JPH02698Y2 - - Google Patents

Info

Publication number
JPH02698Y2
JPH02698Y2 JP1982200682U JP20068282U JPH02698Y2 JP H02698 Y2 JPH02698 Y2 JP H02698Y2 JP 1982200682 U JP1982200682 U JP 1982200682U JP 20068282 U JP20068282 U JP 20068282U JP H02698 Y2 JPH02698 Y2 JP H02698Y2
Authority
JP
Japan
Prior art keywords
circuit
zero
component
insulation
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982200682U
Other languages
Japanese (ja)
Other versions
JPS59103285U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP20068282U priority Critical patent/JPS59103285U/en
Publication of JPS59103285U publication Critical patent/JPS59103285U/en
Application granted granted Critical
Publication of JPH02698Y2 publication Critical patent/JPH02698Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

【考案の詳細な説明】 本考案は電路の絶縁監視装置に関する。[Detailed explanation of the idea] The present invention relates to an electrical circuit insulation monitoring device.

電路の絶縁を監視する方法としては、第1図に
示すように、変圧器第二種接地線SELに還流する
零相電流Igを零相変圧器ZCTにより検出するの
が一般的であるが、この方式は電路の浮遊容量の
小さい場合すなわち電路の浮遊容量によつて発生
する容量性漏れ電流ICの小さい電路には有効であ
るものの、電路の広がりの大きい対象や負荷機器
の対地静電容量が大きい場合は、ICが大きくな
り、精度の良い電路の絶縁監視が不可能となる。
As shown in Figure 1, a common method for monitoring the insulation of electrical circuits is to detect the zero-sequence current Ig flowing back into the transformer's second class grounding wire SEL using the zero-sequence transformer ZCT. Although this method is effective when the stray capacitance of the circuit is small, that is, when the capacitive leakage current I C generated by the stray capacitance of the circuit is small, If is large, I C becomes large, making it impossible to accurately monitor the insulation of the electrical circuit.

本来、電路の絶縁監視は、零相電流Igより抵抗
成分電流IRすなわち絶縁抵抗を評価できれば、精
度の高くなるものであるが、零相電流Igより抵抗
成分電流IRを分離することは、単相3線式電路で
は、両相で絶縁不良が発生した場合、第2図に示
すように、検出される絶縁抵抗分による電流は、
各相に流れる電流IR1,IT1の差になり、3相3線
式電路では、各相の不平衡度による容量性電流の
差が絶縁抵抗成分の誤差となり、誤差の発生する
原因はすべて位相差に基因する。
Originally, electrical path insulation monitoring would be more accurate if the resistance component current I R , that is, the insulation resistance, could be evaluated from the zero-sequence current Ig, but separating the resistance component current I R from the zero-sequence current Ig is In a single-phase three-wire circuit, if insulation failure occurs in both phases, the current due to the detected insulation resistance will be:
This is the difference between the currents I R1 and I T1 flowing in each phase, and in a three-phase three-wire circuit, the difference in capacitive current due to the unbalance of each phase causes an error in the insulation resistance component, and all causes of errors are This is due to phase difference.

一般に低電圧電路の絶縁状況の良否の判定は、
従来電路を停電させ、メガーで定期的に対地絶縁
抵抗を測定して行なうのであるが、絶縁抵抗は季
節、施設、環境等の変化により大きく変化するの
で適当な周期で測定する必要があり、また測定の
ための電路の停電が社会事情、生産活動等の制約
を受けて必ずしも容易に実施することができると
は限らなくなつている。
Generally, the quality of the insulation condition of low-voltage circuits can be determined by
Conventionally, this is done by shutting off the electrical circuit and periodically measuring the insulation resistance to ground using a megger, but insulation resistance changes greatly depending on changes in the season, facilities, environment, etc., so it is necessary to measure it at appropriate intervals. Due to constraints such as social circumstances and production activities, it is no longer always possible to shut down power lines for measurements easily.

