JPH0270009A - Container for producing high-purity fine powder of active metal - Google Patents

Container for producing high-purity fine powder of active metal

Info

Publication number
JPH0270009A
JPH0270009A JP63218486A JP21848688A JPH0270009A JP H0270009 A JPH0270009 A JP H0270009A JP 63218486 A JP63218486 A JP 63218486A JP 21848688 A JP21848688 A JP 21848688A JP H0270009 A JPH0270009 A JP H0270009A
Authority
JP
Japan
Prior art keywords
container
moisture
containers
fine powder
active metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63218486A
Other languages
Japanese (ja)
Other versions
JPH0774361B2 (en
Inventor
Toru Yamaguchi
亨 山口
Yukio Inazuki
稲月 幸男
Hideo Nakazawa
中沢 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIKAWAJIMA MASTER METAL KK
IHI Corp
Original Assignee
ISHIKAWAJIMA MASTER METAL KK
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIKAWAJIMA MASTER METAL KK, IHI Corp filed Critical ISHIKAWAJIMA MASTER METAL KK
Priority to JP63218486A priority Critical patent/JPH0774361B2/en
Priority to US07/378,531 priority patent/US4971258A/en
Priority to EP89115749A priority patent/EP0358064B1/en
Priority to DE89115749T priority patent/DE68908048T2/en
Priority to US07/440,056 priority patent/US5007243A/en
Publication of JPH0270009A publication Critical patent/JPH0270009A/en
Publication of JPH0774361B2 publication Critical patent/JPH0774361B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manipulator (AREA)
  • Drying Of Gases (AREA)

Abstract

PURPOSE:To allow the pulverization of active metals to the high-purity powder by frosting the moisture in hermetic containers provided with rubber gloves for operation and further converting the moisture to hydroxyl groups by metal Na, than pulverizing the same in an inert gaseous atmosphers at the time of producing the powder of specific active metal which easily forms hydroxide thereof. CONSTITUTION:The plural hermetic containers 2a, 2b, 2c respectively provided with the rubber gloves 3 for operation are connected and the inside of the containers 2a to 2c are evacuated to a vacuum by a discharge system 11 provided to the central container 2b at the time of pulverizing the active metal such as Sr, Ba, Y and Hf which easily forms hydroxide by reacting with water in a high purity state. An inert gas such as Ar is introduced from a gas connecting pipe 28 into the containers. The pressures in and out of the rubber gloves 3 are uniformized by a pressure equalizing means 7 provided to the rubber gloves 3. The residual moisture in the containers is cooled down to <=-150 deg.C by a cryogenic frosting device 29 porovided in the containers 2a to 2c and is thereby frosted. The metal Na is brought into contact with the frost to remove the moisture in the form of NaOH. The inert gaseous atmosphere contg. no moisture is generated in the hermetic containers and the active metals such as Sr are ground in the high-purity state without forming the hydroxide with the moisture.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、活性金属の高純度微粉末製造容器に係わり、
特に超電導材料製造用の素原料であるストロンチウム(
Sr)、バリウム(Ba)イツトリウム(Y)等や超硬
・超#4熱性に優れた八ツニウム(Hf)等の水酸化化
合物を生成する活性金属の高純度微粉末(I[a、I[
a、IVa、IVb族金属)を製造する活性金属の高純
度微粉末製造容器に関するものである9 [従来の技術] 近年、超電導材料等の発達番こよる要請から活性金属の
中でも水酸化化合物を生成する活性金属(IIa、II
[a、IVa、IVb族金属)の高純度微粉末の製造が
注目されている9この水酸化化合物を生成する活性金属
は、微粉化に伴い表面積か増大し1、気体の吸着、吸蔵
及び表面酸化の原因となり、特に活性なI[a族金属に
おいては水分と急激に反応し5水酸化化合物を生成する
という問題かあり、未だこれらの問題は解決されておら
ず高純度微粉末を製造する従来技術はながった9 従来、超電導材料はス)・ロンチウム(S r−)バリ
ウム(Ba)、イツトリウム(Y)、ランタン(La、
)、銅(C,u )等の複合酸化物からなり、従来より
単一金属の塩類や酸化物等の化合物を素原料として使用
し、複合酸化物を製造していた9また、超硬・超耐熱性
に澤れ/ごハフニウム(11,f )微粉末はHf塩類
を水素還元し、Hfを生成・炭化していた。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a container for producing high-purity fine powder of active metal,
In particular, strontium (
High purity fine powder of active metals (I[a, I[
This relates to a container for producing high-purity fine powder of active metals (Group A, IVa, IVb metals). The active metals (IIa, II
The production of high-purity fine powders of [Group a, IVa, IVb metals] is attracting attention9 The surface area of the active metals that generate these hydroxide compounds increases as they are pulverized1, resulting in gas adsorption, occlusion, and surface It causes oxidation, and there is a problem that especially active group I [a metals] react rapidly with moisture and produce pentahydroxide compounds, and these problems have not yet been solved and it is difficult to produce high-purity fine powder. Conventional technology has passed 9 Conventionally, superconducting materials are S), rontium (Sr-), barium (Ba), yttrium (Y), lanthanum (La,
), copper (C, u ), etc., and conventionally, compounds such as single metal salts and oxides have been used as raw materials to produce composite oxides9. Super heat-resistant hafnium (11,f) fine powder undergoes hydrogen reduction of Hf salts to generate and carbonize Hf.

