JPH0271186A - Radar device - Google Patents

Radar device

Info

Publication number
JPH0271186A
JPH0271186A JP63223722A JP22372288A JPH0271186A JP H0271186 A JPH0271186 A JP H0271186A JP 63223722 A JP63223722 A JP 63223722A JP 22372288 A JP22372288 A JP 22372288A JP H0271186 A JPH0271186 A JP H0271186A
Authority
JP
Japan
Prior art keywords
pulse
signal
circuit
received
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63223722A
Other languages
Japanese (ja)
Other versions
JPH0675106B2 (en
Inventor
Noboru Kurihara
昇 栗原
Naritomo Meguro
目黒 也智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63223722A priority Critical patent/JPH0675106B2/en
Publication of JPH0271186A publication Critical patent/JPH0271186A/en
Publication of JPH0675106B2 publication Critical patent/JPH0675106B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To minimize an undetectable region of a distance and improve detection performance by a method wherein transmission pulse timing from a timing circuit of a signal processor is received and threshold level control is performed according to a range gate. CONSTITUTION:A threshold control circuit 13 which receives transmission pulse timing from a timing circuit 12 of a signal processor 4 and controls the threshold level according to a range gate is provided, and a signal detection circuit 10 is controlled with output of said circuit. The circuit 13 processes signals irrespective of overlap of transmitted pulses and received pulses, and the transmitted pulses and the received pulses are overlaid to be narrow received pulses. This prevents a side robe itself from being detected as a signal if the distance side robe is raised due to incompletion of pulse compression. While deterioration in detection ability due to rise in noise level at the time of signal detection is prevented, mislocation of a range gate due to widening of signal pulse width according to reduction in compression rate is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分腎〕 この発明は、パーカー・コードによる位相変調方式のパ
ルス圧縮を用いて目標の探知距離性能延伸を図るととも
に距離分解能を確保し、更に、複数のパルス繰り返し周
波数(以下PRFという。)を用いて、目標までの距離
を測定する中PRFパルスドツプラ方式のレーダに関す
るものである。
[Detailed Description of the Invention] [Industrial Applications] This invention aims to extend target detection range performance and ensure range resolution by using phase modulation pulse compression using Parker code. The present invention relates to a medium-PRF pulsed Doppler type radar that measures the distance to a target using a pulse repetition frequency (hereinafter referred to as PRF) of .

〔従来の技術〕[Conventional technology]

第4図は従来の中PRFパルスドツプラ方式のレーダ装
置を示した構成図であり2図において。
FIG. 4 is a configuration diagram showing a conventional medium PRF pulsed Doppler type radar device, and is similar to FIG.

(1)は送信機、(2)はアンテナ、(3)は受信機、
(4)は信号処理器、(5)はクラッタ除去回路、(6
)はパルス圧縮器、(7)は周波数分析回路、(8)は
振幅検波回路。
(1) is a transmitter, (2) is an antenna, (3) is a receiver,
(4) is a signal processor, (5) is a clutter removal circuit, (6
) is a pulse compressor, (7) is a frequency analysis circuit, and (8) is an amplitude detection circuit.

(9)は積分器、α〔は信号検出回路、 (11)は複
数PRF測距回路、 (12)はタイミング回路、 (
14)は表示器である。
(9) is an integrator, α [is a signal detection circuit, (11) is a multiple PRF ranging circuit, (12) is a timing circuit, (
14) is a display.

第5図は送信パルスとの重なりにより幅が狭くなった受
信パルスのパルス圧縮後の波形を示す図であり、 (1
5)は送信パルス、 (16)は受信パルス。
Figure 5 is a diagram showing the waveform of the received pulse after pulse compression, the width of which has become narrower due to overlap with the transmitted pulse, (1
5) is the transmitted pulse, (16) is the received pulse.

(17)は幅の同じ受信パルスのパルス圧縮後の波形。(17) is the waveform of received pulses with the same width after pulse compression.