本考案はこのような事情に鑑みて提案されたも
ので、電路を停電することなく実施することがで
きるとともに、測定作業の省化力と精度の向上を
図る電路の絶縁監視装置を提供することを目的と
し、零相変圧器第二種接地線に還流する零相電流
を前処理回路にて増巾し、その零相電流の大きさ
を検出することにより電路の絶縁性の良否を監視
するものにおいて、上記前処理回路の出力を入力
する積分回路を備え、上記積分回路の出力の大小
により絶縁性の良否を監視するようにしたことを
特徴とする。
The present invention was proposed in view of the above circumstances, and aims to provide an insulation monitoring device for electrical circuits that can be carried out without power outages in electrical circuits, and that reduces measurement work and improves accuracy. The aim is to amplify the zero-sequence current flowing back into the second class grounding wire of the zero-sequence transformer using a pre-processing circuit, and monitor the insulation quality of the electrical circuit by detecting the magnitude of the zero-sequence current. The invention is characterized in that it includes an integrating circuit that inputs the output of the pre-processing circuit, and monitors the quality of the insulation based on the magnitude of the output of the integrating circuit.

本考案の一実施例を図面について説明すると、
第3図はその回路構成を示すブロツク線図、第4
図A,Bはそれぞれ第1図における電源と電路の
等価回路図、第5図は第4図Bにおける零相電流
のベクトル図、第6図は第3図の積分回路による
作用を示す零相電流成分の波形図である。
An embodiment of the present invention will be explained with reference to the drawings.
Figure 3 is a block diagram showing the circuit configuration, Figure 4
Figures A and B are equivalent circuit diagrams of the power supply and electric circuit in Figure 1, Figure 5 is a vector diagram of the zero-sequence current in Figure 4B, and Figure 6 is a zero-sequence diagram showing the action of the integrating circuit in Figure 3. It is a waveform diagram of a current component.

まず、第3図において、1および2はそれぞれ
零相変圧器ZCTで検出される微弱な零相電流Ig
を入力して後段の処理回路での取扱いの可能なレ
ベルまで増巾するプリアンプ、3はプリアンプ2
の出力を直流電圧に変換するAC/DC変換器、4
および5はそれぞれAC/DC変換器3の出力する
Ig成分信号を入力するメータ駆動用アンプおよび
記録計用バツフアアンプ、6はプリアンプ1の出
力するIg成分信号から商用電源成分を除去し、後
記する交流信号波重畳による成分を取り出すノツ
チフイルタ、7は3相単相を切換え零相電流Ig信
号Aとしてこれを出力する3φ/1φ切換アンプ、
8はAC100Vの電源より210Hzの交流信号波を作
りこれをインダクタンスを介して零相変圧器
ZCTの第二種接地線に重畳する交流安定化電源、
9は交流安定化電源8の出力を電圧基準相VSTD
して出力する移相器、10は移相器9の出力より
方形波を作りこれを抵抗成分IR分離用信号Bとし
て出力する波形整形器、11は3φ/1φ切換アン
プ7の出力するIg信号Aと波形整形器10の出力
するIR分離用信号Bとを入力し、IR分離用信号B
でアナログスイツチをスイツチングすることによ
りIg信号AよりIR成分を取出す同期整流回路、1
2は積分回路、13はメータ駆動用アンプ、14
は記録計用バツフアアンプ、15はIg/IR切換ス
イツチ、16は積分回路12の出力するIR成分を
外部ロータリスイツチ17にて設定される警報感
度設定回路18の設定値と比較し、前者が後者を
越えるとリレー19を介してブザーの警報接点2
0を作動させる比較回路である。
First, in Fig. 3, 1 and 2 are the weak zero-sequence currents Ig detected by the zero-sequence transformer ZCT, respectively.
3 is preamplifier 2, which inputs the signal and amplifies it to a level that can be handled by the subsequent processing circuit.
AC/DC converter that converts the output of
and 5 are the outputs of AC/DC converter 3, respectively.
A meter drive amplifier and a recorder buffer amplifier that input the Ig component signal; 6 a notch filter that removes the commercial power supply component from the Ig component signal output from the preamplifier 1 and extracts the component due to AC signal wave superimposition, which will be described later; 7 a three-phase 3φ/1φ switching amplifier that switches single phase and outputs it as zero-phase current Ig signal A;
8 generates a 210Hz AC signal wave from an AC100V power supply and connects it to a zero-phase transformer via an inductance.
AC stabilized power supply superimposed on the second class grounding wire of ZCT,
9 is a phase shifter that outputs the output of the AC stabilized power supply 8 as the voltage reference phase V STD , and 10 is a waveform shaper that creates a square wave from the output of the phase shifter 9 and outputs it as the resistance component I R separation signal B. The device 11 inputs the Ig signal A output from the 3φ/1φ switching amplifier 7 and the IR separation signal B output from the waveform shaper 10, and outputs the IR separation signal B.
Synchronous rectifier circuit that extracts I R components from Ig signal A by switching an analog switch at
2 is an integrating circuit, 13 is a meter driving amplifier, 14
15 is a buffer amplifier for the recorder, 15 is an Ig/I R selector switch, and 16 is an I R component output from the integrating circuit 12, which is compared with the setting value of the alarm sensitivity setting circuit 18 set by the external rotary switch 17, and the former is determined. When the latter is exceeded, the alarm contact 2 of the buzzer is activated via relay 19.
This is a comparison circuit that operates 0.

