上1000Å以
下であることを特徴とする請求項1、2、若しくは3記
載の磁気記録媒体。 5、薄膜磁性体からなる記録層上に請求項1、2、3、
または4に記載の非晶質炭素層をイオンビームデポジシ
ョン法によって作成する方法。 6、薄膜磁性体からなる記録層上に請求項1、2、3、
または4に記載の非晶質炭素層を反応性スパッタリング
法によって作成する方法。 7、薄膜磁性体からなる記録層上に請求項1、2、3、
または4に記載の非晶質炭素層をプラズマCVD法によ
って作成する方法。 8、請求項5、6、または7に記載の方法で非晶質炭素
膜を作成した磁気記録媒体。 9、請求項1、2、3、または4に記載の磁気ディスク
を備えた磁気ディスク装置。 10、請求項1、2、または3に記載の非晶質炭素層か
らなる硬質保護膜。
[Claims] 1. An amorphous carbon layer in which the molar concentration of hydrogen bonded to carbon atoms in the film is 30% or less is provided on the recording layer made of a thin magnetic material. magnetic recording medium. 2. On the recording layer made of thin film magnetic material, 1000 to 200
When no fluorescence is seen in the Raman spectrum (due to argon laser excitation) around 0 cm^-^1, when the Raman spectrum is separated into two peaks using a Gaussian function,
1540cm^1 of the intensity of the component near 1350cm^1
1. A magnetic recording medium comprising a filmy amorphous carbon layer having a ratio of intensity to nearby components of 60% or less. 3. A magnetic recording medium characterized in that an amorphous carbon layer having a film quality that satisfies the characteristics of claims 1 and 2 at the same time is provided on a recording layer made of a thin film magnetic material. 4. The magnetic recording medium according to claim 1, 2, or 3, wherein the thickness of the carbon protective film is 50 Å or more and 1000 Å or less. 5. Claims 1, 2, 3, on the recording layer made of a thin film magnetic material.
Or the method of creating an amorphous carbon layer according to 4 by an ion beam deposition method. 6. Claims 1, 2, 3, on the recording layer made of a thin film magnetic material.
Or the method of creating the amorphous carbon layer according to 4 by a reactive sputtering method. 7. Claims 1, 2, 3, on the recording layer made of a thin film magnetic material.
Or the method of creating the amorphous carbon layer according to 4 by plasma CVD method. 8. A magnetic recording medium in which an amorphous carbon film is formed by the method according to claim 5, 6, or 7. 9. A magnetic disk device comprising the magnetic disk according to claim 1, 2, 3, or 4. 10. A hard protective film comprising the amorphous carbon layer according to claim 1, 2, or 3.
JP22235488A 1988-09-07 1988-09-07 Magnetic recording medium Pending JPH0271422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22235488A JPH0271422A (en) 1988-09-07 1988-09-07 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22235488A JPH0271422A (en) 1988-09-07 1988-09-07 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0271422A true JPH0271422A (en) 1990-03-12

Family

ID=16781028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22235488A Pending JPH0271422A (en) 1988-09-07 1988-09-07 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0271422A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235046A (en) * 1994-02-22 1995-09-05 Nec Corp Magnetic recording medium
US5607783A (en) * 1993-06-08 1997-03-04 Fuji Electric Co., Ltd. Magnetic recording medium and method for fabricating the same
US6132875A (en) * 1993-09-12 2000-10-17 Fujitsu Limited Magnetic recording medium and magnetic head having carbon protective layers
US7402350B2 (en) 1996-05-31 2008-07-22 Stormedia Texas, Llc Highly tetrahedral amorphous carbon coatings and systems and methods for their production

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172521A (en) * 1986-01-24 1987-07-29 Hitachi Maxell Ltd Magnetic recording medium
JPH0229919A (en) * 1988-07-18 1990-01-31 Mitsubishi Electric Corp Protective film for magnetic disk medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172521A (en) * 1986-01-24 1987-07-29 Hitachi Maxell Ltd Magnetic recording medium
JPH0229919A (en) * 1988-07-18 1990-01-31 Mitsubishi Electric Corp Protective film for magnetic disk medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5607783A (en) * 1993-06-08 1997-03-04 Fuji Electric Co., Ltd. Magnetic recording medium and method for fabricating the same
US6132875A (en) * 1993-09-12 2000-10-17 Fujitsu Limited Magnetic recording medium and magnetic head having carbon protective layers
JPH07235046A (en) * 1994-02-22 1995-09-05 Nec Corp Magnetic recording medium
US7402350B2 (en) 1996-05-31 2008-07-22 Stormedia Texas, Llc Highly tetrahedral amorphous carbon coatings and systems and methods for their production
US7513215B2 (en) 1996-05-31 2009-04-07 Stormedia Texas, Llc Systems and methods for the production of highly tetrahedral amorphous carbon coatings
US7544397B2 (en) 1996-05-31 2009-06-09 Stormedia Texas, Llc Recording media having protective overcoats of highly tetrahedral amorphous carbon and methods for their production
US7604881B2 (en) 1996-05-31 2009-10-20 Stormedia Texas, Llc Highly tetrahedral amorphous carbon coatings and systems and methods for their production
US7931748B2 (en) 1996-05-31 2011-04-26 Stormedia Texas, Llc Systems and methods for the production of highly tetrahedral amorphous carbon coatings

Similar Documents

Publication Publication Date Title
US5776602A (en) Magnetic recording medium having a carbon protective film containing nitrogen and oxygen and overcoated with a lubricant
US4575475A (en) Magnetic recording medium
JP2830544B2 (en) Magnetic recording media
JPH0271422A (en) Magnetic recording medium
US4588654A (en) Magnetic recording medium
US4745031A (en) Magnetic recording medium
JP2001297410A (en) Thin film magnetic head and method of manufacture
JP3232948B2 (en) Manufacturing method of magnetic recording medium
US4410406A (en) Process for preparing magnetic recording medium
JP2563457B2 (en) Method of manufacturing magnetic recording medium
JPH0778871B2 (en) Magnetic disk
JPH08167146A (en) Production of magnetic recording medium
JPH04134623A (en) Tape-shaped magnetic recording medium
JPH0644558A (en) Magnetic recording medium
JPH11335838A (en) Production of metallic vapor deposited film type magnetic recording medium and apparatus for its production
JPH06333230A (en) Magnetic recording medium
JPH077504B2 (en) Method and apparatus for manufacturing magnetic recording medium
JPS5888829A (en) Magnetic recording medium and its manufacture
JPS6256567A (en) Production of metallic thin film
JPS61216124A (en) Production of magnetic recording medium
JPH0474784B2 (en)
JP2513688B2 (en) Magnetic recording media
JPH01138612A (en) Magnetic disk
JPS61211834A (en) Production of magnetic recording medium
JPS63157312A (en) Magnetic recording medium and its production