JPH0271185A - Radar device - Google Patents

Radar device

Info

Publication number
JPH0271185A
JPH0271185A JP63223721A JP22372188A JPH0271185A JP H0271185 A JPH0271185 A JP H0271185A JP 63223721 A JP63223721 A JP 63223721A JP 22372188 A JP22372188 A JP 22372188A JP H0271185 A JPH0271185 A JP H0271185A
Authority
JP
Japan
Prior art keywords
pulse
target
data
prf
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63223721A
Other languages
Japanese (ja)
Inventor
Noboru Kurihara
昇 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63223721A priority Critical patent/JPH0271185A/en
Publication of JPH0271185A publication Critical patent/JPH0271185A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate disturbance signals with object signals maintained constantly within an equal distance gate by a method wherein a transmission/ receiving interval is varied per pulse or every several pulses and received data is arranged to process signals synchronizingly. CONSTITUTION:A range gate number increase/decrease generator 11 and an adder 12 are provided between a PRF (pulse repetition frequency) identifier 17 and a timing control circuit 14, so that a data arranging circuit 6 and a range gate control circuit 13 for controlling said circuit 6 are added to output of a buffer memory 5. In order to vary a transmitting/receiving pulse interval per pulse or every several pulses with hardly changing a signal detection range, the PRF from a data processor 15 is synthesized by the range gate increase/ decrease generator 11 and the adder 12 and sent to a timing control circuit 14 while it is sent to the range gate control circuit 13. This permits data to be re-arranged in synchronism with change in transmitted PRF to prevent tracking of a disturbing device which follows at high speed and to track only object signals.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、多数のパルス繰り返し周波数(以下PRF
と言う。)を用いて、目標が検出不能な領域に入るのを
避けるよう常に最適なPRFを選択して目標を追尾する
中PRFパルスドツプラ方式のレーダに関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] This invention provides a method for controlling multiple pulse repetition frequencies (hereinafter referred to as PRF).
Say. ) to track a target by always selecting the optimal PRF to avoid the target from entering an undetectable area.

〔従来の技術〕[Conventional technology]

第5図は従来の中PRFパルスドツプラ方式のレーダ装
置を示した構成図であり2図に於て、(1)は送信機、
(2)はアンテナ、(3)は受信機、(4)は信号処理
器、(5)はバッファメモ+7.(7)は周波数分析回
路、(8)は目標距離検出回路、(9)は目標周波数検
出回路、 (10)は角度誤差検出回路、 (14)は
タイミング制御回路、(15)はデータ処理器、(16
)は目標追尾フィルター、 (17)はPRF判定器、
 (18)はPRF選択器、 (19)は表示器である
Fig. 5 is a configuration diagram showing a conventional medium PRF pulse Doppler type radar device. In Fig. 2, (1) is a transmitter;
(2) is the antenna, (3) is the receiver, (4) is the signal processor, (5) is the buffer memo +7. (7) is a frequency analysis circuit, (8) is a target distance detection circuit, (9) is a target frequency detection circuit, (10) is an angular error detection circuit, (14) is a timing control circuit, and (15) is a data processor. , (16
) is the target tracking filter, (17) is the PRF determiner,
(18) is a PRF selector, and (19) is a display.

第6図は従来のレーダの信号処理周期毎のPRFの変更
と妨害装置の妨害PRF追従変更を示す概念図であり1
図に於て(20)は送信パルス、 (21)は受信パル
ス、 (22)は妨害パルスである。
FIG. 6 is a conceptual diagram showing the change in PRF for each signal processing cycle of a conventional radar and the change in tracking of the jamming PRF of a jamming device.
In the figure, (20) is the transmitted pulse, (21) is the received pulse, and (22) is the interference pulse.