(18)は幅の狭くなった受信パルス、 (19)は幅
の狭くなった受信パルスのパルス圧縮後の波形、 (2
0)は距離サイドローブ、  (21)はスレッショル
ド・レベル、 (22)は信号検出処理後の量子化され
た信号である。
(18) is the received pulse with a narrower width, (19) is the waveform of the received pulse with a narrower width after pulse compression, (2
0) is the distance sidelobe, (21) is the threshold level, and (22) is the quantized signal after signal detection processing.

第6図は従来のレーダの送信パルスと受信パルスの重な
りによる目標検出不能領域を示す概念図である。
FIG. 6 is a conceptual diagram showing an area where a target cannot be detected due to the overlap between a transmitted pulse and a received pulse of a conventional radar.

次に動作について説明する。送信機(1)で発生された
送信信号はアンテナ(2)に送られて、アンテナ(2)
から目標に向けて放射される。この送信信号は目標で反
射されて再びアンテナ(2)で受信され、受信機(3)
に入力されて、増幅・周波数変換・位相検波・アナログ
/ディジタル変換が行われた後、信号処理@!1(41
に送られる。信号処理器(4)で1よ、2重消去デイレ
イ゛ライン・キャンセラ一方式等のクラッタ除去@ 路
(51でまず不用なりラッタ成分が除去され2次にパル
ス圧縮器(6)で信号のパルス圧縮が行われ、信号対雑
音比が改善されろとともにパルス幅が狭くなる。そして
2周波数分析回路(7)では高速フーリエ変換処理によ
り狭帯域のドツプラ信号となり、振幅検波回路(8)で
は格狭帯域ドツプラ信号の振幅検波が行われ、その後積
分N(9)で積分された後、信号検出回路0ωで信号は
雑音中から検出され、各PRF毎に信号の存在するレン
ジ・ゲートが求められろ。信号が検出された複数PRF
のレンジ・ゲートを用いて測距回路(11)は相関処理
により真の目標距離を演算する。この結果は目標データ
として表示W(14)に送られて表示される。このよう
に動作する従来のレーダば第5図に示したように、送信
パルス(15)と受信パルス(16)が重なって狭い受
信パルスになると、完全なパルス圧縮が行われず、距離
サイドローブ(20)が上昇して検出処理時の雑音レベ
ルを上昇させ、探知性能を低下させたり、或いは距離サ
イドローブ(20)を誤って信号として検出したりする
とともに、圧縮率が低下して信号のパルス幅が広がって
レンジ・ゲート位置を誤ることもあった。例えば、同図
(e)に於てスレッショルド・レベルが同図(C)と同
じ場合、距がサイドローブ(20)を信号として検出し
てしまうし2本来の信号のパルス幅が広がり同図(f)
に示すように、その中心位置がずれてしまうことになる
。このため、完全にパルス圧縮のされない範囲の受信信
号は処理しないようにしていた。
Next, the operation will be explained. The transmission signal generated by the transmitter (1) is sent to the antenna (2) and
is emitted from the target towards the target. This transmitted signal is reflected by the target and received again by the antenna (2), and then sent to the receiver (3).
After amplification, frequency conversion, phase detection, and analog/digital conversion, the signal is processed @! 1 (41
sent to. A signal processor (4) removes clutter using a double erasure delay line canceller (1), etc. (51 first removes unnecessary rutter components, and then a pulse compressor (6) removes clutter from the signal. Compression is performed to improve the signal-to-noise ratio and narrow the pulse width. Then, the two-frequency analysis circuit (7) processes the fast Fourier transform to produce a narrow-band Doppler signal, and the amplitude detection circuit (8) produces a narrow-band Doppler signal. After amplitude detection of the band Doppler signal is performed and then integrated by the integral N(9), the signal is detected from the noise by the signal detection circuit 0ω, and the range gate where the signal exists is determined for each PRF. .Multiple PRFs where signals were detected
Using the range gate, the distance measuring circuit (11) calculates the true target distance by correlation processing. This result is sent to the display W (14) and displayed as target data. In a conventional radar that operates in this way, as shown in Figure 5, when the transmitted pulse (15) and the received pulse (16) overlap to form a narrow received pulse, complete pulse compression is not performed and a distance sidelobe ( 20) increases, which increases the noise level during the detection process and reduces detection performance, or the distance sidelobe (20) is mistakenly detected as a signal, and the compression ratio decreases, causing the signal pulse It was so wide that I sometimes misplaced the range gate. For example, if the threshold level in Figure (e) is the same as in Figure (C), the distance will detect the side lobe (20) as a signal, and the pulse width of the original signal will expand. f)
As shown in the figure, the center position will shift. For this reason, received signals in a range where pulse compression is not completely performed are not processed.

