JPH0270379A - Method of welding pipe formed by composite heat source - Google Patents

Method of welding pipe formed by composite heat source

Info

Publication number
JPH0270379A
JPH0270379A JP63222075A JP22207588A JPH0270379A JP H0270379 A JPH0270379 A JP H0270379A JP 63222075 A JP63222075 A JP 63222075A JP 22207588 A JP22207588 A JP 22207588A JP H0270379 A JPH0270379 A JP H0270379A
Authority
JP
Japan
Prior art keywords
edges
pipe
distance
welding
heating source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63222075A
Other languages
Japanese (ja)
Other versions
JP2535600B2 (en
Inventor
Hirotsugu Inaba
稲葉 洋次
Masashi Takaso
正志 高祖
Masatoshi Tanaka
正敏 田中
Susumu Shintani
進 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Sumikin Stainless Steel Tube Co Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Sumikin Stainless Steel Tube Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Sumikin Stainless Steel Tube Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63222075A priority Critical patent/JP2535600B2/en
Publication of JPH0270379A publication Critical patent/JPH0270379A/en
Application granted granted Critical
Publication of JP2535600B2 publication Critical patent/JP2535600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve a welding speed by specifying the distance between a high-frequency induction heating source and squeeze rolls to a specific size or above and the inter-edge size of an open pipe to a specific size or below without providing an impeder in combination with the above-mentioned heating source. CONSTITUTION:The open pipe 1 with the edges 3 faced upward is passed through a high-frequency heating coil 3. The edges 2 and the periphery thereof are preheated at this time. The squeeze rolls bring the edges 2, 2 into contact with each other on the downstream thereof and laser light 4 melts the edges so that the open pipe 1 is made into a pipe 10. Electromagnetic force is increased too much and the instability of the molten metal is caused when the impeder is combined with the high-frequency induction heating source. The distance between the centers of the high-frequency induction heating source and the squeeze rolls is set at >=4 times the outside diameter of the pipe. The molten metal is unstable if the distance is below 4 times. The energy is saved if the distance between the edges 2 and 3 is confined to <=4mm. Since the molten meal is stabilized, the increase of the preheating temp. is possible and the welding speed is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電縫溶接法にプラズマ溶接、レーザ溶接等の
直接加熱溶融溶接法を組合せた複合熱源による製管溶接
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pipe manufacturing welding method using a composite heat source that combines an electric resistance welding method with a direct heating fusion welding method such as plasma welding or laser welding.

〔従来の技術] 製管法の一つとして、スケルプを0状に成形してオーブ
ンパイプ て溶接管を製造する方法が知られている。この製管法に
使用される溶接法の中で最も信顛性の高い溶接方法は、
プラズマ溶接またはTIG溶接による方法とされている
。しかし、これらの方法は溶接速度が低く、低能率であ
る。
[Prior Art] As one of the pipe manufacturing methods, a method is known in which a skeleton is formed into a zero shape to produce an oven pipe or a welded pipe. The most reliable welding method used in this pipe manufacturing method is
The method is based on plasma welding or TIG welding. However, these methods have low welding speeds and low efficiency.

すなわち、プラズマ溶接で高速溶接を行うと、溶込み不
足に起因してキーホールが形成されなくなり、吹き流し
ビードが発生し、安定なビード形成が困難となる。また
、TIG溶接の場合は、アーク力及び溶融金属の表面張
力のために、高速溶接時にはハンピングと呼ばれる不連
続ビートを生じる。従って、これらの方法は、能率より
も品質が強く要求されるステンレス鋼管や高合金鋼管等
の高級管の製造にのみ使用されている。
That is, when high-speed plasma welding is performed, a keyhole is not formed due to insufficient penetration, and a streamflow bead is generated, making it difficult to form a stable bead. Furthermore, in the case of TIG welding, discontinuous beats called humping occur during high-speed welding due to the arc force and the surface tension of the molten metal. Therefore, these methods are used only for manufacturing high-grade pipes such as stainless steel pipes and high-alloy steel pipes, where quality is more strongly required than efficiency.

これに対し、最も高能率な製管溶接法は、電縫溶接法(
以下ERWと称す)である。しかし、その対象は、機械
構造用鋼管等の一般炭素鋼管に限られ、高級管は除外さ
れている。これは、ERWでは本質的に微小な溶接欠陥
が発生しやすく、高級管への適用に際してはシールド溶
接等の特殊な対策を講しなければならず、またこのよう
な対策を講じても十分な成果が得られ難いことが理由で
ある。
On the other hand, the most efficient pipe manufacturing welding method is the electric resistance welding method (
(hereinafter referred to as ERW). However, the target is limited to general carbon steel pipes such as steel pipes for machine structures, and high-grade pipes are excluded. This is because ERW is inherently prone to minute welding defects, and special measures such as shield welding must be taken when applied to high-grade pipes, and even if such measures are taken, they may not be sufficient. The reason is that it is difficult to obtain results.