次に動作について説明する。送信機(1)で発生された
送信信号はアンテナ(2)に送られて、アンテナ(2)
から目標に向けて放射される。この送信信号は目標で反
射されて再びアンテナ(2)で受信され、受信機(3)
に入力されて、増幅・周波数変換・位相検波・アナログ
/ディジタル変換が行われた後、信号処理器(4)に送
られる。信号処理器(4)では タイミング制御回路(
14)からのPRF信号に基づいてサンプリングしたデ
ータが、バッファメモリ(5)に人力される。そして周
波数分析回路(7)で高速フーリエ変換・振幅検波が行
われた後、その出力を用いて、目標距離検出回路(8)
では最大振幅距離ゲート検出・距離ディスクリミネータ
形成と距離誤差検出、目標周波数検出回路(9)では最
大振幅周波数ビン・周波数ディスクリミネータ形成と周
波数誤差検出、角度誤差検出回路(10)ではモノパル
ス角度誤差検出等の信号処理を行い、  PRF毎の目
標に関する距離ゲート番号と距離誤差及び周波数ビン番
号と周波数誤差、更には角度誤差を算出して信号処理周
期毎にデータ処理器(15)に送出する。信号処理器(
4)からの目標データは目標追尾フィルター(16)に
人力されて推定或は予測され、目標の距離及び速度が求
められる。この距離と速度データはPRF判定器(17
)に入力されるとともに、目標データとして表示器(1
9)に送られて表示される。PRF判定器(17)はレ
ーダ装置として使用可能な範囲のPRFの中から目標の
検出が可能なPRFを優先順位に従ってランク付けをし
て選択し、PRF選択器(18)に送出する。PRF選
択器(18)では選択可能なランク付けされたPRFの
中から、優先順位にしたがって順次1) RFを選択し
、信号処理器(4)のタイミング制御回路(14)と目
標追尾フィルター(16)にそのPRFで動作すること
を指令する。
Next, the operation will be explained. The transmission signal generated by the transmitter (1) is sent to the antenna (2) and
is emitted from the target towards the target. This transmitted signal is reflected by the target and received again by the antenna (2), and then sent to the receiver (3).
After being subjected to amplification, frequency conversion, phase detection, and analog/digital conversion, the signal is sent to a signal processor (4). In the signal processor (4), the timing control circuit (
Data sampled based on the PRF signal from 14) is manually input to the buffer memory (5). After fast Fourier transform and amplitude detection are performed in the frequency analysis circuit (7), the target distance detection circuit (8) uses the output.
, maximum amplitude distance gate detection, distance discriminator formation, and distance error detection, target frequency detection circuit (9), maximum amplitude frequency bin, frequency discriminator formation, and frequency error detection, and angle error detection circuit (10), monopulse angle detection. Performs signal processing such as error detection, calculates the distance gate number, distance error, frequency bin number, frequency error, and angle error regarding the target for each PRF, and sends them to the data processor (15) at each signal processing cycle. . Signal processor (
The target data from step 4) is manually estimated or predicted by the target tracking filter (16), and the distance and speed of the target are determined. This distance and speed data is passed to the PRF determiner (17
) and is also input to the display (1) as target data.
9) and displayed. A PRF determiner (17) ranks and selects a PRF capable of detecting a target from among PRFs within a range that can be used as a radar device, and sends the selected PRF to a PRF selector (18). The PRF selector (18) sequentially selects 1) RF from the selectable ranked PRFs according to the priority order, and connects the timing control circuit (14) of the signal processor (4) and the target tracking filter (16). ) to operate with that PRF.

このようにして選択されたPRFに基づいて。Based on the PRF selected in this way.

第6図(a)に示すように送信パルスを変化したとして
も第6図(b)に示すように最も進歩した妨害装置はP
RFが変化した瞬間から数パルス後には新しいPRFで
妨害を開始している。従って、より高速にPRFが切り
替えられて妨害装置の追従を許さないレーダ装置が望ま
れる。
Even if the transmission pulse is changed as shown in Fig. 6(a), the most advanced jamming device is P as shown in Fig. 6(b).
A few pulses after the moment the RF changes, the new PRF starts jamming. Therefore, there is a need for a radar device that can switch PRFs more quickly and does not allow tracking by jammers.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の中PRFパルスドツプラ方式のレータ装置は以上
のように構成されており、追尾している目標の速度と距
離を基に信号検出不能領域を避ける様にPRFを選択し
、−旦そのPRFが選ばれると再び信号検出不能領域に
入り込まない限り変更されないでいるか、又は、目標追
尾フィルターの計算負荷を平均的に一定にするため、信
号検出不能領域のない選択可能な複数のPRFを信号処
理周期毎に、ランダム又は一定周期で切り替えていた。
The conventional medium-PRF pulsed Doppler type radar device is configured as described above, and selects a PRF based on the speed and distance of the target being tracked to avoid areas where the signal cannot be detected. In order to keep the calculation load of the target tracking filter constant on average, a plurality of selectable PRFs with no signal undetectable regions are set every signal processing cycle. It was switched randomly or at regular intervals.

ところが、アンテナ・ビーム幅の広いレーダやフェーズ
ド・アレイ・アンテナのように走査角によってビーム幅
の変化するレーダでは、クラッタ周波数の幅が広くなっ
て信号周波数と重なる範囲が多くなり、更にパルス圧縮
を用いたレーダでは送信パルスと受信信号パルスとの重
なりが多くなるので、信号検出不能領域を避けるために
選択できる最適PRFの範囲は制限される。従って従来
のレーダのように追尾フィルターの負荷を一定にする目
的でPRFを任意にランダム又は一定周期で切り替える
ことは困難となる。同様に、レーダの送信PRFに追従
してパルス妨害や距離ゲート・スチーラを行う妨害装置
に対抗するためにPRFをランダム又は一定周期で切り
替えることは困難となる。たとえ、ランダムに切り替え
られたとしても、信号処理周期毎であったため同一のP
RFで送受信している期間が長く、妨害装置は容易に送
信パルスに追従して妨害可能であった。
However, in radars with wide antenna beam widths and radars whose beam width changes depending on the scanning angle, such as phased array antennas, the width of the clutter frequency becomes wider and the range overlapping with the signal frequency increases, making further pulse compression necessary. In the radar used, there is a large overlap between the transmitted pulse and the received signal pulse, so the range of the optimal PRF that can be selected in order to avoid areas where the signal cannot be detected is limited. Therefore, it is difficult to arbitrarily switch the PRF at random or at regular intervals in order to keep the load on the tracking filter constant, as in conventional radars. Similarly, it is difficult to switch the PRF randomly or at regular intervals in order to counter a jamming device that performs pulse jamming or range gate stealer by following the radar's transmitted PRF. Even if the switching is done randomly, the same P
The period of RF transmission and reception was long, and jamming devices could easily follow and jam the transmitted pulses.