しかし、これらの製造方法にあっては金属化合物を使用
していたため純金属微粉末に比べて、反応系が複雑であ
るため純度が低下し、用途に応じた特性値の性能低下の
原因となるという問題かあった9 また、特に塩類に含まれる最終製品に不要な元素及び基
か製造工程中に分解・脱出し空孔となり、結晶に乱れを
生じるという問題があった9更に、反応系か複雑である
ため多工程が必要となり、量産時の設置li費に起因す
るコストが大きいという問題があった。
However, since these manufacturing methods use metal compounds, the reaction system is more complex than that of pure metal fine powder, resulting in a decrease in purity, which causes a decline in the performance of characteristic values depending on the application. There was also the problem that elements and groups that are not needed in the final product, especially those contained in salts, decomposed and escaped during the manufacturing process, forming vacancies and causing disorder in the crystals.9 Furthermore, there was a problem that the reaction system Since it is complex, it requires multiple steps, and there is a problem in that the cost due to the installation Li cost during mass production is large.

そこで、本出願人はこの様な水酸化化合物を生成する活
性金属(I[a、I[Ia、、IVa、IVb族金属)
の高純度微粉末を得ることがてきる「活性金属の高純度
微粉末製造方法」を別途出願口と[発明が解決しようと
する課題] しかし、従来は上−記「活性金属の高純度微粉末製造方
法Jか確立されていなかったため、この製造方法を有効
に実施することができる装置もなかった9 そこで、この様な課題に鋸iみて本発明は、水酸化化合
物を生成する活性金属(n a、、I[Ia、IV a
、IV b族金属)の高純度微粉末を得ることがてきる
活性金属の高純度微粉末製造容器を提供することを目的
とするものである。
Therefore, the present applicant has developed active metals (I[a, I[Ia, , IVa, IVb group metals) that generate such hydroxide compounds.
[Problems to be Solved by the Invention] However, conventionally, the above-mentioned method for producing high-purity fine powder of active metals has been filed separately. Since the powder manufacturing method J had not been established, there was no equipment that could effectively carry out this manufacturing method.9 Therefore, in view of these problems, the present invention has developed a method for producing active metals that produce hydroxide compounds. na,,I[Ia,IV a
The object of the present invention is to provide a container for producing high-purity fine powder of active metals, which can produce high-purity fine powder of active metals (Group IV b metals).

[課題を解決するための手段」 上舵目的を達成すべく本発明cJ、不活性ガス雰囲気で
内部作業を行うべくゴム手袋を内部に臨まぜて取りイー
1(〕な密密閉器の一側壁にこの容器内に残存した水分
を露結するための極低温冷却手段を備えると共に、その
内圧を大気圧と同等にするなめのアキコムレータを備え
たものである。
[Means for Solving the Problems] In order to achieve the purpose of the upper rudder, the present invention cJ provides one side wall of a hermetically sealed container in which rubber gloves are worn while facing the interior in order to perform internal work in an inert gas atmosphere. The container is equipped with a cryogenic cooling means for condensing moisture remaining in the container, and is also equipped with a diagonal arbor that makes the internal pressure equal to atmospheric pressure.

また、上記ゴム手袋の取り付けられた密閉容器か複数台
連通して設けられたしのである9更に、」二記ゴム手袋
の取り付は開口部にこれを外方から覆うように開閉扉を
設け1.この開閉扉に、これによ−)で覆われた手袋内
を上記容器内と同−気性に保持ずべくこれらを連通させ
るだめの均圧1段を備えたものて゛ある。
In addition, a plurality of sealed containers with the above-mentioned rubber gloves attached are installed in communication with each other. 1. This opening/closing door is equipped with a single pressure equalizing stage for communicating the inside of the glove covered with the opening/closing door so as to maintain the same atmosphere as the inside of the container.

「作用) −1一連の々IJ <構成され、不活性ガス雰囲気で内
部作業を行うべくゴム手袋を内部に臨ませて取り付げた
密閉容器の一側壁に極低温冷却手段か備えられなので、
この冷却手段により密閉容器に極低温冷奴を接触さぜる
と上記雰囲気ガス中の残存水分(Jその容器の内壁に露
結する。この露結した水分を別途出願した「雰囲気ガス
中の残存水分除去方法」にて開示した水分トラップ技術
を採用して除去する9これは、露結した水分に金属すl
〜リウム塊を接触させ、いわゆる固相ゲッタとして作用
さぜて水酸化ナトリウムを生成し、上記残存水分は水酸
基として分解・除去するものである。また、上記雰囲気
ガス中には露結L7ない残存微量水分か依然として含ま
れている。これについては、別途出願しな「す1〜リウ
ム蒸気発生装置」にて開示した装置を使用して、この残
存微量水分が含まれている雰囲気ガス中で金属す1ヘリ
ウムを加熱してす1〜リウム蒸気を発生させ分散させる
9すると、ナ1〜リウム蒸気はL記雰囲気ガス中に含ま
れる残存W、量量水−分散接触し、いわゆる気相ゲッタ
として作用し水酸化ナトリウノ\が生成され、」ユ記固
相ゲッタで除去できなかった残存微量水分は水酸基とし
て極低濃度(10−へ、1. OOW、/Vp p b
 ) tで分解・除去されるものである9 そして、このように残存水分を除去した不活性ガス雰囲
気中で水酸化化合物を生成する活性金属を微粉化する、
この微粉化は上記活性金属を上記極低温冷却装置を利用
して延性を少なくして拙壊法により機械的に粉砕してな
される。
``Function) - 1 A series of IJ'' is constructed, and a cryogenic cooling means is provided on one side wall of the sealed container to which rubber gloves are attached facing the inside in order to perform internal work in an inert gas atmosphere.
When the ultra-low temperature chiller is brought into contact with the airtight container using this cooling means, the residual moisture in the atmospheric gas (dew condenses on the inner wall of the container). This method uses the moisture trap technology disclosed in ``Removal Method''9.
~ Liumium lumps are brought into contact with each other to form sodium hydroxide by acting as a so-called solid phase getter, and the residual moisture is decomposed and removed as hydroxyl groups. Further, the atmospheric gas still contains a residual trace amount of moisture without dew condensation L7. Regarding this, metal helium is heated in an atmospheric gas containing this residual trace amount of water using the device disclosed in "S1-Lium Steam Generator", which has not been filed separately. ~ Generating and dispersing lithium vapor 9 Then, the sodium~lium vapor comes into dispersion contact with the residual W contained in the atmospheric gas L and the amount of water, acting as a so-called gas phase getter, and producing sodium hydroxide. The residual trace water that could not be removed by the solid-phase getter is reduced to an extremely low concentration (to 10-, 1. OOW, /Vp p b
) The active metal that produces the hydroxide compound is pulverized in the inert gas atmosphere from which residual moisture has been removed.
This pulverization is performed by mechanically pulverizing the active metal using the cryogenic cooling device to reduce its ductility and using a detailed crushing method.