ところで、ERWにおける微小溶接欠陥は、高周波電流
による電(n力が原因で発生する。すなわち、ERWは
接合すべきエツジ部にそれぞれ逆向きの高周波電流を流
し、表皮効果と近接効果を活用してエッジ部を溶融に至
らしめる溶接方法であり、その当然の結果として画エッ
ジ部の衝合点に存在する溶融金属には、強力な電磁力が
作用することになる。そのため、溶融金属は衝合点から
排出され、それに伴って生じる形状変化及び電気的負荷
変動のために、衝合点の位置が周期的に変動する。ER
Wで発生する微小溶接欠陥は、この衝合点の位置変動に
よる加圧凝固の不安定が原因と考えられている。
By the way, micro welding defects in ERW are caused by the electric force caused by high-frequency current. In other words, ERW applies high-frequency current in opposite directions to the edges to be joined, making use of the skin effect and proximity effect. This is a welding method that melts the edges, and as a result, a strong electromagnetic force acts on the molten metal at the abutting point of the image edge.As a result, the molten metal flows away from the abutting point. The position of the meeting point changes periodically due to the ejection and the accompanying shape changes and electrical load fluctuations.ER
It is thought that the micro welding defects that occur with W are caused by instability of pressurized solidification due to positional fluctuations of this abutting point.

一方、この溶接欠陥は、主にMn、Siの酸化物が生じ
たものであり、ERWが大気中で溶融接合されることも
原因している。従って、溶融金属を不活性ガス等により
シールドすれば、衝合点の位置変動を放置したままでも
、欠陥を大巾に低減させることが可能になる。しかし、
酸化しやすい合金元素(例えばCr)を多く含有するス
テンレス鋼や高合金鋼では、このシールド溶接を実施し
ても完全に欠陥を防止することはできない。ERWで生
じる微小欠陥は、非破壊検査で発見され難いことから、
完全に欠陥を防止できない場合は十分な信輔性が得られ
ず、高級管への適用を困難にしている。
On the other hand, these welding defects are mainly caused by oxides of Mn and Si, and are also caused by the fact that the ERW is melted and joined in the atmosphere. Therefore, by shielding the molten metal with an inert gas or the like, it is possible to significantly reduce defects even if the positional fluctuation of the abutment point is left undisturbed. but,
In stainless steel or high alloy steel that contains a large amount of alloying elements that are easily oxidized (for example, Cr), defects cannot be completely prevented even if this shield welding is performed. Micro defects that occur in ERW are difficult to detect through non-destructive testing, so
If defects cannot be completely prevented, sufficient reliability cannot be obtained, making it difficult to apply to high-grade pipes.

複合熱源による製管溶接方法は、このような状況を背景
として開発されたもので、プラズマ溶接やTlO2接に
匹敵する信顧性と、ERWに準じる能率とを兼ね備えた
方法である。この方法は、特開昭56−168981号
公報に示されるように、ERWにプラズマ溶接、レーザ
溶接等の直接加熱溶融溶接法を組合せたもので、オープ
ンパイプのエツジ部を高周波誘導による第1の加熱源に
より予熱した後、接合直前にプラズマ加熱、レーザ加熱
等の第2の加熱源により溶融させて加圧接合する方法で
ある。この方法によると、エツジ部が最終的には溶融溶
接されるために、ERWで問題となる溶接欠陥は皆無と
なり、また予熱を行っていることから、プラズマ溶接等
で高速溶接を行った時に生じる吹き流しビード、ハンピ
ングビード、溶込み不足も生じず、高速溶接が可能にな
る。
A pipe manufacturing welding method using a composite heat source was developed against this background, and is a method that combines reliability comparable to plasma welding and TlO2 welding and efficiency comparable to ERW. This method is a combination of ERW and direct heating fusion welding methods such as plasma welding and laser welding, as shown in Japanese Patent Application Laid-Open No. 168981/1981. This is a method of preheating with a heat source and then melting with a second heat source such as plasma heating or laser heating immediately before bonding and bonding under pressure. According to this method, the edges are finally melt-welded, so there are no weld defects that are a problem with ERW, and since preheating is performed, there are no weld defects that occur when high-speed welding is performed with plasma welding etc. High-speed welding is possible without the occurrence of streamer bead, humping bead, or lack of penetration.