このような装置においては、商用電源VCOM
ほかに交流信号波電源VSSが零相変圧器の第二種
接地線に重畳されるので、第1図の電路は第4図
Aに示すようになり、さらに後記するように、商
用電源成分をフイルタ等で十分除去すると、同図
Aは同図Bに示すように、交流信号電源VSSを電
源とする単相回路と等価となる。
In such a device, in addition to the commercial power supply V COM , the AC signal wave power supply V SS is superimposed on the class 2 grounding wire of the zero-phase transformer, so the electrical circuit in Figure 1 is changed to the one shown in Figure 4A. As will be described later, if the commercial power supply component is sufficiently removed by a filter or the like, A in the figure becomes equivalent to a single-phase circuit using the AC signal power supply V SS as the power source, as shown in B in the figure.

重畳する交流信号のレベルは大きいほど、還流
されるIg成分は大きくなり、IRの分離性能は良く
なるが、負荷機器への影響を考慮して最大数Vを
限界としている。交流重畳方式による測定精度は
信号波成分を商用電源成分より分離する分離精度
に依存する。商用電源と信号波成分の分離は、両
者の周波数が離れているほど有利となるが容量性
漏れ電流ICは周波数に依存し、周波数が高くなる
に従つて大きくなる。交流信号波電源によつて発
生するIVO成分からIR成分を精度良く分離するため
に、容量性漏れ電流ICが小さいほど有利であり、
従つて重畳信号周波数としては商用電源より信号
成分を抽出するためには高いほど良く、抵抗成分
電流を精度よく抽出するためには低いほど良いと
いう相反する性能が要求される。
The higher the level of the superimposed alternating current signal, the larger the Ig component to be circulated, and the better the IR separation performance, but the maximum number of volts is the limit in consideration of the influence on the load equipment. The measurement accuracy of the AC superimposition method depends on the separation accuracy of separating the signal wave component from the commercial power supply component. Separation of the commercial power supply and the signal wave component is more advantageous as the frequencies of the two are further apart, but the capacitive leakage current I C depends on the frequency and increases as the frequency becomes higher. In order to accurately separate the IR component from the I VO component generated by an AC signal wave power source, it is advantageous that the capacitive leakage current I C is smaller.
Therefore, contradictory performances are required for the superimposed signal frequency: the higher the frequency is, the better, in order to extract signal components from the commercial power source, and the lower, the better, in order to accurately extract the resistance component current.

本実施例においては、第二種接地線に還流する
零相電流Igは商用電源によるIVと交流重畳用電源
によるIvのベクトル和であり、IVとIvとの比はほ
ぼそれぞれの電圧比となり、IvはIVの数10分の1
としている。
In this example, the zero-sequence current Ig flowing back to the second type grounding wire is the vector sum of I V from the commercial power supply and Iv from the AC superimposition power supply, and the ratio of I V and Iv is approximately the voltage ratio of each. So, Iv is 1/10 of I V
It is said that

また、現在のフイルタ技術から考えて、重畳電
源の周波数は最低150Hz以上でないと十分な商用
電源成分の除去が不可能であり、また周波数の上
限は抵抗成分分離回路の分離性能より約400Hzが
上限となる。
In addition, considering current filter technology, it is impossible to sufficiently remove commercial power components unless the frequency of the superimposed power source is at least 150Hz or higher, and the upper frequency limit is approximately 400Hz, which is better than the separation performance of the resistive component separation circuit. becomes.

そこで本実施例においては、上記両限のほぼ中
間の210Hzを採つて交流安定化電源8の周波数と
し、零相変圧器ZCTで検出された総合零相信号
Aをノツチフイルタ6を介して商用電源成分を除
去することにより第4図Bの等価回路に置き換
え、波形整形器10の出力する210HzのIR分離用
信号Bにより3φ/1φ切換アンプ7の出力する交
流信号成分を同期整流回路11にてスイツチング
する。
Therefore, in this embodiment, 210 Hz, which is approximately halfway between the above two limits, is taken as the frequency of the AC stabilized power supply 8, and the total zero-phase signal A detected by the zero-phase transformer ZCT is converted to the commercial power supply component through the notch filter 6. By removing , the AC signal component output from the 3φ/1φ switching amplifier 7 is converted to the equivalent circuit of FIG. Switching.