そして、微粉化したちのを」二記雰囲気下で収納容器内
に密閉収納し、貯蔵時の高純度が保持するものである。
The finely powdered powder is then sealed and stored in a storage container under an atmosphere described in 2 above to maintain its high purity during storage.

二のような一連の内部作業を上記容器に取り付けられた
ゴム手袋を使用して行うか、当該容器にその内圧を大気
圧と同等にするためのアキュムレータが備えられている
ので、安全に行うことかできるものである5 また、上記ゴム手袋の取り付けられた密閉容器が複数台
連通して設けられたので、それぞれの容器内で個々に別
の作業を行えるため、流れ作業を行うことかできる。
The series of internal operations described in step 2 must be carried out safely by using rubber gloves attached to the container, or by having the container equipped with an accumulator to equalize its internal pressure to atmospheric pressure. Furthermore, since a plurality of closed containers to which the rubber gloves are attached are provided in communication with each other, different tasks can be performed individually within each container, making it possible to perform assembly line work.

更に、」1記ゴム手袋の取り付は開口部にこれを外方か
ら覆うように開閉扉が設けられ、この開閉扉に上記均圧
手段か備えられたので、上記密閉容器内を真空排気ある
いは不活性ガス雰囲気にしても、上記開閉扉によって覆
われた手袋内が上記容器内と同一気圧に保持され、上記
ゴム手袋が破損する。ことはない。
Furthermore, in order to install the rubber gloves in item 1, an opening/closing door is provided at the opening so as to cover it from the outside, and since this opening/closing door is equipped with the pressure equalization means, the inside of the sealed container cannot be evacuated or Even in an inert gas atmosphere, the inside of the glove covered by the opening/closing door is maintained at the same pressure as the inside of the container, and the rubber glove is damaged. Never.

[実施例] 以下に本発明の好適一実施例を添付図面に基づいて詳述
する9 第1図乃至第3図に示すごとく本実施例の活性金属の高
純度微粉末製造容器1は、3台の密閉容器2a、2b、
2cか直列に連通して設けられている。これら密閉容器
2a、2b、2.cの正面には、夫々操作用ゴム手袋3
か取り付けられている。
[Example] A preferred embodiment of the present invention will be described in detail below with reference to the accompanying drawings.9 As shown in Figs. airtight containers 2a, 2b,
2c are connected in series. These airtight containers 2a, 2b, 2. Rubber gloves 3 for operation are placed on the front of c.
or installed.

このゴム手袋3は、容器2a、2b、2c内を不活性ガ
ス雰囲気に維持したままで内部作業を行うべく第7図に
示すごとく内部に臨まぜてカイトリング4により取り付
けられている。このゴム手袋3の取付開口部には、第7
図乃至第8図に示すごとく開閉扉5か上記開口部を外方
から覆うようにOリング6を介して開閉自在に取り付け
られている9この開閉扉5には、均圧手段7が備えられ
ている9この均圧手段7は上記開閉扉5によって覆われ
た手袋内と上記容器内とを同一気圧に保持すべくこれら
を連通させる耐圧ホース8と、この耐圧ホース8の容器
側取付部に介設された電動開閉弁9とからなっている。
The rubber gloves 3 are attached to the inside of the containers 2a, 2b, 2c by a kite ring 4 so as to face the inside of the containers 2a, 2b, 2c, as shown in FIG. 7, in order to perform internal work while maintaining an inert gas atmosphere. The attachment opening of this rubber glove 3 has a seventh
As shown in Figures 8 to 8, the opening/closing door 5 is attached via an O-ring 6 so as to be freely openable and closable so as to cover the above-mentioned opening from the outside.The opening/closing door 5 is equipped with a pressure equalizing means 7. 9 This pressure equalizing means 7 includes a pressure hose 8 that connects the inside of the glove covered by the opening/closing door 5 and the inside of the container to maintain them at the same atmospheric pressure, and an attachment part of the pressure hose 8 on the container side. It consists of an interposed electric on-off valve 9.

上記密閉容器2a、2b2c正面のゴム手@3の取付部
上方には、容器内を観察するための覗窓IOが夫々設け
られている。
A viewing window IO for observing the inside of the container is provided above the attachment portion of the rubber grip @3 on the front side of the closed containers 2a, 2b2c.

また、中央に位置された密閉容器2bの頂部には排気ノ
スル11か設けられており、第5図に示す二とく容器内
を真空排気するための真空ポン7゜13に接続された排
気系14か接続されるようになっている。この排気系1
4には、真空計15メイン切換弁16及び排気切換弁1
7か順に介設されている。上記真空計15とメイン切換
弁16との間の排気系14は分岐されて調圧系18とな
り、電動開閉弁19を介L5て容器の内圧を大気圧と同
等にするためのアキュムレータ20か接続されている。
Further, an exhaust nozzle 11 is provided at the top of the airtight container 2b located in the center, and an exhaust system 14 is connected to a vacuum pump 7.13 for evacuating the inside of the container, as shown in FIG. or connected. This exhaust system 1
4 includes a vacuum gauge 15 main switching valve 16 and exhaust switching valve 1.
7 are interposed in order. The exhaust system 14 between the vacuum gauge 15 and the main switching valve 16 is branched to form a pressure regulating system 18, which is connected to an accumulator 20 through an electric on-off valve 19 via L5 to make the internal pressure of the container equal to atmospheric pressure. has been done.