〔発明が解決しようとする課題] しかるに、このような複合熱源による製管溶接方法にお
いて、予熱温度を上昇させるべく第1の加熱源である高
周波誘導加熱手段の出力を増加させると、衝合点の溶融
金属がパイプの内面側及び外面側に排出され、余盛高さ
の過大や不連続ビードの形成が生じる。従って、予熱温
度が制限され、溶接速度も制限される結果になる。
[Problems to be Solved by the Invention] However, in the pipe manufacturing welding method using such a composite heat source, when the output of the high-frequency induction heating means, which is the first heating source, is increased in order to increase the preheating temperature, the collision point Molten metal is discharged to the inner and outer sides of the pipe, resulting in excessive build-up height and formation of discontinuous beads. Therefore, the preheating temperature is limited and the welding speed is also limited.

ところで、従来よりERWでは、電気効率の改善を目的
として高周波誘導加熱手段の設置部分のパイプ内面側に
インピーダが配置されている。上述した複合熱源による
製管溶接方法でも、これに準じて第1の加熱源にインピ
ーダが使用されている。第1の加熱源の出力増加に伴う
余盛高さの増大や不連続ビードの形成を防止するには、
このインピーダを取り除き、合せて高周波誘導加熱手段
をスクイズロールから離反させるのが有効と考えられる
が、一方でエツジの集中加熱が困難になり、電気効率を
大巾に低下させる。
By the way, conventionally in ERW, an impeder has been placed on the inner surface side of the pipe in the area where the high-frequency induction heating means is installed for the purpose of improving electrical efficiency. Similarly, in the above-described pipe manufacturing and welding method using a composite heat source, an impeder is used as the first heat source. In order to prevent the increase in the height of the overlay and the formation of discontinuous beads due to the increase in the output of the first heating source,
It is considered effective to remove this impeder and also move the high frequency induction heating means away from the squeeze roll, but on the other hand, it becomes difficult to centrally heat the edges, and this greatly reduces electrical efficiency.

本発明は、電気効率を低下させることなく予熱温度を高
め、溶接速度の増大を可能にする複合熱源による製管溶
接方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a pipe manufacturing and welding method using a composite heat source, which makes it possible to increase preheating temperature and increase welding speed without reducing electrical efficiency.

〔課題を解決するための手段〕 複合熱源による製管溶接方法において、第1の加熱源で
ある高周波誘導加熱手段の出力を増加させたときに生じ
る余盛高さの増大や不連続ビードの形成は、衝合点にお
ける高周波電磁力の増大が主因と考えられる。衝合点に
おける高周波電磁力を低減するためには、衝合点に高周
波電流が流れないようにすることが必要である。これを
実現するには、インピーダを使用せず、合せて加熱手段
をスクイズロールから離すことが効果的である。
[Means for solving the problem] In a pipe manufacturing welding method using a composite heat source, an increase in the height of the reinforcement and the formation of discontinuous beads occur when the output of the high-frequency induction heating means, which is the first heating source, is increased. The main reason for this is thought to be an increase in high-frequency electromagnetic force at the collision point. In order to reduce the high-frequency electromagnetic force at the abutment point, it is necessary to prevent high-frequency current from flowing through the abutment point. To achieve this, it is effective to not use an impeder and to separate the heating means from the squeeze roll.

しかし、これによると電気効率が悪化し、エツジを一定
温度に加熱するための高周波人力が大巾に増加し、エネ
ルギーコストの増大を招く。
However, this reduces electrical efficiency and significantly increases the amount of high-frequency manual power needed to heat the edge to a constant temperature, leading to an increase in energy costs.

本発明者らは、インピーダを使用せず、合せて加熱手段
をスクイズロールから離した時の電気効率の低下を防ぐ
には、オープンパイプのエツジ間距離を小さくするのが
有効であると判断した。
The present inventors have determined that it is effective to reduce the distance between the edges of the open pipe in order to prevent a decrease in electrical efficiency when the heating means is separated from the squeeze roll without using an impeder. .

エツジ間距離は、ERWにおいては画エッジが衝合点で
形成する角度が大きいほど溶接性が良好なことから必然
的に大きく設定される。すなわち、エツジ間距離が小さ
く、両エツジが衝合点で形成する角度が小さくなると、
接合前にエッジ間で溶融金属の短絡が発生し、衝合点が
安定に維持されないために溶接欠陥が多発する。加熱手
段をスクイズロールから離した時は、加熱手段設置位置
におけるエツジ間距離は一層大きくなる。
In ERW, the distance between the edges is necessarily set large because the larger the angle formed by the image edges at the abutting point, the better the weldability. In other words, when the distance between the edges is small and the angle formed by both edges at the meeting point becomes small,
A short circuit occurs in the molten metal between the edges before joining, and the abutment point is not maintained stably, resulting in frequent welding defects. When the heating means is separated from the squeeze roll, the distance between the edges at the heating means installation position becomes even larger.