ところで、追尾フィルターの負荷の変動については、こ
れを実行する信号処理器の処理速度の向上によって解決
可能であるが、妨害装置に対抗する手段としてはPRF
を任意に選択できないという問題があった。
By the way, fluctuations in the load of the tracking filter can be solved by improving the processing speed of the signal processor that executes it, but PRF
There was a problem in that it was not possible to select arbitrarily.

この発明は、このような課題を解決するためになされた
もので、レーダの送信PRFに追従したパルス妨害や距
離ゲート・スチーラの追従性がPRFを変更した瞬間か
ら数パルスの遅れであることを利用し、PRFが大きく
変わらない範囲で、常にパルス毎或は数パルス毎に送信
パルス時間間隔を変化させ、それに同期して受信信号の
距離ゲート位置も変更して、目標信号が常に距離ゲート
内に取り込まれるようにして追尾を継続し、逆に、送信
パルスに追従困難となった妨害信号を排除するレーダ装
置を得ることを目的とする。
This invention was made in order to solve such problems, and it is possible to detect that the pulse interference that follows the radar transmission PRF and the followability of the distance gate/stealer are delayed by several pulses from the moment the PRF is changed. The transmission pulse time interval is always changed every pulse or every few pulses within a range where the PRF does not change significantly, and the distance gate position of the received signal is also changed in synchronization with this, so that the target signal is always within the distance gate. It is an object of the present invention to provide a radar device that continues tracking in such a way that it is taken in by the transmitted pulse, and conversely eliminates the interference signal that has become difficult to follow the transmitted pulse.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係わるレーダ装置は、信号処理器に於いてデ
ータ処理器からの基本とするPRFにレンジゲート数を
増減させ、パルス毎或は数パルス毎に送受信間隔を変化
させるとともに、これに同期して受信データを並べ替え
て信号処理する事によって、目標信号は常に同一の距離
ゲート内に保ち、妨害信号は目標と非同期となってその
効果が低減され、排除できるようにしようとするもので
ある。
The radar device according to the present invention increases or decreases the number of range gates in the basic PRF from the data processor in the signal processor, changes the transmission/reception interval every pulse or every few pulses, and synchronizes with this. By rearranging the received data and processing the signals, the target signal is always kept within the same distance gate, and the interference signal is made asynchronous with the target, reducing its effect and making it possible to eliminate it. .

〔作用〕[Effect]

この発明に於いて、データ処理器からのPRFを信号検
出範囲がほとんど変化しない範囲でパルス毎或は数パル
ス毎に送信パルス間隔を変化させるためのレンジゲート
増減発生器出力と加算器で合成し、タイミング制御回路
に送るようにするとともに、レンジゲート制御回路にも
送って送信PRFの変化に対しても、これと同期してデ
ータの並べ替えを行う様にさせることにより−で、高速
に追従してくる妨害装置をも追従困難とさせ、目標信号
のみを追尾する。
In this invention, the PRF from the data processor is combined with the output of a range gate increase/decrease generator for changing the transmission pulse interval every pulse or every few pulses within a range where the signal detection range hardly changes. In addition to sending data to the timing control circuit, it is also sent to the range gate control circuit so that the data can be rearranged in synchronization with changes in the transmission PRF, allowing high-speed tracking. It also makes it difficult to track incoming jamming devices, and tracks only the target signal.

〔実施例〕〔Example〕

以下この発明の一実施例を図に基づいて説明する。第1
図は、この発明に係わるレーダ装置の構成である。図に
於いて(1)〜(5)、 (7)〜(10)、 (14
)〜(19)は上記従来のレーダ装置と同一の機器又は
部分である。この発明に於いて、(6)はデータ並べ替
え回路、(11)はレンジゲート数増減発生器、(12
)は加算器、(13)はレンジゲート制御回路である。
An embodiment of the present invention will be described below based on the drawings. 1st
The figure shows the configuration of a radar device according to the present invention. In the figure, (1) to (5), (7) to (10), (14
) to (19) are the same devices or parts as the conventional radar device described above. In this invention, (6) is a data rearrangement circuit, (11) is a range gate number increase/decrease generator, and (12) is a range gate number increase/decrease generator.
) is an adder, and (13) is a range gate control circuit.

第2図はこの発明によるレーダの送信パルス毎の送信パ
ルス間隔変更と妨害装置の妨害PRF追従変更を示す概
念図であり1図に於いて(20)は送信パルス、(21
)は受信パルス、(22)は妨害パルスである。第3図
は第2図に示した送信パルスと受信パルスと妨害パルス
を各送信間隔毎に示した図である。第4図はこの発明に
於ける信号処理器での受信データの並べ替え処理を示し
ている。
FIG. 2 is a conceptual diagram showing how to change the transmission pulse interval for each transmission pulse of the radar and change the interference PRF tracking of the jamming device according to the present invention. In FIG. 1, (20) is the transmission pulse, (21)
) is the received pulse, and (22) is the interference pulse. FIG. 3 is a diagram showing the transmission pulse, reception pulse, and interference pulse shown in FIG. 2 for each transmission interval. FIG. 4 shows the rearrangement processing of received data in the signal processor according to the present invention.