上記電動開閉弁1つには、足踏みペダル21が備えられ
これを踏むことにより当該電動開閉弁19を開放させる
ようになっている。上記調圧系18はOリング付フラン
ジ継手22により接続され、その先端部の上記アキュム
l/−夕20も第6図に示すごとくOリング付フランジ
継手23により接続されている3図示するように、上記
アキュムレータ20は逆流緩衝器24の先端部に取り付
けられた耐圧網目ビニールホース25を。
One of the electric on-off valves is provided with a foot pedal 21, and by stepping on the foot pedal 21, the electric on-off valve 19 is opened. The pressure regulating system 18 is connected by a flange joint 22 with an O-ring, and the accumulator 20 at the tip thereof is also connected by a flange joint 23 with an O-ring as shown in FIG. The accumulator 20 has a pressure-resistant mesh vinyl hose 25 attached to the tip of the backflow buffer 24.

カラス瓶26に収容した油(ゲロシン)27内に漫潰し
たものである。また、上記密閉容器2a2b、2cの正
面下部には内部に不活性ガスを導入するための不活性ガ
ス管接続口28か夫々設げられている7更に、上記密閉
容器2a、2.b2cの一側壁には、これら容器内に残
存した水分を露結するための極低温冷却手段2つが備え
られている。この極低温冷却手段2つは、容器本体の裏
面壁の一部として形成された極低温露結板30と、この
極低温露結板30を冷却ずべくこれと一体的に形成され
た極低温冷媒を収容するための冷却箱体31と、この箱
体31内に極低温冷媒を供給するための漏斗状の注入口
32と、ヒートパイプ加熱により冷却温度を調整する自
動温度調節器33とからなっている。上記極低温露結板
30は容器本体にダブルシール34を介して取り付けら
れている9まな、極低温露結板30及びこれと−体的に
形成された箱体31は銅にて形成され、1゛れらは断熱
材35によって覆われている9そして、上記密閉容器2
a、2b、2cの天井部には、照明灯36が夫々取り付
(Jられている。
It is crushed in oil (gelosin) 27 housed in a glass bottle 26. Furthermore, an inert gas pipe connection port 28 for introducing an inert gas into the inside of each of the closed containers 2a, 2c is provided at the lower front of each of the closed containers 2a, 2c. One side wall of b2c is equipped with two cryogenic cooling means for condensing moisture remaining in these containers. The two cryogenic cooling means include a cryogenic dew plate 30 formed as a part of the back wall of the container body, and a cryogenic dew plate 30 formed integrally with this to cool the cryogenic dew plate 30. A cooling box body 31 for accommodating a refrigerant, a funnel-shaped inlet 32 for supplying cryogenic refrigerant into the box body 31, and an automatic temperature regulator 33 for adjusting the cooling temperature by heat pipe heating. It has become. The cryogenic dew condensation plate 30 is attached to the container body via a double seal 34, and the cryogenic dew condensation plate 30 and the box body 31 integrally formed therewith are made of copper. 1. They are covered with a heat insulating material 35 9 and the airtight container 2
Illumination lights 36 are attached to the ceilings of a, 2b, and 2c, respectively.

尚、図中−37は操作盤、38は容器内電源コネクタ、
39は容器清掃[]である。
In the figure, -37 is the operation panel, 38 is the power connector inside the container,
39 is container cleaning [].

以十の如く構成された活性金属の高純度微粉末製造容器
Jを使用して別途出願しな「活性金属の高純度微粉末製
造方法」により水酸化化合物を生成する活性金属(Il
a、IIIa、IVa、IVl)族金属)の高純度微粉
末を製造する9水酸化化合物を生成する活性金属(II
a、■a、IVa、IVb族金属)には、例えは超電導
材料の素原料となるストロンヂウム(Sr)、バリウム
(Ba)、イッl〜リウム(Y)、ランタン(La)、
ジルコニウム(Zr)や、超硬・超耐熱材料等の素原料
となるハフニウム(Hf )を採用する9 ます、水酸化化合物を生成する活性金属(Ua、II[
a、lVa、IVb族金属)の高純度微粉末を生成する
ための−[記密閉容器2a、2b、2c内を上記排気系
14に接続された真空ポンプ13により排気して真空雰
囲気にする9その後、当該容器2:L 2+)  2C
内に不活性ガス管接続口28から不活性ガスを供給して
置換する9これら真空排気及び不活性ガス置換は、3−
4回繰り返すものである。真空度はト記排気系14に設
けられた真空計15により測定する。そして、土、記排
気系14に分岐して形成された調圧系18のア−8、)
+−ムレータ20により不活性ガス雰囲気の圧力を人気
と同一にり、て容器内作業か行えるようにする9真空排
気は上記メイン切換弁16及び排気切換弁17を手動て
開閉して行い。アキュムレータ20による調圧は上記電
動開閉弁1つを足踏みペダル21により開閉して行う。
The active metal (Il
a, IIIa, IVa, IVl) group metals) to produce high-purity fine powders.
a, ■a, IVa, IVb group metals) include, for example, strondium (Sr), barium (Ba), yllium (Y), lanthanum (La), which are raw materials for superconducting materials.
Zirconium (Zr) and hafnium (Hf), which is a raw material for superhard and super heat-resistant materials, are used9. Active metals (Ua, II[
In order to produce high-purity fine powder of group metals a, lVa, and IVb, the insides of the sealed containers 2a, 2b, and 2c are evacuated by the vacuum pump 13 connected to the evacuation system 14 to create a vacuum atmosphere 9 After that, the container 2: L 2+) 2C
9 These vacuum evacuations and inert gas replacements are performed by supplying an inert gas from the inert gas pipe connection port 28 to replace the
This is repeated four times. The degree of vacuum is measured by a vacuum gauge 15 provided in the exhaust system 14. Then, A-8 of the pressure regulating system 18, which is formed by branching into the exhaust system 14)
The pressure of the inert gas atmosphere is made the same as that by the +-mulator 20, and work inside the container can be carried out.9 Evacuation is performed by manually opening and closing the main switching valve 16 and the exhaust switching valve 17. Pressure adjustment by the accumulator 20 is carried out by opening and closing one of the electric on-off valves using the foot pedal 21.