本発明者らの知見によると、このエツジ間距離を小さく
すると、通常のERWでは衝合点で溶融金属が不安定に
なり、溶接欠陥が多発するが、ERWでエツジを熔融さ
せず予熱のみを行う場合は、このような問題は生じず、
インピーダの省略および加熱手段のスクイズロールから
離反に伴う電気効率の悪化のみが、近接効果の活用によ
り効果的に改善されることが明らかとなった。
According to the findings of the present inventors, when the distance between the edges is made small, in normal ERW, the molten metal becomes unstable at the meeting point, resulting in frequent welding defects, but in ERW, the edges are not melted but only preheated. This problem does not occur if
It has become clear that only the deterioration in electrical efficiency caused by omitting the impeder and separating the heating means from the squeeze roll can be effectively improved by utilizing the proximity effect.

本発明は斯かる知見に基づきなされたもので、オープン
パイプの相対向するエツジ部を高周波誘導による第1の
加熱源により材料の融点以下の温度に予熱した後、スク
イズロール近傍で第2の加熱源により前記エツジ部を溶
融させて加圧接合する製管溶接方法において、前記第1
の加熱源にインピーダを併設せず、前記第1の加熱源と
前記スクイズロールとの中心間距離をパイプ外径の4倍
以上とする一方で、前記第1の加熱源位置におけるエツ
ジ間距離を41W以下とすることを特徴とする複合熱源
による製管溶接方法を要旨とする。
The present invention was made based on this knowledge, and after preheating the opposing edges of the open pipe to a temperature below the melting point of the material using a first heating source using high frequency induction, a second heating process is performed near the squeeze roll. In the pipe manufacturing welding method in which the edge portion is melted by a source and joined under pressure, the first
An impeder is not provided in the heating source, and the distance between the centers of the first heating source and the squeeze roll is at least four times the outer diameter of the pipe, while the distance between the edges at the position of the first heating source is The gist of the present invention is a pipe manufacturing welding method using a composite heat source characterized by a power of 41 W or less.

本発明の方法において、第1の加熱源によるエツジ部の
予熱領域はガスシールドするのが良い。
In the method of the invention, the preheating region of the edge portion by the first heating source is preferably gas-shielded.

〔作  用] 本発明の方法における条件の限定理由は次のとおりであ
る。
[Function] The reasons for limiting the conditions in the method of the present invention are as follows.

インピーダニ ERWおよび従来の複合熱源による製造
溶接方法では電気効率改善のために必須とされるが、第
1の加熱源である高周波誘導加熱手段の出力を増大させ
た状態では、衝合点における高周波電磁力を過大にし、
溶融金属を不安定にするので、高周波誘導加熱手段にイ
ンピーダは組合せない。
In manufacturing welding methods using ERW and conventional composite heat sources, it is essential to improve electrical efficiency, but when the output of the high-frequency induction heating means, which is the first heating source, is increased, high-frequency electromagnetic force at the abutment point Excessive
An impeder should not be combined with the high-frequency induction heating means, as this would make the molten metal unstable.

第1の加熱源とスクイズロールとの中心開路M:この距
離がパイプ外径の4倍未満の状態で第1の加熱源の出力
を増大させると、インピーダが設けられているときと同
様、衝合点における溶融金属が不安定になり、余盛高さ
の増大や不連続ビートの形成が生じる。従って、この距
離はパイプ外径の4倍以上とする。
Center open circuit M between the first heating source and the squeeze roll: If the output of the first heating source is increased when this distance is less than four times the outer diameter of the pipe, an The molten metal at the junction becomes unstable, resulting in an increase in the height of the build-up and the formation of discontinuous beats. Therefore, this distance should be at least four times the outer diameter of the pipe.

第1の加熱源位置におけるエツジ間距離:インピーダを
省略し、第1の加熱源とスクイズロールとの中心間距離
をパイプ外径の4倍以上とした時の電気効率の低下を抑
え、エネルギーコストの節減を図るために4mm以下と
する。ちなみに、ERWで高周波加熱手段とスクイズロ
ールとの距離をパイプ外径の4倍以上に設定した場合、
高周波加熱手段の所におけるエツジ間距離は約6mm以
上となる。従来の複合熱源による製管溶接方法において
も、第1の加熱源位置におけるエツジ間距離はこの程度
に設定されている。
Distance between edges at the first heating source position: When the impeder is omitted and the distance between the centers of the first heating source and the squeeze roll is set to four times or more the outer diameter of the pipe, the reduction in electrical efficiency is suppressed and energy costs are reduced. The diameter should be 4 mm or less in order to reduce the By the way, if you set the distance between the high frequency heating means and the squeeze roll in ERW to be more than four times the outside diameter of the pipe,
The distance between the edges at the high frequency heating means is about 6 mm or more. Even in the conventional pipe manufacturing welding method using a composite heat source, the distance between the edges at the first heat source position is set to this extent.