従って、送信パルス(15)の前後に送信パルス幅相当
の非検出領域が発生し、かなりのレンジ・エクリプスを
生じさせていた。
Therefore, a non-detection region corresponding to the width of the transmission pulse occurs before and after the transmission pulse (15), causing a considerable range eclipse.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の中PRFパルスドツプラ方式のレーダ装置は以上
のように構成されており、上記方法で目標の探知を行っ
ていたために、送信パルスと受信パルスとが重なる期間
が多くて目標検出性能が劣化したり、信号検出可能なP
RF数が少なくて測距が出来ない等の課題を有していた
Conventional medium-PRF pulsed Doppler radar equipment is configured as described above, and because it detects targets using the above method, there are many periods in which the transmitted pulse and received pulse overlap, resulting in deterioration of target detection performance. , signal detectable P
There were problems such as the inability to measure distance due to the small number of RFs.

この発明は、このような課題を解決するためになされた
もので、従来のレーダが送信パルスと少しでも重なると
信号処理しないようにしていたのでと対し、送信パルス
と受信パルスの重なりに関係なく信号処理をするように
するとともに、距離サイドローブが上昇して信号検出時
の雑音レベルが増加することによる探知性能の低下や、
サイドローブ自体の検出を防ぐため、送受信パルスの重
なる範囲は雑音中からのイ:号検出のためのスレッショ
ルド・レベルを変化させろようにし、信号検出距離範囲
及び信号検出PRF数を′増加させ、探知性能を向上さ
せることを目的とする。
This invention was made to solve this problem.In contrast to conventional radars, which do not process signals if they overlap even slightly with the transmitted pulse, In addition to signal processing, detection performance is reduced due to increase in distance sidelobes and increase in noise level during signal detection.
In order to prevent the detection of the sidelobe itself, the threshold level for detecting the signal from the noise is changed in the overlapping range of the transmitted and received pulses, and the signal detection distance range and the number of signal detection PRFs are increased. The purpose is to improve performance.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係わるレーダ装置は、信号処理器のタイミン
グ回路からの送信パルス・タイミングを受けて、レンジ
・ゲートに応じたスレッショルド・レベル制御を行うス
レッショルド制御回路を追加し、この出力で信号検出回
路の制御を行うようにしたものである。
The radar device according to the present invention includes a threshold control circuit that receives the transmission pulse timing from the timing circuit of the signal processor and performs threshold level control according to the range gate, and uses this output to control the signal detection circuit. It is designed to perform control.

〔作 用〕[For production]

この発明に於けるスレッショルド制御回路は。 The threshold control circuit in this invention is as follows.

送信パルスと受信パルスの重なりに関係なく信号処理を
行い、送信パルスと受信パルスが重なって狭い受信パル
スになり、完全なパルス圧縮が行われず距離サイドロー
ブが上昇した場合に、サイドローブ自身を信号として検
出しないように、そして信号検出時の雑音レベルの上昇
により探知性能が劣化しないように、或いは、圧縮率が
低下するとともに信号のパルス幅が広がってレンジ・ゲ
ート位置を誤ったりすることのないように、タイミング
回路からの送信パルス・タイミングを受けて。
Signal processing is performed regardless of the overlap between the transmitted and received pulses, and when the transmitted and received pulses overlap and become a narrow received pulse, and the distance sidelobe rises without complete pulse compression, the sidelobe itself is processed as a signal. In order to prevent the detection performance from deteriorating due to an increase in the noise level when detecting the signal, or to prevent the range gate position from being incorrectly determined due to the reduction in the compression ratio and the widening of the signal pulse width. As in, receiving the transmit pulse timing from the timing circuit.

レンジ・ゲートに応じたスレッショルド・レベル制御を
行う。
Performs threshold level control according to range gate.