上記密閉容器2a2b、2cは覗窓10により内部を観
察てきるようになっており、外部からそのシール性を損
なわずに作業できるゴム手染3が備えられている。」−
1記容器2a、2b、2c内を真空排気及び不活性ガス
雰囲気にするときには、ゴム手袋3の収(=j開口部に
開閉自在に取り付けられた開閉扉5を閉成し、この開閉
扉5に価えちれた均圧手段7により開閉扉5にて覆われ
た千袋内と上記容器内とを同一気圧に保持し、上記ゴム
手袋3の破損を防止″する。
The airtight containers 2a2b, 2c are configured so that the inside can be observed through a viewing window 10, and are equipped with a rubber hand dyer 3 that can be operated from the outside without impairing the sealing properties. ”−
1. When evacuating the inside of the containers 2a, 2b, and 2c and creating an inert gas atmosphere, the opening/closing door 5 attached to the opening of the rubber gloves 3 (=j) is closed, and the opening/closing door 5 is closed. The inside of the 1,000 bags covered by the opening/closing door 5 and the inside of the container are maintained at the same atmospheric pressure by means of pressure equalizing means 7 which is highly rated, thereby preventing the rubber gloves 3 from being damaged.

二のように水酸化化合物を生成する活性金属のさらされ
る雰囲気を真空や不活性ガス雰囲気にしても、その雰囲
気中には水分が残存しているので、別途出願した[雰囲
気ガス中の残存水分除去方法」により残存水分除去する
。上記密閉容器2a2+)、2Cの一側壁には、極低温
露結装置29が備えられており、上記箱体31内に注入
口32から極低温冷媒を供給L、l記極低温露結板30
に接触さぜる。この極低温冷媒には例えば液体窒素を使
用し一150°C以下に冷却する。すると、上記雰囲気
ガス中の残存水分はその容器2a2b 2cの内壁に露
結する9そして、この露結した水分に棒状の金属すl〜
リウム塊を接触させる。
Even if the atmosphere to which active metals that generate hydroxide compounds are exposed is made into a vacuum or inert gas atmosphere as described in 2, moisture remains in the atmosphere. Remove residual moisture using the "removal method". A cryogenic dew condensation device 29 is provided on one side wall of the airtight container 2a2+), 2C, and a cryogenic dew condensation device 29 is provided to supply cryogenic refrigerant from an inlet 32 into the box body 31.
touch it. For example, liquid nitrogen is used as the cryogenic refrigerant and is cooled to below -150°C. Then, the remaining moisture in the atmospheric gas is condensed on the inner wall of the container 2a2b 2c.
Bring the lium lumps into contact.

二の棒状の金属ナトリウム塊は上記不活性ガス雰囲気下
で使用されるため発火することなく、いわゆる固相ゲッ
タとして作用する。この金属す1〜リウム塊は発火を防
止すべく例えば石油等の油に浸漬させた状態て上記容器
2a、2b、2c内に収容する、上記露結した水分(1
−[0)に金属すl−71ウム塊(Na)が固相ゲッタ
として作用すると、2  N  a  +  2  H
20−”  2  N  a  OH−1−82の如く
反応か起こり水酸化す1〜リウム(NaOII)か生成
され、−11記残存水分は水酸基として分解・除去され
るものである9 しかしながら、雰囲気ガス中には極低温冷却しても露結
し7ない微量の水分か残存している。固相ゲッタでは露
結した水分し、か除去することはできない9 そこで、次に上記容器2a2,2 b 、 2 C内で
金属ナトリウムを約600°(゛で加熱 溶解してナト
リウム蒸気を発生させる。この金属す1−リウムは同様
に発火を防止すべく例えば石油等の油G、:浸漬させた
状態で」1記容器2a、2b、2c内に収容し1、不活
性ガス中で取り出す9このす1ヘリウム蒸気は密閉容器
2a1,2b、2c内に分散し、水分除去のための気相
ゲッタとして作用する9雰囲気ガス中の残存微量水分(
H2O)にす1〜リウム蒸気(Na)が気相ゲッタとし
て作用すると、2 N a +2 H20→2 N a
 OH+ H2の如く反応して水酸化すl・リウム(N
aOH)を生成し、上記残存水分は水酸基として極低濃
度(10〜100W、/Vρpb)まで分解・除去する
。二とになる。
Since the second rod-shaped metallic sodium lump is used in the above-mentioned inert gas atmosphere, it does not catch fire and acts as a so-called solid-phase getter. The dew-condensed moisture (1) is stored in the containers 2a, 2b, 2c while being immersed in oil such as petroleum to prevent ignition.
- When metal tin (Na) acts as a solid phase getter on [0], 2 Na + 2 H
20-" 2N a OH-1-82, a reaction occurs and sodium to lithium hydroxide (NaOII) is produced, and -11 the remaining moisture is decomposed and removed as hydroxyl groups.9 However, the atmospheric gas There is a trace amount of moisture remaining inside that does not dew7 even when cooled to a cryogenic temperature.The solid phase getter cannot remove the dew condensed moisture9. To prevent ignition, metal sodium is heated and melted at about 600° (゛) in 2C to generate sodium vapor.Similarly, this metal sodium is immersed in oil such as petroleum (G) to prevent ignition. The helium vapor is stored in the containers 2a, 2b, 2c and taken out in an inert gas.The helium vapor is dispersed in the sealed containers 2a1, 2b, 2c and used as a gas phase getter for removing moisture. 9Residual trace moisture in the acting atmospheric gas (
When 1~lium vapor (Na) acts as a gas phase getter on H2O), 2 Na + 2 H20 → 2 Na
Reacts like OH+H2 to form sulfur and lithium hydroxide (N
aOH), and the remaining water is decomposed and removed as hydroxyl groups to an extremely low concentration (10 to 100 W, /Vρpb). It becomes two.