〔実施例〕〔Example〕

第1図は本発明の実施の態様を示す模式図である。 FIG. 1 is a schematic diagram showing an embodiment of the present invention.

オープンパイプ1は図外のスケルプより連続的に形成さ
れる。すなわち、図外のスケルプが成形ロール郡にて先
ず断面U形に形成され、更に断面路O形に形成されてオ
ープンパイプ1とされる。
The open pipe 1 is continuously formed from a skeleton (not shown). That is, a skeleton (not shown) is first formed into a U-shaped cross section using a group of forming rolls, and further formed into an O-shaped cross section to form the open pipe 1.

形成されたオープンパイプlは、相対向するエツジ2.
2の部分を上にして第1の加熱源である高周波加熱コイ
ル3を通過し、その下流側のスクイズロールの所を通過
する。
The formed open pipe l has opposite edges 2.
It passes through the high-frequency heating coil 3, which is the first heating source, with the part 2 facing upward, and then passes through the squeeze roll on the downstream side.

オーブンパイプ1が高周波加熱コイル3を通過する時に
エッジ2,2とその周辺が予熱される。
When the oven pipe 1 passes through the high frequency heating coil 3, the edges 2, 2 and their surroundings are preheated.

予熱されたエツジ2,2はスクイズロールの中心より僅
かに手前で接触する。接触部分は、上方より第2の加熱
源であるレーザ光発生器がらのレーザ光4により溶融さ
れる。溶融部分はスクイズロール間を通過して行く過程
で加圧され接合される。
The preheated edges 2, 2 contact the squeeze roll slightly before the center. The contact portion is melted from above by laser light 4 from a laser light generator, which is a second heating source. The molten parts are pressed and bonded while passing between squeeze rolls.

かくして、オープンパイプlがパイプ10になる。Thus, open pipe l becomes pipe 10.

この時、高周波加熱コイル3にインピーダは組合わされ
ない、加熱コイル3の中心c1 とスクイズロールの中
心C2との距離りはパイプ1oの外径の4倍以上に設定
される。また、高周波加熱コイル3の所においてエツジ
2,2の間隔Gは4騎以下に設定される。
At this time, no impeder is combined with the high-frequency heating coil 3, and the distance between the center c1 of the heating coil 3 and the center C2 of the squeeze roll is set to be at least four times the outer diameter of the pipe 1o. Furthermore, the distance G between the edges 2, 2 at the high frequency heating coil 3 is set to 4 or less.

高周波加熱コイル3の代わりに、同様な高周波電源に接
続されるコンタクトチップをエツジ2゜2の部分に摺接
してもよい。また、レーザ光に代えてプラズマ等による
他の直接加熱源を第2の加熱源として採用してもよい。
Instead of the high frequency heating coil 3, a contact chip connected to a similar high frequency power source may be slidably contacted to the edge 2.2. Further, instead of laser light, another direct heating source such as plasma may be used as the second heating source.

第2図(a)〜(C)は加熱コイル中心いとスクイズロ
ール中心C2の中心間距離り及び加熱コイル位置におけ
るエツジ間距離Gが、加熱コイルによる高電流密度領域
に与える影響を図示したものである。高電流密度領域と
は、速度20m/minで予熱温度1200 ’C以上
が確保できる電力で静止加熱を行ったときの高温加熱域
(300’C以上)であり、斜線で示されている。また
、溶接後のパイプの外径は34鵬である。
Figures 2 (a) to (C) illustrate the effects of the center-to-center distance between the heating coil center and the squeeze roll center C2 and the edge-to-edge distance G at the heating coil position on the high current density region caused by the heating coil. be. The high current density region is a high temperature heating region (300'C or more) when static heating is performed at a speed of 20 m/min with an electric power that can ensure a preheating temperature of 1200'C or more, and is indicated by diagonal lines. Moreover, the outer diameter of the pipe after welding is 34 mm.