零相電流Igは、第5図に示すように、抵抗成分
電流IRと容量成分電流ICのベクトル和であり、本
実施例ではIgよりIR成分を抽出するために、同期
整流回路11の出力を積分回路12に入力してIg
を基準電圧位相で0からπまで積分する。
As shown in FIG. 5, the zero-sequence current Ig is the vector sum of the resistance component current I R and the capacitance component current I C. In this embodiment, in order to extract the I R component from Ig, the synchronous rectifier circuit 11 Input the output of Ig to the integrating circuit 12
is integrated from 0 to π with reference voltage phase.

そうすると、第6図に示すように、ICは基準位
相VSTDに対してπ/2遅れている関係で、0〜πま で積分すると零となり、IR成分のみを取出すこと
ができる。
Then, as shown in FIG. 6, I C is delayed by π/2 with respect to the reference phase V STD , and when integrated from 0 to π, it becomes zero, and only the I R component can be extracted.

こうして積分回路12より出力されるIR成分は
比較回路16によつて設定値と常時比較され、IR
成分が設定値を越えると、警報接点20が作動し
てブザーが鳴るのである。
In this way, the I R component output from the integrating circuit 12 is constantly compared with the set value by the comparator circuit 16, and the I R component is
When the component exceeds the set value, the alarm contact 20 is activated and a buzzer sounds.

このような装置によれば、電源変圧器第二種接
地線に還流する零相電流を前処理回路にて増巾
し、その零相電流の大きさを検出することにより
電路の絶縁性の良否を監視するものにおいて、上
記前処理回路の出力を入力する積分回路を備え、
上記積分回路の出力の大小により絶縁性の良否を
監視するようにしたことにより、無停電、省力化
かつ高精度の電路の絶縁監視装置を得るから、本
考案は産業上極めて有益なものである。
According to such a device, the zero-sequence current flowing back into the second class grounding wire of the power transformer is amplified in a pre-processing circuit, and by detecting the magnitude of the zero-sequence current, it is possible to determine whether the insulation of the electrical circuit is good or not. The monitor includes an integrating circuit inputting the output of the pre-processing circuit,
By monitoring the quality of the insulation based on the magnitude of the output of the integrating circuit, an uninterruptible, labor-saving, and highly accurate electric circuit insulation monitoring device is obtained, so the present invention is extremely useful industrially. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は公知の電路の絶縁抵抗監視要領を示す
回路図、第2図は第1図の単相3線式における等
価回路図、第3図は本考案の一実施例を示すブロ
ツク線図、第4図A,Bはそれぞれ第3図におけ
る電源と電路の等価回路図、第5図は第4図Bに
おける零相電流のベクトル図、第6図は第3図の
積分回路による作用を示す零相電流成分の波形図
である。 1,2……プリアンプ、3……AC/DC変換
器、4……メータ駆動用アンプ、5……記録計用
バツフアアンプ、6……ノツチフイルタ、7……
3φ/1φ切換アンプ、8……交流安定化電源、9
……移相器、10……波形整形器、11……同期
整流回路、12……積分回路、13……メータ駆
動用アンプ、14……記録計用バツフアアンプ、
15……Ig/IR切換スイツチ、16……比較回
路、17……ロータリスイツチ、18……警報感
度設定回路、19……リレー、20……警報接
点。
Fig. 1 is a circuit diagram showing a known method for monitoring insulation resistance of electric circuits, Fig. 2 is an equivalent circuit diagram for the single-phase three-wire system shown in Fig. 1, and Fig. 3 is a block diagram showing an embodiment of the present invention. , Figures 4A and 4B are equivalent circuit diagrams of the power supply and electric circuit in Figure 3, Figure 5 is a vector diagram of the zero-sequence current in Figure 4B, and Figure 6 shows the action of the integrating circuit in Figure 3. FIG. 2 is a waveform diagram of a zero-sequence current component shown in FIG. 1, 2... Preamplifier, 3... AC/DC converter, 4... Meter drive amplifier, 5... Recorder buffer amplifier, 6... Notch filter, 7...
3φ/1φ switching amplifier, 8... AC stabilized power supply, 9
... Phase shifter, 10 ... Waveform shaper, 11 ... Synchronous rectifier circuit, 12 ... Integrating circuit, 13 ... Meter drive amplifier, 14 ... Buffer amplifier for recorder,
15...Ig/I R changeover switch, 16...Comparison circuit, 17...Rotary switch, 18...Alarm sensitivity setting circuit, 19...Relay, 20...Alarm contact.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 零相変圧器第二種接地線に還流する零相電流を
前処理回路にて増巾し、その零相電流の大きさを
検出することにより電路の絶縁性の良否を監視す
るものにおいて、上記前処理回路の出力を入力す
る積分回路を備え、上記積分回路の出力の大小に
より絶縁性の良否を監視するようにしたことを特
徴とする電路の絶縁監視装置。
In a device that monitors the insulation quality of an electric circuit by amplifying the zero-sequence current flowing back into the second class grounding wire of a zero-sequence transformer in a pre-processing circuit and detecting the magnitude of the zero-sequence current, the above-mentioned 1. An insulation monitoring device for an electrical circuit, comprising an integrating circuit inputting the output of the pre-processing circuit, and monitoring the quality of insulation based on the magnitude of the output of the integrating circuit.
JP20068282U 1982-12-27 1982-12-27 Electric circuit insulation monitoring device Granted JPS59103285U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20068282U JPS59103285U (en) 1982-12-27 1982-12-27 Electric circuit insulation monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20068282U JPS59103285U (en) 1982-12-27 1982-12-27 Electric circuit insulation monitoring device