尚、このナトリウム蒸気(Na)を気相ゲッタとして作
用させる水分除去方法は、別途出願した「す1〜ツリウ
ム気発生装置」にて開示した装置を使用して行うもので
ある。
The moisture removal method in which sodium vapor (Na) acts as a vapor phase getter is carried out using the apparatus disclosed in "S1 - Thulium Vapor Generator", which has been filed separately.

二のような残存水分除去方法で不活性ガス雰囲気中の残
存水分が極低濃度(10〜100W、/Vppb)まで
除去されたかどうか確認する必要がある。L7かし1、
「雰囲気ガス中の残存水分除去方法」が確立されてもガ
ス中の極低濃度(10〜100W、/Vp p b )
で存在する水分を簡易的かつ定性的に検出する従来技術
はなかった。そこで、本出願人は「雰囲気ガス中の微量
水分検出方法及び検出器」を創案し、別途出願したにの
雰囲気ガス中の微量水分検出方法は、雰囲気ガス中の微
量水分を検出するに際し1、その雰囲気ガスを黒色バリ
ウム粉と接触させ、この黒色バリウム粉の色の変化によ
り雰囲気ガス中の微量水分の有無を検出するようにした
ちのである。また、雰囲気ガス中の微量水分検出器は、
内容物が透視できる筒体と、二の筒体内に収容された黒
色バリウム粉と、この黒色パリ、ラム粉を上記筒体内に
維持すべくこれを挾持し、かつ測定すべき雰囲気ガスを
導入するための通気性部材と、上記筒体内への気体の侵
入を防止すべくその両開口端部に着脱自在に設けられた
蓋体と、この蓋体と上記筒体との間隙をシールするため
のシール剤とからなるものである。、二のように黒色バ
リウム粉を極微量水分のインデイケタとし5て黒色から
白色への色の変化で残存微量水分を確認し、上記極低濃
度に達し、ない場合には蒸気ナトリウム蒸気による水分
除去を繰り返すものである。
It is necessary to confirm whether the residual moisture in the inert gas atmosphere is removed to an extremely low concentration (10 to 100 W, /Vppb) by the residual moisture removal method as in 2. L7 Kashi 1,
Even if a "method for removing residual moisture in atmospheric gas" is established, the concentration in the gas is extremely low (10 to 100 W, /Vp p b ).
There is no conventional technology that can simply and qualitatively detect the moisture present in water. Therefore, the present applicant has devised a "Method and Detector for Detecting Trace Moisture in Atmospheric Gas" and has separately applied for a method for detecting trace moisture in atmospheric gas. The atmospheric gas is brought into contact with black barium powder, and the presence or absence of trace moisture in the atmospheric gas is detected by the change in color of the black barium powder. In addition, the trace moisture detector in atmospheric gas is
A cylinder whose contents can be seen through, a black barium powder housed in the second cylinder, and the black paris and rum powder are held in the cylinder to maintain them, and an atmospheric gas to be measured is introduced. a ventilating member for the cylinder, a lid removably provided at both open ends of the cylinder to prevent gas from entering the cylinder, and a lid for sealing the gap between the lid and the cylinder. It consists of a sealant. , As shown in step 2, use black barium powder as an indicator of extremely trace moisture, and confirm the remaining trace moisture by the color change from black to white.If the extremely low concentration is reached and there is no moisture, remove the moisture using sodium vapor. is repeated.

上記容器2a、2b、2C内の残存水分か上記極低濃度
に達すると、水酸化化合物を生成する活性金属(IIa
、nIa、IVa、IVb族金属)の微粉化を行う。ま
ず活性純金属塊の粗粉砕を行うが、特にハフニウム(H
f)のクリスタルバーの粗粉砕については別途出願し、
な「ハフニウム・クリスタルバーの粗粉砕方法及びその
装置」に開示した方法及び装置を採用して行うものであ
る。そし7て、二の粗粉混晶を例えば液体窒素等の極低
温冷媒に浸し、−150°C以下に保持し1、極低温冷
却により延性を少なくする。さらに、これを機械的に粉
砕すべく拙壊容器及び振動子を同様に液体窒素等の極低
温冷媒で一150°C以下に保持し1、振動型拙壊機に
より5韓以下に微粉化する。この微粉化工程は拙壊法以
外によって行っても良いが、曲性による微粉化に比べて
純度か損なわれなく、装置かコンパクト化するものであ
る。
When the residual moisture in the containers 2a, 2b, 2C reaches the extremely low concentration, the active metal (IIa
, nIa, IVa, IVb group metals). First, the active pure metal lump is roughly pulverized, especially hafnium (H
Regarding f) coarse grinding of crystal bars, a separate application will be filed.
The method and apparatus disclosed in "Method and Apparatus for Coarse Grinding of Hafnium Crystal Bars" are employed. 7. Then, the second coarse mixed crystal powder is immersed in a cryogenic coolant such as liquid nitrogen, and maintained at -150°C or lower (1) to reduce its ductility by cryogenic cooling. Furthermore, in order to mechanically crush this, the crushing container and vibrator are similarly maintained at -150°C or less with a cryogenic refrigerant such as liquid nitrogen. . This pulverization step may be performed by a method other than the pulverization method, but the purity is not impaired and the apparatus is more compact than pulverization using curvature.