次に、この発明によるレーダ装置の動作について説明す
る。送信機(1)で発生された送信信号はアンテナ(2
)に送られて、アンテナ(2)から目標に同けて放射さ
れる。この送信信号は目標で反射されて再びアンテナ(
2)で受信され、受信機(3)に入力されて2、増幅・
周波数変換・位相検波・アナログ/ディジタル変換が行
われた後、信号処理器(4)に送られる。信号処理器(
4)ではタイミング制御回路(14)からのPRF信号
に基づいてサンプリングしたデータがバッファメモリ(
5) +、−人力される。また、データ処理器(15)
は信号処理器(4)からの目標データを用いて目標追尾
フィルター(16)で推定或は予測し、目標の距離及び
速度を求めるこの距離と速度データはPRF判定器(1
7)に入力されるとともに、目標データとして表示器(
19)に送られて表示され、PRF判定器(17)はレ
ーダ装置として使用可能な範囲のPRFの中から目標の
検出が可能なPRFを優先順位に従ってランク付けをし
て選択し、PRF選択器(18)に送出する。
Next, the operation of the radar device according to the present invention will be explained. The transmission signal generated by the transmitter (1) is sent to the antenna (2).
) and radiated from the antenna (2) to the target. This transmitted signal is reflected by the target and returned to the antenna (
2), input to the receiver (3), amplified and
After frequency conversion, phase detection, and analog/digital conversion, the signal is sent to a signal processor (4). Signal processor (
4), the data sampled based on the PRF signal from the timing control circuit (14) is stored in the buffer memory (
5) +, -manpower. Also, a data processor (15)
is estimated or predicted by the target tracking filter (16) using target data from the signal processor (4), and this distance and speed data is used to determine the distance and speed of the target.
7) and is also displayed on the display as target data (
19), and the PRF determiner (17) ranks and selects a PRF that can detect a target from among the PRFs within the range that can be used as a radar device, (18).

PRF選択器(18)では選択可能なランク付けされた
PRFの中から、優先順位に従って順次PRFを選択し
、信号処理器(4)と目標追尾フィルター(16)にそ
のPRFで動作することを指令する。ここまでは従来の
レーダ装置と同様である。信号処理器(4)では、デー
タ処理器(15)から送られてきた最適PRF相当のパ
ルス繰り返し時間間隔PRIOと、パルス毎或は数パル
ス毎に送受信間隔を変化させるために、ランダム又は一
定周期で送信パルス毎に周波数を変化させるレンジゲー
ト数増減発生3(11)の出力nとを、加算器(12)
で合成し、その出力をタイミング制御回路(14)とレ
ンジゲート制御回路(13)に送る。タイミング制御回
路(14)は加算器(12)出力の送信タイミングに同
期して送受信信号を発生し、送信機(1)と受信機(3
)に送受信パルスを送るとともに、受信機(3)からの
データをサンプリングしてバッフ7メモリ(5)に記憶
させる。レンジゲート制御回路(13)は加算器(12
)からの送受信間隔データPRrとPRF判定器(17
)からのレンジアンビギュイティ係数にとレンジゲート
増減発生器(11)からの送受信間隔増減データnとを
用いてバッファメモリ(5)に記憶されたデータを、目
標信号が常に一定のレンジゲート内に保持されるよう並
べ替えを行う。
The PRF selector (18) sequentially selects PRFs according to priority from the selectable ranked PRFs, and instructs the signal processor (4) and target tracking filter (16) to operate on that PRF. do. The process up to this point is the same as the conventional radar device. The signal processor (4) uses the pulse repetition time interval PRIO corresponding to the optimum PRF sent from the data processor (15) and the pulse repetition time interval PRIO at random or constant intervals to change the transmission/reception interval every pulse or every few pulses. The output n of the range gate number increase/decrease generator 3 (11) that changes the frequency for each transmission pulse is added to the adder (12).
and sends the output to the timing control circuit (14) and range gate control circuit (13). A timing control circuit (14) generates a transmission/reception signal in synchronization with the transmission timing of the output of the adder (12), and transmits and receives signals from the transmitter (1) and the receiver (3).
), the data from the receiver (3) is sampled and stored in the buffer 7 memory (5). The range gate control circuit (13) includes an adder (12
) from the transmission/reception interval data PRr and the PRF determiner (17
) and the transmission/reception interval increase/decrease data n from the range gate increase/decrease generator (11). Sort the data so that it is retained.