〔実施例〕〔Example〕

以下この発明の一実施例を図に基づいて説明する。第1
図は、この発明に係わるレーダ装置の構成である。図に
於て(1)〜(12)、 (14)は上記従来のレーダ
装置と同一の81器又は部分である。この発明に於て、
 (13)はスレッショルド制御回路である。
An embodiment of the present invention will be described below based on the drawings. 1st
The figure shows the configuration of a radar device according to the present invention. In the figure, (1) to (12) and (14) are the same 81 units or parts as the conventional radar device described above. In this invention,
(13) is a threshold control circuit.

第2図はこの発明に於ける。狭くなった受信パルスのパ
ルス圧縮後の波形とスレッショルド・レベル制御を示す
概念図であり2図に於て(15)は13ビツト・パーカ
ー・コード位相変調された送信パルス、  [1B)は
受信パルス、 (17)は正常な受信パルスのパルス圧
縮後の波形、 (18)は幅の狭くなった受信パルス、
 (19)は幅の狭くなった受信パルスのパルス圧縮後
の波形、 (20)は距離サイドローブ、 (211は
スレッショルド・レベルである。第3図はこの発明に於
けろレーダの送信パルスと受信パルスの重なりによる目
標検出不能領域の減少、或いは。
FIG. 2 is related to this invention. This is a conceptual diagram showing the waveform of a narrowed received pulse after pulse compression and threshold level control. In Figure 2, (15) is a 13-bit Parker code phase modulated transmitted pulse, and [1B] is a received pulse. , (17) is the waveform of the normal received pulse after pulse compression, (18) is the received pulse with narrowed width,
(19) is the waveform of the received pulse whose width has been narrowed after pulse compression, (20) is the distance sidelobe, and (211 is the threshold level). Reducing target undetectable area due to overlapping pulses, or.

目標検出可能PRF数の増加を示す概念図である。FIG. 3 is a conceptual diagram showing an increase in the number of target detectable PRFs.

次に、この発明によるレーダ装置の動作について説明す
る。送信機(1)で発生された送信信号はアンテナ(2
)に送られて、アンテナ(2)から目標に向けて放射さ
れろ。この送信信号は目標で反射されて再びアンテナ(
2)で受信され、受信機(3)に入力されて、増幅・周
波数変換・位相検波・アナログ/ディジタル変換が行わ
れた後、信号処理器(4)に送られる。信号処理器(4
)ではタイミング回路(12)からのPRF信号に同期
して、2重消去デイレイ・ライン・キャンセラ一方式等
のクラッタ除去回路(5)でまず不用なりラッタ成分が
除去され1次にパルス圧縮器(6)で信号のパルス圧縮
が行われ、信号対雑音比が改善されるとともにパルス幅
が狭くなる。
Next, the operation of the radar device according to the present invention will be explained. The transmission signal generated by the transmitter (1) is sent to the antenna (2).
) and radiate it from the antenna (2) towards the target. This transmitted signal is reflected by the target and returned to the antenna (
2), is input to the receiver (3), and after being subjected to amplification, frequency conversion, phase detection, and analog/digital conversion, is sent to the signal processor (4). Signal processor (4
), in synchronization with the PRF signal from the timing circuit (12), a clutter removal circuit (5) such as a double-erasing delay line canceller (one-way type) first removes unnecessary and rutter components, and then a pulse compressor (12) removes unnecessary rutter components. In step 6), pulse compression of the signal is performed to improve the signal-to-noise ratio and narrow the pulse width.