Publications (2)

Publication Number Publication Date
JPS59103285U JPS59103285U (en) 1984-07-11
JPH02698Y2 true JPH02698Y2 (en) 1990-01-09

Family

ID=33307808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20068282U Granted JPS59103285U (en) 1982-12-27 1982-12-27 Electric circuit insulation monitoring device

Country Status (1)

Country Link
JP (1) JPS59103285U (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4066950A (en) * 1975-09-25 1978-01-03 Siemens Aktiengesellschaft Circuit for measuring the ground resistance of an ungrounded power circuit
JPS5368290A (en) * 1976-11-30 1978-06-17 Fuji Electric Co Ltd Insulation resistance measuring apparatus of ground system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4066950A (en) * 1975-09-25 1978-01-03 Siemens Aktiengesellschaft Circuit for measuring the ground resistance of an ungrounded power circuit
JPS5368290A (en) * 1976-11-30 1978-06-17 Fuji Electric Co Ltd Insulation resistance measuring apparatus of ground system

Also Published As

Publication number Publication date
JPS59103285U (en) 1984-07-11

Similar Documents

Publication Publication Date Title
CN101120259B (en) Drain current circuit breaker and method
KR100206027B1 (en) Field ground fault detector and field ground fault relay for detecting ground fault corresponding to dc component extracted from ground fault current
US4871971A (en) High impedance fault analyzer in electric power distribution networks
CA1189146A (en) Monitoring system for an lc filter circuit in an ac power network
US6236227B1 (en) Method and apparatus for turn fault detection in multi-phase AC motors
JPH10505913A (en) Monitoring of internal partial discharge of power transformer
WO2006130722A3 (en) An apparatus and method for determining a faulted phase of a three-phase ungrounded power system
US4713604A (en) Monitoring device for detecting faults in an electrical device, particularly in an LC filter circuit in an AC voltage network
CN109375120B (en) Method for monitoring alternating current flowing into direct current power supply system
CN110673001A (en) Insulation monitoring device and insulation monitoring method based on circuit breaker position state monitoring
JP2002311061A (en) Processor for electric power
JPH0155424B2 (en)
JPH02698Y2 (en)
JPH02699Y2 (en)
JPH1078461A (en) Measuring method for insulation resistance
JPH0670665B2 (en) Non-contact electric field magnetic field sensor
JP2003232826A (en) Leak detection device
JP3602904B2 (en) Alarm detection test equipment for insulation monitoring equipment
JP2002131362A (en) Leakage current measurement device
JPH11355955A (en) Earth fault detector for multi-branched line
JPH07311231A (en) Insulation monitoring system by superimposing high frequency in high-voltage distribution equipment
JPH0783975A (en) Insulation monitor for electric circuit of non-grounded wiring system
JPS61138178A (en) Ground-fault detector
CN211426682U (en) Insulation monitoring device based on circuit breaker position state monitoring
JPH01170865A (en) Detecting device for grounding failure point of electric distribution line