ところで、今、距離ROの目標を追尾しているものとす
ると、送信パルスから目標信号パルスまでの時間遅れT
OはT O= 2RQ/C(Cは光速)となる。目標信
号の時間遅れTOが送信パルス間隔の何倍であるか即ち
その商はPRF判定器(17)で信号検出可能な最適P
RF選定処理を行うときに求められる値であるので、こ
れをレンジアンビギュイテイ係数にとしてレンジゲート
制御回路(13)は使用する。また、同時に目標信号の
時間遅れTOも、PRF判定器(17)から送られてく
るのでこれも使用する。第2図(a)に於いて、PRI
(1)はレンジゲート数増減発生器(11)の出力デー
タn (1)と最適PRF相当のパルス繰り返し時間間
隔PRIGの和、PRI(2)は同様にn(2)とPR
IOの和と言うように順次加算器(12)で加算され、
送信される。
By the way, if we are currently tracking a target at a distance of RO, the time delay T from the transmission pulse to the target signal pulse is
O is T O = 2RQ/C (C is the speed of light). How many times the time delay TO of the target signal is the transmission pulse interval, that is, the quotient is the optimum P that allows the signal to be detected by the PRF determiner (17).
Since this value is obtained when performing the RF selection process, the range gate control circuit (13) uses this value as a range ambiguity coefficient. Furthermore, since the time delay TO of the target signal is also sent from the PRF determiner (17) at the same time, this is also used. In Figure 2(a), PRI
(1) is the sum of the output data n (1) of the range gate number increase/decrease generator (11) and the pulse repetition time interval PRIG corresponding to the optimum PRF, and PRI (2) is the sum of n (2) and PR
The sum of IO is sequentially added by the adder (12),
Sent.

ところで、PRI(3)での受信信号(21)の送信パ
ルス(20)に対する遅れλ(3)は、前のふたつの送
信パルス間隔P RI (1)とP RT (2)を、
真の目標信号の遅れTOから減算した値となる。これを
次式に示す。
By the way, the delay λ(3) of the received signal (21) with respect to the transmitted pulse (20) at PRI(3) is calculated by dividing the previous two transmitted pulse intervals P RI (1) and P RT (2) by
This is the value subtracted from the delay TO of the true target signal. This is shown in the following equation.

λ(3)=TO−1PR1(1)+PR+(2)1= 
no−に−p+nol −i n (t) + n (
2)l−(+)第2図の場合、レンジアンビギュイティ
係数には2であり、その他のPRIの場合も(1)式と
同様に、この時間遅れが送信パルス毎に異なることにな
るので、同図(b)に示すように、妨害信号(22)は
PRFが変更されたのを検出してからそれに同期して送
出されるまで、数パルスの遅れを伴うのでレーダのパル
スに同期する事は困難となる。この時の、各受信PRI
毎の受信信号と妨害信号を、第3図に示す。図に於いて
1m番目のパルス時間間隔PRI(m)は、レンジゲー
ト数増減発生器(11)の出力データn(m)と最適P
RF相当のパルス繰り返し時間間隔PRIGの和であり
、レンジゲート数増減発生器(11)の出力データn(
m)は、同図(a)から同図(f)へと順次0.−2.
 + 2. +I、 O,−1・・・とPRFが大きく
変化しない範囲で変更される同図(a)の送信パルスI
 (20)は2同図(c)の受信信号1°(21)とし
て受信されるので、その時間遅れλ(3)はPRIを変
化しない場合に対して、(1)式に示したように(n 
(1)+ (2)l だけ変化する。その他も同様に、
送信パルスに対して3番目のPRIで信号は受信され、
その時間遅れλ(m)は(n(m −2)+ n (m
−1))だけ変化する。妨害信号(22)は目標信号と
異なり、ずれた位置で受信される。この信号を、レンジ
ゲートと時間軸の2次元のメモリに配列したのが、第4
図(a)である。レンジゲート制御回路(13)はPR
F判定器(17)からのレンジアンビギュイティ係数に
と目標信号時間遅れTOを用いて、1番目の送信パルス
から(K+1)番目の目標信号の時間遅れλ(K+1)
を、下記に示す式により演算して求め、その結果により
データ並べ替え回路(6)はバッファメモリ(5)に記
憶されたデータを、目標信号時間遅れを基準として並べ
替える。
λ(3)=TO-1PR1(1)+PR+(2)1=
no− to −p+nol −i n (t) + n (
2) l-(+) In the case of Figure 2, the range ambiguity coefficient is 2, and in the case of other PRIs, this time delay will differ for each transmitted pulse, as in equation (1). Therefore, as shown in Figure (b), the interference signal (22) is delayed by several pulses from when it detects that the PRF has changed until it is sent out in synchronization with it, so it cannot be synchronized with the radar pulse. It becomes difficult to do so. At this time, each received PRI
Figure 3 shows the received signal and interference signal for each time. In the figure, the 1mth pulse time interval PRI (m) is the output data n (m) of the range gate number increase/decrease generator (11) and the optimum P
It is the sum of the pulse repetition time interval PRIG equivalent to RF, and the output data n(
m) is sequentially 0. -2.
+2. The transmission pulse I in the same figure (a) is changed within the range where the PRF does not change significantly as +I, O, -1...
(20) is received as the received signal 1° (21) in Figure 2(c), so the time delay λ(3) is as shown in equation (1) compared to the case where PRI does not change. (n
Changes by (1) + (2)l. Similarly, other
The signal is received at the third PRI with respect to the transmitted pulse,
The time delay λ(m) is (n(m −2)+n(m
-1)) changes. The interference signal (22) is different from the target signal and is received at a shifted position. This signal is arranged in a two-dimensional memory of range gate and time axis.
It is figure (a). The range gate control circuit (13) is PR
Using the range ambiguity coefficient from the F determiner (17) and the target signal time delay TO, the time delay λ(K+1) of the (K+1)th target signal from the first transmission pulse is calculated.
is calculated and determined by the formula shown below, and based on the result, the data rearrangement circuit (6) rearranges the data stored in the buffer memory (5) with reference to the target signal time delay.