爾後、微粉化した活性純金属を貯蔵すべく収納工程に移
る。この収納工程は、微粉化による表面積の増加に伴う
気体の吸着、吸蔵及び表面酸化を防止すると共に、水酸
化化合物を生成するのを防止すべく上記残存水分を極低
濃度まで除去した不活性ガス雰囲気中で収納容器に密閉
収納する。この収納容器は、大気中の酸素や水分による
汚染を防止すべくタプルシールによって密閉性が確保さ
れている。
Thereafter, the process moves to a storage process to store the pulverized active pure metal. This storage process prevents gas adsorption, occlusion, and surface oxidation due to the increase in surface area due to pulverization, and also uses an inert gas that removes the residual moisture to an extremely low concentration to prevent the formation of hydroxide compounds. Store tightly in a storage container in an atmosphere. This storage container is sealed with a tuple seal to prevent contamination from oxygen and moisture in the atmosphere.

尚、このように水酸化化合物を生成する活性金属(Il
a、lIa、IVa、IVb族金属)の高純度微粉末の
製造を行うにあたって、上記ゴム手袋3の取り付けられ
た密閉容器か3台連通して設(Jられたので、それぞれ
の容器内で個々に別の作業を行えるため、流れ作業を行
うことができる。上記密閉容器は1基のみを設は同一容
器で全工程を行うようにしても良い。
Incidentally, active metals (Il) that generate hydroxide compounds in this way
In order to manufacture high-purity fine powder of group a, lIa, IVa, IVb metals), three closed containers with the rubber gloves 3 attached were installed in communication. Since another work can be done at the same time, assembly work can be performed. Only one closed container may be provided, or all processes may be performed in the same container.

尚、上記密閉容器を1モジユールとり、て、コンベア(
半製品、製品、拙壊機等の移動運搬用)設置モジュール
、混練作業モジュール、粉末冶金成形プレスモジュール
、焼結炉モジュール、秤量・梱包モジュール、原料準備
モジュール、描壊作業モジュール等のような目的に応じ
たモジュールか考えられ、これらを任意に組み合わせて
設定することができる [発明の効果j 以上要するに本発明の請求項1によれば、水酸化化合物
を生成する活性金属(IIa、I[a、IVa、IV 
b族金属)の高純度微粉末を得ることかできる。
In addition, take one module of the above airtight container and place it on the conveyor (
Purposes such as installation module, kneading work module, powder metallurgy forming press module, sintering furnace module, weighing/packing module, raw material preparation module, demolition work module, etc. In short, according to claim 1 of the present invention, active metals (IIa, I[a ,IVa,IV
High purity fine powder of Group B metals can be obtained.

また、請求項2によれば、それぞれの容器内で個々に別
の作業を行えるため、流れ作業を行う、二とかて゛きる
9 更に、請求項3によれば、密閉容器内を真空排気あるい
は不活性ガス雰囲気にしても、開閉扉によって覆われた
手袋内か上記容器内と同一気圧に保持され、上記ゴム手
袋の破損を防止する。二とかできる。
In addition, according to claim 2, since different operations can be performed individually in each container, it is possible to perform assembly line work. Even in a gas atmosphere, the inside of the glove covered by the opening/closing door is maintained at the same pressure as the inside of the container, thereby preventing damage to the rubber glove. I can do something like two.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の活性金属の高純度微粉末製造容器の一
実施例を示す正面図、第2図は第1図の裏面図、第3図
は第1図の右側面図、第4図は本発明の活性金属の高純
度微粉末製造容器の極低温冷却装置を示す概略側面図、
第5図は本発明の活性金属の高純度微粉末製造容器のア
クチュエータの取り付は系統図、第6図は本発明の活性
金属の高純度微粉末製造容器のアクチュエータを示す概
略図、第7図は本発明の活性金属の高純度微粉末製造容
器のゴム手袋2開閉扉及び均圧手段を示す概略図、第8
図は本発明の活性金属の高純度微粉末製造容器のゴム手
袋及び開閉扉を示す概略図、第9図は本発明の活性金属
の高純度微粉末製造容器の開閉扉及び均圧手段を示す概
略図である9 図中、1は活性金属の高純度微粉末製造容器、2は密閉
容器、3はゴム手袋、5は開閉扉、7は均圧手段、20
はアキュムレータ、2つ6.ll極低温冷却手段である
9 特許出願人 石川島播磨重工業株式会社有限会社石川島
マスターメタル 代理人弁理士 絹   谷   信   雄〜/ ハ ・′;、・つ
FIG. 1 is a front view showing one embodiment of the container for producing high-purity fine powder of active metal of the present invention, FIG. 2 is a back view of FIG. 1, FIG. 3 is a right side view of FIG. 1, and FIG. The figure is a schematic side view showing a cryogenic cooling device for a container for producing high-purity fine powder of active metal of the present invention;
FIG. 5 is a system diagram showing the installation of the actuator of the container for producing high-purity fine powder of active metal of the present invention, FIG. 6 is a schematic diagram showing the actuator of the container for producing high-purity fine powder of active metal of the present invention, and FIG. The figure is a schematic view showing the rubber glove 2 opening/closing door and pressure equalization means of the container for producing high-purity fine powder of active metal of the present invention.
The figure is a schematic view showing the rubber gloves and opening/closing door of the container for producing high purity fine powder of active metal of the present invention, and FIG. 9 shows the opening/closing door and pressure equalization means of the container for producing high purity fine powder of active metal of the present invention. Schematic diagram 9 In the figure, 1 is a container for manufacturing high-purity fine powder of active metal, 2 is a closed container, 3 is a rubber glove, 5 is an opening/closing door, 7 is a pressure equalizing means, 20
is an accumulator, two 6. ll Cryogenic cooling means 9 Patent applicant Ishikawajima Harima Heavy Industries Co., Ltd. Ishikawajima Master Metal Representative Patent attorney Nobuo Kinutani ~ / Ha ・′;,・tsu

Claims (1)