そして2周波数分析回路(7)では高速フーリエ変換処
理により狭帯域のドツプラ信号となり、振幅検波回路(
8)では各狭帯域ドツプラ信号の振幅検波が行われ、そ
の段積分器(9)で積分された後信号検出回路00)に
送られるが、ここまでは従来のレーダ装置と同様である
。第2図に示すように送信パルス(I5)の前後で受信
パルス(16)が全くブランキングされない時は従来の
レーダと同じ信号検出のスレッショルド・レベル(21
)を使用し、そして、ブランキングされる割合が増加し
て受信パルス幅が狭くするに従って、スレッショルド・
レベル(21)e高くする事によって、距離サイドロー
ブ(20)を誤って検出したり、パルス圧縮率が低下し
て信号のパルス幅が広がってレンジ・ゲート位置を誤る
ことを防ぐことが出来る。同図(a)ば送信パルス(1
5)を示しており、同図(b)に示すように送信パルス
(15)と重ならない受信パルス(16)はパルス圧縮
後ではサイドローブも低く、完全にパルス圧縮されてい
る。ところが、同図(e)、 (d)ではパルス幅の狭
くなった受信パルス(18)では、その圧縮後の波形(
19)の距離サイドローブ(20)も上昇し、パルス圧
縮率も低下してパルス幅が広がっている。
Then, in the two-frequency analysis circuit (7), a narrowband Doppler signal is generated through fast Fourier transform processing, and the amplitude detection circuit (
In step 8), each narrowband Doppler signal is subjected to amplitude detection, integrated by the stage integrator (9), and then sent to the signal detection circuit 00), but up to this point it is the same as in the conventional radar device. As shown in Figure 2, when the received pulse (16) is not blanked at all before and after the transmitted pulse (I5), the signal detection threshold level (21
), and as the blanking rate increases and the received pulse width narrows, the threshold
By increasing the level (21)e, it is possible to prevent the range side lobe (20) from being erroneously detected and the range gate position from being erroneously determined due to a decrease in the pulse compression ratio and widening of the pulse width of the signal. In the same figure (a), the transmission pulse (1
5), and as shown in FIG. 5(b), the received pulse (16) that does not overlap with the transmitted pulse (15) has a low sidelobe after pulse compression, and is completely pulse compressed. However, in Figures (e) and (d), the received pulse (18) with a narrower pulse width has a compressed waveform (
The distance side lobe (20) of 19) also rises, the pulse compression ratio also decreases, and the pulse width widens.

しかし、同図(e)に示すタイミング回路(12)から
の送信パルス・タイミングに同期したパルス幅データを
受けて、同図(f)に示すように、受信パルス幅τrに
応じてスレッショルド・レベルを変化してやれば、距離
サイドローブを誤って検出しtこり、広がったパルス幅
によるレンジ・ゲート位置を誤る事もなくなる。このス
レッショルド・レベルをスレッショルド制御回路(13
)が、送信パルスのタイミングを基準として信号検出回
路ααに送出する事によって、上記動作は実現される。
However, upon receiving pulse width data synchronized with the transmission pulse timing from the timing circuit (12) shown in (e) of the same figure, the threshold level is adjusted according to the received pulse width τr as shown in (f) of the same figure. By changing the range, it is possible to avoid erroneously detecting distance side lobes and erroneously determining the range gate position due to the widened pulse width. This threshold level is controlled by the threshold control circuit (13
) sends the signal to the signal detection circuit αα based on the timing of the transmission pulse, thereby realizing the above operation.

そして。and.

この発明によって拡大した信号検出可能範囲及びPRF
数が第3図に示されろ。ここではPRFが4個の場合を
示しているが、上記従来のレーダに比べると改善されて
いることが明らかである。そして、信号検出回路QOI
で検出されたPRF毎の目標レンジ・ゲート位置データ
が測距回路〔11)に送られて、複数PRFによる相関
処理を用いた測距が行われ、距離情報として表示器(1
4)に送られ。
Signal detectable range and PRF expanded by this invention
The numbers are shown in Figure 3. Although a case in which there are four PRFs is shown here, it is clear that this is improved compared to the conventional radar described above. And the signal detection circuit QOI
The target range/gate position data for each PRF detected in is sent to the ranging circuit [11], where distance measurement is performed using correlation processing using multiple PRFs, and the distance information is displayed on the display (11).
4) Sent to.

表示される。Is displayed.