λ(k+1)=TO−IPRI(k)+PRI(k−1
)+・・・+PRL(k−i)+・・・)= (TO−
1rPRIO) −(n(k)+n(k−1) +−1
−−(2)但し、  K−i≧1 第3図(C)に於いて、PRFを変更しないときの受信
信号の時間遅れλ(3)が、(1)式に示したように(
To−2PRIO+となり、この時のレンジゲートがN
となる。これに対して、レンジゲート数増減発生器(1
1)の出力データn (m)を用いてPRFを変更する
と、  (n (1)+n (2)lだけ時間遅れλ(
3)が変化する。n (1)= 0. n (2)= 
−2とすると、λ(3)のレンジゲートはNよりも2レ
ンジゲ一ト分多(なる。従って、データ並べ替え時には
レンジゲート番号に−2を加算すればよい。次に、同図
(d)では、  n(2)=−2,n(3)=2であり
、  1n(2)+n(3)l = oとなるためデー
タ並べ替え時にはレンジゲート番号にOを加算すればよ
い。このようにして、信号のみを真のレンジゲート位置
Nに並べることが出来る。以上のごとく、第4図(b)
のような目標信号を基準としたデータ配列が完成し。
λ(k+1)=TO−IPRI(k)+PRI(k−1
)+...+PRL(ki-i)+...)=(TO-
1rPRIO) -(n(k)+n(k-1) +-1
--(2) However, K-i≧1 In FIG. 3(C), the time delay λ(3) of the received signal when the PRF is not changed is as shown in equation (1) (
To-2PRIO+, and the range gate at this time is N
becomes. On the other hand, the range gate number increase/decrease generator (1
When PRF is changed using the output data n (m) of 1), the time delay λ(
3) changes. n(1)=0. n(2)=
-2, the range gate of λ(3) is 2 range gates more than N (therefore, when rearranging data, -2 should be added to the range gate number.Next, in the same figure (d) ), n(2) = -2, n(3) = 2, and 1n(2) + n(3)l = o, so when rearranging data, just add O to the range gate number. In this way, only the signals can be arranged at the true range gate position N.As described above, Fig. 4(b)
A data array based on the target signal is completed.

各レンジゲートについて、高速フーリエ変換が周波数分
析回路(7)で行われる。この図から明らかなように、
信号は常に一定のレンジゲート内に存在するが、妨害信
号は分散してしまうので、その妨害効果は無力となる。
For each range gate, a fast Fourier transform is performed in a frequency analysis circuit (7). As is clear from this figure,
Although the signal always exists within a certain range gate, the jamming signal is dispersed, so its jamming effect becomes ineffective.

そして、従来のレーダと同様に2周波数分析回路(7)
で高速フーリエ変換後振幅検波が行われ、目標距離検出
回路(8)ではその出力を用いて最大振幅距離ゲート検
出・距離ディスクリミネータ形成と距離誤差検出、目標
周波数検出回路(9)では、最大振幅周波数ビン検出・
周波数ディスクリミネータ形成と周波数誤差検出角度誤
差検出回路(10)では、モノパルス角度誤差検出等の
信号処理が行われ、指定されたPRFでの、目標の距離
ゲート番号と距離誤差及び周波数ビン番号と周波数誤差
、更には角度誤差が算出されて、信号処理周期毎にデー
タ処理器(15)に送出される。信号処理器(4)から
のこれら目標データは、追尾フィルター(16)に入力
されて推定或は予測され、目標の距離及び速度が求めら
れる。この距離と速度及び角度データは、目標データと
して表示器(19)に送られて表示される。このように
And, like conventional radar, two frequency analysis circuits (7)
Amplitude detection is performed after fast Fourier transform, and the target distance detection circuit (8) uses the output to detect the maximum amplitude distance gate, form a distance discriminator, and detect distance error, and the target frequency detection circuit (9) uses the output to detect the maximum amplitude distance. Amplitude frequency bin detection/
Frequency Discriminator Formation and Frequency Error Detection The angular error detection circuit (10) performs signal processing such as monopulse angular error detection, and calculates the target distance gate number, distance error, and frequency bin number at the specified PRF. The frequency error and further the angular error are calculated and sent to the data processor (15) every signal processing cycle. These target data from the signal processor (4) are input to a tracking filter (16) and estimated or predicted to determine the distance and velocity of the target. This distance, speed, and angle data are sent to the display (19) and displayed as target data. in this way.