【特許請求の範囲】 1、不活性ガス雰囲気で内部作業を行うべくゴム手袋を
内部に臨ませて取り付けた密閉容器の一側壁に該容器内
に残存した水分を露結するための極低温冷却手段を備え
ると共に、その内圧を大気圧と同等にするためのアキュ
ムレータを備えたことを特徴とする活性金属の高純度微
粉末製造容器。 2、上記ゴム手袋の取り付けられた密閉容器が複数台連
通して設けられた請求項1記載の活性金属の高純度微粉
末製造容器。 3、上記ゴム手袋の取り付け開口部にこれを外方から覆
うように開閉扉を設け、該開閉扉に、これによって覆わ
れた手袋内を上記容器内と同一気圧に保持すべくこれら
を連通させるための均圧手段を備えた請求項1または請
求項2記載の活性金属の高純度微粉末製造容器。
[Scope of Claims] 1. Cryogenic cooling for condensing moisture remaining in a sealed container on one side wall of a sealed container to which rubber gloves are attached facing the inside in order to perform internal work in an inert gas atmosphere. 1. A container for producing high-purity fine powder of an active metal, characterized in that it is equipped with means and an accumulator for making the internal pressure equal to atmospheric pressure. 2. The container for producing high-purity fine powder of active metal according to claim 1, wherein a plurality of closed containers to which the rubber gloves are attached are provided in communication. 3. An opening/closing door is provided at the attachment opening of the rubber glove so as to cover it from the outside, and the opening/closing door is connected to the opening/closing door so as to maintain the interior of the glove covered by the opening at the same pressure as the inside of the container. 3. The container for producing high-purity fine powder of active metal according to claim 1, further comprising a pressure equalizing means for producing a fine powder of active metal.
JP63218486A 1988-08-26 1988-09-02 Device for producing high-purity fine powder of active metal Expired - Lifetime JPH0774361B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63218486A JPH0774361B2 (en) 1988-09-02 1988-09-02 Device for producing high-purity fine powder of active metal
US07/378,531 US4971258A (en) 1988-08-26 1989-07-11 Method of making high-purity fine particles of reactive metals and manufacturing vessel therefor
EP89115749A EP0358064B1 (en) 1988-08-26 1989-08-25 Method of making high-purity fine particles of reactive metals and maufacturing vessel therefor
DE89115749T DE68908048T2 (en) 1988-08-26 1989-08-25 Process and container for the production of very fine, very clean, reactive metal powder.
US07/440,056 US5007243A (en) 1988-08-26 1989-11-21 Vessel for making high-purity fine particles of active metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63218486A JPH0774361B2 (en) 1988-09-02 1988-09-02 Device for producing high-purity fine powder of active metal

Publications (2)

Publication Number Publication Date
JPH0270009A true JPH0270009A (en) 1990-03-08
JPH0774361B2 JPH0774361B2 (en) 1995-08-09

Family

ID=16720680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63218486A Expired - Lifetime JPH0774361B2 (en) 1988-08-26 1988-09-02 Device for producing high-purity fine powder of active metal

Country Status (1)

Country Link
JP (1) JPH0774361B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3771526A1 (en) * 2019-07-30 2021-02-03 Skan Ag Glove device for protected intervention in a containment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119594A (en) * 1984-07-03 1986-01-28 東洋エンジニアリング株式会社 Glove box device
JPS62198094U (en) * 1986-06-05 1987-12-16

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119594A (en) * 1984-07-03 1986-01-28 東洋エンジニアリング株式会社 Glove box device
JPS62198094U (en) * 1986-06-05 1987-12-16

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3771526A1 (en) * 2019-07-30 2021-02-03 Skan Ag Glove device for protected intervention in a containment
WO2021016726A1 (en) * 2019-07-30 2021-02-04 Skan Ag Glove device for protected intervention in a containment

Also Published As

Publication number Publication date
JPH0774361B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
Peng et al. Hydrothermal synthesis of MoS2 and its pressure-related crystallization
US5007243A (en) Vessel for making high-purity fine particles of active metals
Solymosi et al. Adsorption and dissociation of CO 2 on a potassium-promoted Rh (111) surface
US20190039913A1 (en) Preparation of metal chalcogenides
TW201514091A (en) System and method for xenon recovery
Duan et al. Solid state synthesis of nano-sized AlH 3 and its dehydriding behaviour
CN102491289A (en) Method for preparing nanoscale magnesium nitride powder
Johnston et al. Reactive laser ablation synthesis of nanosize aluminum nitride
JP2631055B2 (en) Sorption method of residual gas by non-evaporable barium getter alloy
JPH0270009A (en) Container for producing high-purity fine powder of active metal
CN106276940A (en) A kind of pure boron purifying plant and method
US2038402A (en) Method for reduction of refractory oxides
JP3764817B2 (en) Hydrogen storage alloy activation equipment
US11919781B2 (en) Preparation of metal chalcogenides
JPH10509942A (en) Vanadium oxide having an average vanadium oxidation state of at least +4 but lower than +5, essentially free of V 2 O 5, preferably essentially V 6 O 13 Vanadium oxide consisting of ▼, VO 2 or any mixture thereof from NH 4 VO 3
Sakka et al. Surface chemistry and sintering characteristics of nickel ultrafine powders
US3649242A (en) Method for producing dispersion-strengthened alloys by converting metal to a halide, comminuting, reducing the metal halide to the metal and sintering
Pedersen et al. The effect of cycling in impure hydrogen on the hydrogen capacity of magnesium powder
US2411524A (en) Process for the production of zirconium hydride
JPH0259054A (en) Preparation of high purity fine powder of active metal
Poeppelmeier et al. The structural interrelationship between the three polymorphs of Rh2O3 and Rh2S3, Rh2Se3, and Ir2S3
JP5032040B2 (en) Method for producing hydrogen selenide
US5180554A (en) Method of detecting the presence of moisture in a gas
JPS58181701A (en) Method for handling hydrogen storing metallic material
Garg et al. Zr powder and Zr-16% Al alloy as getters for O2, H2, H2O, CO and CO2 gases