中心間距離りがパイプ外径の約2倍である80鵬の時は
、エツジ開路NGが511IIll、加熱コイルにヨル
予熱条件(EpXlp)が325KVAt?、高電流密
度領域がエツジの衝合点に達する(第2図(a))。そ
の結果、衝合点近傍で溶融金属の不安定が生じる。中心
間距離りがパイプ外径の4倍以上である200舗の時は
、エツジ間距離Gが7mm、加熱コイルによる予熱条件
(EpXIp)が352KVAで、第2図(a)と路間
等の広さの高電流密度領域が確保される(第2図〜))
。この場合、高電流密度領域が接合点から離れるので溶
融金属は安定化する。ただし、予熱条件は悪化する。中
心開田MLが200mのままでエツジ間距離Gを2Mに
縮めれば、加熱コイルによる予熱条件(EpXIp)を
172KVAに低下させても、352KVAの時と路間
等の高電流密度領域が確保され、予熱条件が著しく改善
される(第2図(C))。なお、EpXIpは、高周波
発振管のプレート電流×プレート電圧であり、高周波入
力を意味する。
When the center-to-center distance is 80cm, which is about twice the pipe outer diameter, the edge opening NG is 511IIIll, and the heating coil preheating condition (EpXlp) is 325KVAt? , the high current density region reaches the edge meeting point (FIG. 2(a)). As a result, instability of the molten metal occurs near the collision point. In the case of 200 stores where the center-to-center distance is more than four times the pipe outer diameter, the edge-to-edge distance G is 7 mm, the preheating condition (EpXIp) by the heating coil is 352 KVA, and the difference between A wide high current density area is secured (Figure 2 ~))
. In this case, the molten metal stabilizes as the high current density region moves away from the junction. However, preheating conditions deteriorate. If the center open field ML remains 200 m and the edge distance G is reduced to 2 M, even if the preheating condition (Ep , the preheating conditions are significantly improved (FIG. 2(C)). Note that EpXIp is the plate current x plate voltage of the high frequency oscillation tube, and means the high frequency input.

第1表は本発明法、従来法及び比較法で製管溶接を行っ
たときの溶接条件及び溶接欠陥の発生状況を示したもの
である。
Table 1 shows the welding conditions and the occurrence of welding defects when pipe manufacturing was welded using the method of the present invention, the conventional method, and the comparative method.

No1〜7は外径34mI++、肉厚3ffiIllの
5US304鋼管の製造に適用した例である。
Nos. 1 to 7 are examples in which the method was applied to the production of 5US304 steel pipes with an outer diameter of 34 mI++ and a wall thickness of 3ffilll.

No、1(従来例)ではERWで製管ン容接が行われて
いる。l容接速度は45m/minが確保されているが
、1.5個/mの割合で微小溶接欠陥が発生している。
In No. 1 (conventional example), pipe manufacturing and welding is performed using ERW. Although the welding speed is maintained at 45 m/min, micro welding defects occur at a rate of 1.5/m.

微小溶接欠陥は90°密着偏平試験で瞳認した。Micro welding defects were recognized by the pupil in a 90° close contact flattening test.

No、 2〜7では高周波加熱コイルによる第1の加熱
源でエツジ部を予熱した後、COz レーザによる第2
の加熱源でエツジ衝合部を溶融させた。予熱は衝合点で
1200°C(二色温度計にて測定)になるように高周
波出力を調査した。CO,レーザは出力4KWでスクイ
ズロール中心より上流側に10mm寄った箇所の板厚中
央点に焦点を位置させた。
In No. 2 to 7, after preheating the edge part with the first heating source using a high-frequency heating coil, the second heating source using a COz laser is used.
The edge abutment was melted using a heating source. Preheating was performed by checking the high frequency output so that the temperature at the meeting point was 1200°C (measured with a two-color thermometer). The CO laser had an output of 4 KW and its focus was positioned at the center of the plate thickness at a location 10 mm upstream from the center of the squeeze roll.

No、2. 4. 5 (本発明例)では第1の加熱源
による予熱条件が適切なため、溶接速度20m/m i
 nで内面ビード高さは0.5mm以下に抑制され、溶
接欠陥も生じていない。また、予熱入力は250KVA
以下に制限されている。これに対し、No、 3(比較
例)では第1の加熱源におけるエツジ間距離Gが過大な
ため、予熱入力は352 KVAを必要とし、内面ビー
ド高さも11に達している。聞6 (比較例)では加熱
コイルとスクイズロールの中心間距離がLが短かすぎる
ために、インピーダを省略しているにもかかわらず、内
面ビード高さがinnに達している。Nα7(比較例)
ではインピーダが省略されていないために、他の条件が
適切であるにもかかわらず内面ビード高さが3.0−に
達し、アンダーカットも多発した。
No, 2. 4. 5 (example of the present invention), the welding speed was 20 m/m i because the preheating conditions by the first heating source were appropriate.
At n, the inner bead height was suppressed to 0.5 mm or less, and no welding defects occurred. In addition, the preheating input is 250KVA
Limited to: On the other hand, in No. 3 (comparative example), the distance G between the edges in the first heating source was excessive, so the preheating input required 352 KVA, and the inner bead height also reached 11. In Comparative Example 6, the distance L between the centers of the heating coil and squeeze roll was too short, so the inner bead height reached inn even though the impeder was omitted. Nα7 (comparative example)
In this case, because the impeder was not omitted, the inner bead height reached 3.0 - even though other conditions were appropriate, and undercuts occurred frequently.