目標信号を追尾しつつ妨害信号を除去できる。Interfering signals can be removed while tracking the target signal.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明ζに、従来のレーダ装置の追尾
中に於ける。目標検出可能なPRFの選択方式を利用し
、レンジゲート数増減発生器と加算器を、PRF判定器
とタイミング制御回路の間に追加し、バッファメモリの
出力に、データ並べ替え回路とこれを制御するレンジゲ
ート制御回路を追加するだけの簡単な構成で、基本とす
るPRFにレンジゲート数を増減させ、パルス毎或は数
パルス毎に送受信隔を変化させるとともに、これに同期
して、受信データを並べ替えて信号処理する事によって
、目標信号を常に同一の距離ゲート内に保ち、妨害信号
は目標と非同期となってその効果が激減し、排除可能と
なるという効果がある。
As described above, the present invention ζ is applicable to the conventional radar device during tracking. Using the PRF selection method that allows target detection, a range gate number increase/decrease generator and an adder are added between the PRF determiner and the timing control circuit, and a data rearrangement circuit and a control circuit are added to the output of the buffer memory. With a simple configuration that just adds a range gate control circuit to the basic PRF, the number of range gates can be increased or decreased, the transmission/reception interval can be changed every pulse or every few pulses, and in synchronization with this, the reception data can be changed. By rearranging and processing the signals, the target signal is always kept within the same distance gate, and the interference signal becomes asynchronous with the target, dramatically reducing its effect and making it possible to eliminate it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例によるレーダ装置を示す
概略の構成図、第2図はこの発明によるレーダの送信パ
ルス毎の送信パルス間隔変更と妨害装置の妨害PRF追
従変更を示す概念図、第3図は第2図に示した送信パル
スと受信パルスと妨害パルスを各送信間隔毎に示した図
、第4図はこの発明に於ける信号処理器での受信データ
の並べ替え処理を示した図、第5図は従来の中PRFパ
ルスドツプラ方式のレーダ装置を示した構成図。 第6図は従来のレーダの信号処理周期毎のPRFの変更
と妨害装置の妨害PRF追従変更を示す概念図である。 図に於いて、(1)は送信機、(2)はアンテナ、(3
)は受信機、(4)は信号処理器、(5)はバッファメ
モリ、(6)はデータ並べ替え回路、(7)は周波数分
析回路、(8)は目標距離検出回路、(9)は目標周波
数検出回路、 (10)は角度誤差検出回路、(11)
はレンジゲート数増減発生器、(12)は加算器、 (
13)はレンジゲート制御回路、 (14)はタイミン
グ制御回路。 (15)はデータ処理器、(16)は追尾フィルター、
 (17)はPRF判定器、 (18)はPRF選択器
、 (19)は表示器、にはレンジアンビギュイティ係
数、Σはモノパルス和チャンネル、Δはモノパルス差チ
ャンネル、Toは目標距離相当の時間遅れ、PRIOは
最適PRF相当のパルス繰り返し時間間隔、n(m)は
レンジゲート増減数、λ(k)は各PRI  毎の目標
信号時間遅れ、B(k)は妨害信号の送信パルスからの
時間遅れ、PRI(k)は送信パルス間隔、T(k)は
信号処理周期、TXはPRF切り替え時のトランジェン
ト時間である。 なお、各図中、同一符号は同−又は相当部分を示すもの
とする。
FIG. 1 is a schematic configuration diagram showing a radar device according to an embodiment of the present invention, and FIG. 2 is a conceptual diagram showing changing the transmission pulse interval for each transmission pulse of the radar and changing the jamming PRF tracking of the jamming device according to the present invention. , FIG. 3 is a diagram showing the transmission pulse, reception pulse, and interference pulse shown in FIG. 2 for each transmission interval, and FIG. The figure shown in FIG. 5 is a configuration diagram showing a conventional medium PRF pulse Doppler type radar device. FIG. 6 is a conceptual diagram showing a change in PRF for each signal processing cycle of a conventional radar and a change in tracking of the jamming PRF by a jamming device. In the figure, (1) is the transmitter, (2) is the antenna, and (3) is the transmitter.
) is the receiver, (4) is the signal processor, (5) is the buffer memory, (6) is the data sorting circuit, (7) is the frequency analysis circuit, (8) is the target distance detection circuit, and (9) is the Target frequency detection circuit, (10) is angle error detection circuit, (11)
is the range gate number increase/decrease generator, (12) is the adder, (
13) is a range gate control circuit, and (14) is a timing control circuit. (15) is a data processor, (16) is a tracking filter,
(17) is the PRF judger, (18) is the PRF selector, (19) is the display, is the range ambiguity coefficient, Σ is the monopulse sum channel, Δ is the monopulse difference channel, and To is the time equivalent to the target distance. delay, PRIO is the pulse repetition time interval corresponding to the optimal PRF, n(m) is the number of range gate increases/decrements, λ(k) is the target signal time delay for each PRI, and B(k) is the time from the transmitted pulse of the interfering signal. The delay, PRI(k), is the transmission pulse interval, T(k) is the signal processing period, and TX is the transient time at PRF switching. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 一定周波数の信号を発生し、所定のパルス幅とパルス繰
り返し周波数でパルス変調する送信機と上記送信波を空
間に放射し目標からの反射波を受信するアンテナと、上
記受信波を増幅・周波数変換・位相検波・アナログ/デ
ィジタル変換する受信機と、上記ディジタル信号に対し
て周波数分析振幅検波・最大値検出・ディスクリミネー
タ形成と誤差検出等の信号処理を行い、目標の距離と速
度に関するデータを算出する信号処理器と、上記信号処
理器からの目標データを用いて追尾フィルターにより目
標位置を推定或は予測し、目標の距離及び速度を求め、
この距離と速度データにより目標検出可能なパルス繰り
返し周波数を選択するデータ処理器と、目標データを表
示する表示器とを具備したレーダー装置において、上記
信号処理器は、データ処理器によって選択された最適パ
ルス繰り返し周波数を基準とし、そのパルス繰り返し周
波数に対してパルス毎に、又は、数パルス毎に常に送信
パルス間隔を速度及び距離検出可能領域が変化しない程
度に変化させ、受信信号のパルス間隔毎のデータを送信
パルスに同期して並べ替える手段を有する事を特徴とす
るレーダ装置。
A transmitter that generates a signal of a constant frequency and pulse-modulates it with a predetermined pulse width and pulse repetition frequency, an antenna that radiates the transmitted wave into space and receives the reflected wave from the target, and amplifies and frequency converts the received wave.・A receiver that performs phase detection and analog/digital conversion and signal processing such as frequency analysis, amplitude detection, maximum value detection, discriminator formation, and error detection are performed on the digital signal to obtain data regarding the distance and speed of the target. Estimate or predict the target position with a tracking filter using the signal processor to calculate and the target data from the signal processor, and calculate the distance and speed of the target,
In a radar device equipped with a data processor that selects a pulse repetition frequency at which a target can be detected based on this distance and speed data, and a display that displays target data, the signal processor is configured to select an optimal pulse repetition frequency that is selected by the data processor. The pulse repetition frequency is used as a reference, and the transmission pulse interval is constantly changed every pulse or every few pulses with respect to the pulse repetition frequency to the extent that the speed and distance detectable area do not change. A radar device characterized by having means for rearranging data in synchronization with a transmission pulse.
JP63223721A 1988-09-07 1988-09-07 Radar device Pending JPH0271185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63223721A JPH0271185A (en) 1988-09-07 1988-09-07 Radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63223721A JPH0271185A (en) 1988-09-07 1988-09-07 Radar device