〔発明の効果〕〔Effect of the invention〕

以上のように、従来のレーダが、送信パルスと少しでも
重なると受信パルスを信号処理しないようにしていたの
に対し、この発明は、送信パルスと受信パルスの重なり
に関係なく信号処理をするよう(こするとともに、スレ
ッショルド制御回路を信号処理器のタイミング回路と信
号検出回路の間に追加し、送信パルスのタイミングを基
準として。
As described above, while conventional radars do not perform signal processing on received pulses if they overlap even slightly with transmitted pulses, this invention allows signal processing to be performed regardless of the overlap between transmitted pulses and received pulses. (Also, a threshold control circuit is added between the signal processor's timing circuit and the signal detection circuit, with the timing of the transmitted pulse as a reference.

スレッショルド・レベルを信号検出回路に送出するだけ
の簡単な構成で、広い送信パルスにより狭い受信パルス
幅となった場合であっても信号を検出し、距離検出不能
領域を最小にして探知性能を向上する事が出来ると言う
効果がある。
With a simple configuration that simply sends the threshold level to the signal detection circuit, the signal can be detected even when the received pulse width is narrow due to the wide transmitted pulse, minimizing the area where distance cannot be detected and improving detection performance. It has the effect of saying that you can do something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(よ、この発明の一実施例によるレーダ装置を示
す概略の構成図、第2図はこの発明に於ける。狭くなっ
た受信パルスのパルス圧縮後の波形とスレッショルド・
レベル制御を示す概念図、第3図はこの発明に於けるレ
ーダの送信パルスと受信パルスの重なり;こよる目標検
出不能領域の減少。 或いは、目標検出可能PRF数の増加を示す概念図、第
4図は従来の中PRFパルスドツプラ方式のレーダ装置
を示した構成図、第5図は送信パルスとの重なりにより
幅が狭くなった受信パルスのパルス圧縮後の波形を示す
図、第6図は従来のレーダの送信パルスと受信パルスの
重なりによる目標検出不能領域を示す概念図2図におい
て、(1)は送信機、(2)はアンテナ、(3)は受信
機、(4)は信号処理器、(5)はクラッタ除去回路、
(6)はパルス圧縮器。 (7)は周波数分析回路、(8)は振幅検波回路、(9
+iよ積分#QOlハtM号検出回路、 (11)+!
複fiP RFiff12回路、 (12)はタイミン
グ回路、 (13)はスレッショルド制御回路、 (1
4)は表示器、PRFはパルス繰り返し周波数、τ0は
送信パルス幅、τrは受信パルス幅、Tkl:tスレッ
ショルド・レベル、τBは受信信号非検出範囲である。 なお2.各図中、同一符号(よ同−又は相当部分を示す
ものとする。
FIG. 1 is a schematic configuration diagram showing a radar device according to an embodiment of the present invention, and FIG. 2 is a schematic diagram showing the configuration of a radar device according to an embodiment of the present invention.
FIG. 3 is a conceptual diagram showing level control, in which the radar's transmitting pulse and receiving pulse overlap in the present invention; this reduces the area where targets cannot be detected. Alternatively, a conceptual diagram showing an increase in the number of target detectable PRFs, Fig. 4 is a configuration diagram showing a conventional medium PRF pulse Doppler radar device, and Fig. 5 shows a received pulse whose width is narrowed due to overlap with a transmitted pulse. Figure 6 is a conceptual diagram showing the area where a target cannot be detected due to the overlap between the transmitted pulse and the received pulse of a conventional radar. In Figure 2, (1) is the transmitter and (2) is the antenna. , (3) is a receiver, (4) is a signal processor, (5) is a clutter removal circuit,
(6) is a pulse compressor. (7) is a frequency analysis circuit, (8) is an amplitude detection circuit, (9
+i yo integral #QOl hat M detection circuit, (11)+!
Multiple fiP RFiff12 circuits, (12) is a timing circuit, (13) is a threshold control circuit, (1
4) is a display, PRF is a pulse repetition frequency, τ0 is a transmission pulse width, τr is a reception pulse width, Tkl:t threshold level, and τB is a reception signal non-detection range. Note 2. In each figure, the same reference numerals (same or equivalent parts are indicated).