No、8.9は外径50.8 mff1.肉厚3.5 
Mの5OS304鋼管の製造に本発明法及び比較法を適
用した例である。No、8(本発明法)では内面と一ド
高さが0.5mmに抑制され、溶接欠陥も生じていない
が、Nα9(比較法)では加熱コイルとスクイズロール
の中心間距離りが短すぎるために、内面ビード高さが3
.0間に達し、アンダーカッ1も多発した。
No. 8.9 has an outer diameter of 50.8 mff1. Wall thickness 3.5
This is an example in which the method of the present invention and the comparative method were applied to the production of M 5OS304 steel pipe. In No. 8 (method of the present invention), the height between the inner surface and the dome was suppressed to 0.5 mm, and no welding defects occurred, but in No. 9 (comparative method), the distance between the centers of the heating coil and squeeze roll was too short. Therefore, the inner bead height is 3
.. It reached between 0 and 1 undercut occurred frequently.

Nα10〜12は第2の加熱源としてプラズマ加熱を用
いた例である。プラズマ電流は160A、プラズマガス
としてはA r (m131 / m i n )を使
用した。またNo、 l 2ではエツジ部予熱部分をA
rガスでシールドした。
Nα10 to Nα12 are examples in which plasma heating is used as the second heating source. The plasma current was 160 A, and the plasma gas was Ar (m131/min). Also, in No. 12, the edge preheating part is A.
Shielded with r gas.

No、10. 12 (本発明例)では5m/minの
溶接速度で内面ビード高さは0.2M以下に抑制され、
特に予熱部分をガスシールドしたNα12では0.08
mmと極く僅かに抑えられている。更に、溶接欠陥も生
していない。これに対し、No、11(比較法)では加
熱コイル位置におけるエツジ間距離Gが過大なため、内
面ビード高さは1. Ommに達した。
No, 10. 12 (Example of the present invention), the inner bead height was suppressed to 0.2M or less at a welding speed of 5m/min,
Especially for Nα12 with gas shielded preheating part, 0.08
mm, which is extremely small. Furthermore, no welding defects occurred. On the other hand, in No. 11 (comparative method), the distance G between the edges at the heating coil position is too large, so the inner bead height is 1. It reached 0mm.

〔発明の効果〕〔Effect of the invention〕

本発明の方法は、複合熱源による製管溶接において、予
熱温度を高めても衝合点で溶融金属が安定化し、余盛高
さの増大と不連続ビードの形成を防止する。従って、予
熱温度の上昇が可能になり、溶接速度を高め、能率向上
を図るとともに、電気効率の低下が防止され、製管溶接
コストの低下に大きな効果を発揮する。
The method of the present invention stabilizes the molten metal at the collision point even if the preheating temperature is increased in pipe manufacturing welding using a composite heat source, thereby preventing an increase in the height of the reinforcement and the formation of discontinuous beads. Therefore, it is possible to increase the preheating temperature, increase the welding speed, improve efficiency, and prevent a decrease in electrical efficiency, which is highly effective in reducing pipe manufacturing and welding costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施の態様を示す斜視図、第2図
(a)〜(C)は予熱条件の変化にともなう高電流音度
領域の位置変化を示す平面図である。 図中、l;オープンパイプ、2:高周波加熱コイル、3
:エツジ。 出 願 人  住友金属工業株式会社
FIG. 1 is a perspective view showing an embodiment of the method of the present invention, and FIGS. 2(a) to 2(C) are plan views showing changes in the position of the high current sound intensity region as the preheating conditions change. In the figure, l: open pipe, 2: high frequency heating coil, 3
:Etsuji. Applicant: Sumitomo Metal Industries, Ltd.