Publications (1)

Publication Number Publication Date
JPH0271185A true JPH0271185A (en) 1990-03-09

Family

ID=16802638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63223721A Pending JPH0271185A (en) 1988-09-07 1988-09-07 Radar device

Country Status (1)

Country Link
JP (1) JPH0271185A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003228A (en) * 2005-06-21 2007-01-11 Mitsubishi Electric Corp Radar device
JP2008157735A (en) * 2006-12-22 2008-07-10 Mitsubishi Electric Corp Beam control apparatus for phased array radar
CN102303564A (en) * 2011-07-25 2012-01-04 段秋华 Bus convenient for wheelchair to land on or off

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103677A (en) * 1981-12-15 1983-06-20 Mitsubishi Electric Corp Radar device
JPS58117473A (en) * 1982-09-27 1983-07-13 Aloka Co Ltd Ultrasonic apparatus
JPS6161075A (en) * 1984-09-03 1986-03-28 Mitsubishi Electric Corp Radar device
JPS62156586A (en) * 1985-12-27 1987-07-11 Nec Corp Radar device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103677A (en) * 1981-12-15 1983-06-20 Mitsubishi Electric Corp Radar device
JPS58117473A (en) * 1982-09-27 1983-07-13 Aloka Co Ltd Ultrasonic apparatus
JPS6161075A (en) * 1984-09-03 1986-03-28 Mitsubishi Electric Corp Radar device
JPS62156586A (en) * 1985-12-27 1987-07-11 Nec Corp Radar device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007003228A (en) * 2005-06-21 2007-01-11 Mitsubishi Electric Corp Radar device
JP2008157735A (en) * 2006-12-22 2008-07-10 Mitsubishi Electric Corp Beam control apparatus for phased array radar
CN102303564A (en) * 2011-07-25 2012-01-04 段秋华 Bus convenient for wheelchair to land on or off

Similar Documents

Publication Publication Date Title
JP2651054B2 (en) Polystatic correlation radar
US11422249B2 (en) Radar device and method for detecting radar targets
JP3723650B2 (en) Radar system
US4885590A (en) Blind speed elimination for dual displaced phase center antenna radar processor mounted on a moving platform
US5130715A (en) Method of managing beams formed by phased array antennas and apparatus therefor
US4375641A (en) Method in a tracking radar to attain a large unambiguous range for detected targets by means of radar pulses with high repetition frequency
US4630052A (en) Suppressor of second-time-around clutter echoes for MTI pulse radar provided with power oscillator
GB2451242A (en) Signal processing system for pulse doppler radar
US5057845A (en) Radar apparatus employing different kinds of pulses
EP0958507B1 (en) Radar system
JPH0672920B2 (en) Radar equipment
US4496949A (en) MTI Radar adaptable to different environmental conditions
US3727222A (en) Pseudo-random coded doppler tracking and ranging
JPH0271185A (en) Radar device
US3713153A (en) Pulse radar system for detecting moving targets
JP3763000B2 (en) Radar equipment
US3220002A (en) Moving and fixed target pulsed radar receiving system
JPH06109833A (en) Chirp-pulse compression and tracking radar apparatus
JP2663708B2 (en) Electronic scanning antenna tracking radar device
JP2747360B2 (en) Tracking radar device
JP3335778B2 (en) Radar equipment
RU2287840C1 (en) Method of detection and classification of surface targets
JPH0820507B2 (en) Phased array radar device
US20230176188A1 (en) Target tracking using circulated time division multiplexing of multiple-input multiple-output radar
JP2001183446A (en) Radar device