Claims (1)

【特許請求の範囲】[Claims] 一定周波数の送信波を発生し、所定のパルス幅とパルス
繰り返し周波数でパルス変調し、更にこのパルス幅内を
パーカー・コードにより位相変調する送信機と、上記送
信波を空間に放射し、目標からの反射波を受信するアン
テナと、上記受信波を増幅・周波数変換・位相検波・ア
ナログ/ディジタル変換する受信機と、上記ディジタル
信号に対してクラッタ除去・パルス圧縮・周波数分析・
振幅検波・積分・信号検出・複数パルス繰り返し周波数
測距を行って目標距離を算出する信号処理器と、目標デ
ータを表示する表示器とを具備したレーダー装置におい
て、送信パルス・タイミングを受けて、その受信パルス
幅に応じて信号検出のスレッショルド・レベル制御する
手段を有することを特徴とするレーダ装置
A transmitter that generates a transmission wave of a constant frequency, pulse-modulates it with a predetermined pulse width and pulse repetition frequency, and further modulates the phase within this pulse width using a Parker code, and radiates the transmission wave into space and sends it away from the target. an antenna that receives the reflected waves, a receiver that amplifies the received waves, performs frequency conversion, phase detection, and analog/digital conversion;
In a radar device equipped with a signal processor that calculates the target distance by performing amplitude detection, integration, signal detection, and multi-pulse repetition frequency ranging, and a display that displays target data, in response to the transmission pulse timing, A radar device characterized by having means for controlling a signal detection threshold level according to the received pulse width.
JP63223722A 1988-09-07 1988-09-07 Radar equipment Expired - Lifetime JPH0675106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63223722A JPH0675106B2 (en) 1988-09-07 1988-09-07 Radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63223722A JPH0675106B2 (en) 1988-09-07 1988-09-07 Radar equipment

Publications (2)

Publication Number Publication Date
JPH0271186A true JPH0271186A (en) 1990-03-09
JPH0675106B2 JPH0675106B2 (en) 1994-09-21

Family

ID=16802655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63223722A Expired - Lifetime JPH0675106B2 (en) 1988-09-07 1988-09-07 Radar equipment

Country Status (1)

Country Link
JP (1) JPH0675106B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990022A (en) * 1995-09-25 1997-04-04 Tech Res & Dev Inst Of Japan Def Agency Radar equipment
JP2013170989A (en) * 2012-02-22 2013-09-02 Research Organization Of Information & Systems Distance measuring method and radar apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0990022A (en) * 1995-09-25 1997-04-04 Tech Res & Dev Inst Of Japan Def Agency Radar equipment
JP2013170989A (en) * 2012-02-22 2013-09-02 Research Organization Of Information & Systems Distance measuring method and radar apparatus

Also Published As

Publication number Publication date
JPH0675106B2 (en) 1994-09-21

Similar Documents

Publication Publication Date Title
JP2651054B2 (en) Polystatic correlation radar
US8115674B2 (en) Method of detecting target object and target object detection device
US5784026A (en) Radar detection of accelerating airborne targets
US7683827B2 (en) System and method for reducing the effect of a radar interference signal
US6278397B1 (en) Quiet radar method and apparatus
US5414428A (en) Radar system with pulse compression and range sidelobe suppression preceding doppler filtering
CN111077514A (en) FMCW radar with interference signal suppression
US20030090405A1 (en) Spread spectrum radar with leak compensation at baseband
NO342921B1 (en) radar device
EP2041600B1 (en) A method and radar system for coherent detection of moving objects
US6833808B2 (en) Signal processing
CN110632587A (en) Weak moving object monitoring method based on rapid FMCW radar
JPWO2006120824A1 (en) Radar
US5425000A (en) Spatial rejection of direct blast interference in multistatic sonars
US3725926A (en) Frequency diversified radar system
US3713153A (en) Pulse radar system for detecting moving targets
JPH0271186A (en) Radar device
JP2011013182A (en) Target detector and method of detecting target
JP3325219B2 (en) Multi-static radar device
JP3763000B2 (en) Radar equipment
JP3303862B2 (en) Pulse compression radar device
JPH085732A (en) Radar equipment
CN111337887B (en) Radar full-pulse forwarding interference single-channel suppression method and device and electronic equipment
US4384292A (en) Electronic counter-counter-measure device
JPS61284685A (en) Radar equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 14

EXPY Cancellation because of completion of term