Claims (1)

【特許請求の範囲】 1、オープンパイプの相対向するエッジ部を高周波誘導
による第1の加熱源により材料の融点以下の温度に予熱
した後、スクイズロール近傍で第2の加熱源により前記
エッジ部を溶融させて加圧接合する製管溶接方法におい
て、前記第1の加熱源にインピーダを併設せず、前記第
1の加熱源と前記スクイズロールとの中心間距離をパイ
プ外径の4倍以上とする一方で、前記第1の加熱源位置
におけるエッジ間距離を4mm以下とすることを特徴と
する複合熱源による製管溶接方法。 2、第1の加熱源によるエッジ部の予熱領域をガスシー
ルドすることを特徴とする請求項1に記載の複合熱源に
よる製管溶接方法。
[Claims] 1. After preheating the opposing edges of the open pipe to a temperature below the melting point of the material by a first heating source using high frequency induction, the edge portions are heated by a second heating source near the squeeze roll. In the pipe manufacturing welding method in which the first heating source is melted and joined under pressure, an impeder is not provided in conjunction with the first heating source, and the center-to-center distance between the first heating source and the squeeze roll is at least four times the outer diameter of the pipe. A pipe manufacturing welding method using a composite heat source, characterized in that the distance between the edges at the first heat source position is 4 mm or less. 2. The pipe manufacturing and welding method using a composite heat source according to claim 1, wherein the preheating region of the edge portion by the first heat source is gas-shielded.
JP63222075A 1988-09-05 1988-09-05 Pipe welding method using a combined heat source Expired - Fee Related JP2535600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63222075A JP2535600B2 (en) 1988-09-05 1988-09-05 Pipe welding method using a combined heat source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63222075A JP2535600B2 (en) 1988-09-05 1988-09-05 Pipe welding method using a combined heat source

Publications (2)

Publication Number Publication Date
JPH0270379A true JPH0270379A (en) 1990-03-09
JP2535600B2 JP2535600B2 (en) 1996-09-18

Family

ID=16776728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63222075A Expired - Fee Related JP2535600B2 (en) 1988-09-05 1988-09-05 Pipe welding method using a combined heat source

Country Status (1)

Country Link
JP (1) JP2535600B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303916A (en) * 1992-08-24 1995-11-21 Sumitomo Metal Ind Ltd Welding method for tube manufacturing under multiple heat source
US5968380A (en) * 1994-07-27 1999-10-19 Sumitomo Metal Industries Limited Method for producing laser-welded tubes and apparatus for producing the same
WO2011040127A1 (en) * 2009-10-02 2011-04-07 日立造船株式会社 Coil manufacturing device and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929411A (en) * 1972-07-19 1974-03-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929411A (en) * 1972-07-19 1974-03-15

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303916A (en) * 1992-08-24 1995-11-21 Sumitomo Metal Ind Ltd Welding method for tube manufacturing under multiple heat source
US5968380A (en) * 1994-07-27 1999-10-19 Sumitomo Metal Industries Limited Method for producing laser-welded tubes and apparatus for producing the same
WO2011040127A1 (en) * 2009-10-02 2011-04-07 日立造船株式会社 Coil manufacturing device and method
JP2011078986A (en) * 2009-10-02 2011-04-21 Hitachi Zosen Corp Coil manufacturing device and method

Also Published As

Publication number Publication date
JP2535600B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
KR100228252B1 (en) The method for producing electric-resistance-welded steel pipe
JP5509657B2 (en) Welded steel pipe joined by high-density energy beam and manufacturing method thereof
US6281467B1 (en) Conductive heat resistance seam welding
JP2004306084A (en) Composite welding method of laser welding and arc welding
US6545244B1 (en) Conductive heat seam welding
GB1457633A (en) Method of joining metals
JPH0270379A (en) Method of welding pipe formed by composite heat source
JPH08174249A (en) Manufacture of welded steel pipe
JP3134706B2 (en) Manufacturing method of welded steel pipe
JPH0418954B2 (en)
JPH0248349B2 (en)
JPH07251282A (en) Method for laser beam joining of strip made of aluminum alloy
JPH06254689A (en) Laser beam welding method for beltlike metals
JP2871404B2 (en) Composite heat source welding pipe making method
JP2792802B2 (en) Manufacturing method of powder filled tube
JPH0558840B2 (en)
JP2510673B2 (en) Plasma keyhole welding method
JPH0371947B2 (en)
JPH067977A (en) Method for laser-beam welding beltlike metallic material different in thickness
JPH03133575A (en) Continuous manufacture and equipment for metallic welded pipe combining high-frequency preheating with high density energy melting and welding process
JPS61159286A (en) High-frequency electric welding method
JPS63144876A (en) Method for welding clad steel
JPH04237513A (en) Manufacturing device for electro-resistance-welded tube
JPH04305379A (en) Method for preventing weld defect of electro-resistance-welded tube
JPH09108848A (en) Electron beam welding method for ultra-thin blank

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees