JPH0269651A - Liquid film type cation electrode - Google Patents

Liquid film type cation electrode

Info

Publication number
JPH0269651A
JPH0269651A JP63221571A JP22157188A JPH0269651A JP H0269651 A JPH0269651 A JP H0269651A JP 63221571 A JP63221571 A JP 63221571A JP 22157188 A JP22157188 A JP 22157188A JP H0269651 A JPH0269651 A JP H0269651A
Authority
JP
Japan
Prior art keywords
electrode
sensitive
cation
liquid
cations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63221571A
Other languages
Japanese (ja)
Inventor
Manami Ikeda
池田 麻奈美
Satoru Ito
哲 伊東
Taiichi Asano
浅野 泰一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MELS CORP
Original Assignee
MELS CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MELS CORP filed Critical MELS CORP
Priority to JP63221571A priority Critical patent/JPH0269651A/en
Publication of JPH0269651A publication Critical patent/JPH0269651A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To measure various cations which generate an ion exchange reaction with high sensitivity and selectivity by using a specific compd. as the cation exchanger of a sensitive material. CONSTITUTION:The liquid film type cation electrode 1 consists of a supporting pipe 2, a lower outside pipe 3, an O-ring 4, an internal electrode 5, an internal liquid 6, a sensitive film 7, a cap 8, and a lead wire 9. The tetraphenyl boric acid deriv. shown in the formula is used as the cation exchanger of the sensitive material in the sensitive film 7. The ion exchange reaction takes place and the potential corresponding to the concn. of the cations is generated when the sensitive film 7 contg. the sensitive material is brought into contact with the liquid to be inspected. The concn. of the cations to be measured is measured by detecting this potential.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Vlイオン交換体とイオン交換反応を生じる
種々の陽イオン、例えばビタミンB□、アセチルコリン
、カダベリン等のジアミン類のイオンや、ナトリウムイ
オン、カリウムイオン、カルシウムイオンなどを感度良
く測定することが可能な液体膜型陽イオン電極に関する
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to various cations that cause ion exchange reactions with Vl ion exchangers, such as ions of diamines such as vitamin B□, acetylcholine, and cadaverine, and sodium ion exchangers. The present invention relates to a liquid film type cation electrode that can measure ions, potassium ions, calcium ions, etc. with high sensitivity.

〔従来の技術〕[Conventional technology]

従来、陽イオン交換体とイオン交換反応を生じる種々の
陽イオン、例えばビタミンB工、アセチルコリン、カダ
ベリン等のジアミン類のイオンや、ナトリウムイオン、
カリウムイオン、カルシウムイオンなどの濃度を液体模
型イオン電極を用いて測定する場合、上記陽イオンとイ
オン交換反応を行なう感応物質の陽イオン交換体として
ジピクリルアミンやテトラフェニルはう酸を用いること
が知られている。
Conventionally, various cations that cause ion exchange reactions with cation exchangers, such as ions of diamines such as vitamin B, acetylcholine, and cadaverine, sodium ions,
When measuring the concentration of potassium ions, calcium ions, etc. using a liquid model ion electrode, dipicrylamine or tetraphenyl oxalic acid can be used as a cation exchanger of the sensitive substance that performs an ion exchange reaction with the above cations. Are known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

現代の分桁化学は1分析の高感度化、高選択性化を指向
している。しかしながら、上述したジピクリルアミンや
テトラフェニルはう酸を感応物質の陽イオン交換体とす
る液体模型陽イオン電極は、その感度がせいぜい陽イオ
ン濃度10−4〜10−’moΩ/Qまでであり、この
ためよりいっそうの高感度化、高選択性化が要望されて
いた。
Modern minute-digit chemistry is aimed at increasing the sensitivity and selectivity of a single analysis. However, the above-mentioned liquid model cation electrode using dipicrylamine or tetraphenyl oxalic acid as a cation exchanger as a sensitive substance has a sensitivity of up to a cation concentration of 10-4 to 10-'moΩ/Q at most. Therefore, even higher sensitivity and higher selectivity have been desired.

本発明は、上記事情に鑑みなされたもので、陽イオン交
換体とイオン交換反応を生じる種々の陽イオンを極めて
高感度かつ高選択的に測定することが可能な液体膜型陽
イオン電極を提供することを目的とする。
The present invention was made in view of the above circumstances, and provides a liquid membrane type cation electrode that can measure various cations that cause ion exchange reactions with a cation exchanger with extremely high sensitivity and high selectivity. The purpose is to

〔課題を解決するための手段及び作用〕本発明者らは、
上記目的を達成するため鋭意検討を行なった結果、テト
ラフェニルはう酸を構成する各フェニル基の水素原子の
うちの2個を脂溶性の高い疎水基であるCF3基で置換
したテトラフェニルはう酸誘導体を陽イオン交換体とし
て用いた場合、陽イオンを高感度かつ高選択的に測定し
得ることを知見し、本発明をなすに至った。
[Means and effects for solving the problem] The present inventors,
As a result of intensive studies to achieve the above objective, we found that tetraphenyl oxalic acid is made by replacing two of the hydrogen atoms of each phenyl group with CF3 groups, which are hydrophobic groups with high fat solubility. The present inventors have discovered that when an acid derivative is used as a cation exchanger, cations can be measured with high sensitivity and high selectivity, and the present invention has been completed.

従って1本発明は、電極本体の検出端に有機溶媒に溶解
した感応物質を含有する感応膜を配設し、この感応膜に
試料を接触させて試料中の陽イオンと上記感応物質中の
陽イオン交換体とのイオン交換反応を行なわせることに
より試料中の陽イオン濃度を検出するようにした液体膜
型電極において。
Therefore, in the present invention, a sensitive membrane containing a sensitive substance dissolved in an organic solvent is disposed at the detection end of an electrode body, and a sample is brought into contact with this sensitive membrane to combine cations in the sample with cations in the sensitive substance. In a liquid membrane type electrode that detects the concentration of cations in a sample by performing an ion exchange reaction with an ion exchanger.

上記感応物質の陽イオン交換体として下記式(I)で表
されるテトラフェニルはう酸誘導体、即ちテトラキス〔
3,5−ビス(トリフルオロメチル)フェニル〕ボレー
ト(TFPB)を用いたことを特徴とする液体膜型陽イ
オン電極を提供する。
As a cation exchanger for the above-mentioned sensitive substance, a tetraphenyl oxalic acid derivative represented by the following formula (I), that is, tetrakis [
A liquid film type cation electrode characterized by using 3,5-bis(trifluoromethyl)phenyl]borate (TFPB) is provided.

本発明の電極は、感応物質の陽イオン交換体として上記
(り式のテトラフェニルはう酸誘導体(TFPB)を用
いたものであるが、その訓電原理を、感応物質をTFP
Bのナトリウム塩、測定対象イオンをビタミンB1塩酸
塩溶液中のビタミンB1塩酸塩とした場合を例にとって
説明すると、次のようになる。即ち、上記感応物質を含
む感応膜を被検液(ビタミンB4塩酸塩溶液)に接触さ
せた場合、下記式(A) 感応膜 被検液 で示されるイオン交換反応が生じ、液体膜層と被検液層
との間で測定対象陽イオン(ビタミンBエイオン)の濃
度に応じた電位が発生する。従って、この電位を検出す
ることにより、測定対象陽イオン(ビタミンB、イオン
)の濃度を測定することができるものである。なお、他
の陽イオンを測定対象とする場合も同様の原理で測定が
行なわれることはいうまでもない。
The electrode of the present invention uses the above-mentioned tetraphenyl fluoric acid derivative (TFPB) as a cation exchanger for a sensitive substance.
Taking as an example the case where the sodium salt of B and the ion to be measured are vitamin B1 hydrochloride in a vitamin B1 hydrochloride solution, the following will be explained. That is, when the sensitive membrane containing the above-mentioned sensitive substance is brought into contact with the test liquid (vitamin B4 hydrochloride solution), an ion exchange reaction shown by the following formula (A) in the sensitive membrane test liquid occurs, and the liquid membrane layer and the test liquid A potential corresponding to the concentration of the cation to be measured (vitamin B ion) is generated between the sample layer and the test liquid layer. Therefore, by detecting this potential, the concentration of the cation to be measured (vitamin B, ion) can be measured. It goes without saying that the same principle is used when measuring other cations.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明の電極は、上述したように(I)式のテトラフェ
ニルはう酸誘導体を感応物質の陽イオン交換体としたも
ので、これにより後述する実施例に示すように陽イオン
濃度10−’maQ/ Qという超高感度測定を行なう
ことができるもので°ある。
As mentioned above, the electrode of the present invention uses the tetraphenyl oxalic acid derivative of formula (I) as a cation exchanger as a sensitive substance, and as a result, the cation concentration is 10-' as shown in the examples described later. It is capable of performing ultra-high sensitivity measurements such as maQ/Q.

また、感応物質として(I)式の化合物の塩を用いる場
合、その塩としてはアルカリ金属塩、アルカリ土類金属
塩、アンモニウム塩等が好ましく、これにより陽イオン
交換体のイオン交換反応を良好に行なわせることができ
る。
In addition, when a salt of the compound of formula (I) is used as a sensitive substance, an alkali metal salt, an alkaline earth metal salt, an ammonium salt, etc. are preferable as the salt, which improves the ion exchange reaction of the cation exchanger. I can make you do it.

上記(I)式の化合物を得る方法に限定はないが、例え
ば下記式(B)に示す方法により製造することができる
There is no limitation on the method for obtaining the compound of the above formula (I), but it can be produced, for example, by the method shown in the following formula (B).

また、(I)式の化合物を陽イオン交換体とする感応膜
の製法に特に制限はないが、(り式の化合物の塩をオル
トニトロフェニルオクチルエーテル(o−NPOE)に
溶解し、このo−NPOEでポリ塩化ビニルを可塑化す
ることにより感応膜を得る方法が好適に採用され、これ
により膜寿命が長く、長期間にわたって安定によす定を
行なうことが可能な感応膜を得ることができる。即ち、
従来液体模型陽イオン電極として、テトラフェニルはう
酸を感応物質、1,2ジクロロエタンを溶媒とする感応
膜を用いたビタミンB、電極が提案されている(Che
mistry Letters、 pp 119〜12
0゜1973)が、上記感応膜は溶媒の蒸気圧が高く、
かつ感応物質の脂溶性が低い上、純液膜型であるため、
溶媒及び感応物質の感応膜からの溶出が起こり易く、ま
たその感度も10−smofl/ Qまでと悪く、実用
性に乏しいものであった。これに対し、脂溶性の高い(
I)式の化合物の塩を蒸気圧の低いo −N P OE
に溶解し、このo−NPOEでポリ塩化ビニルを可塑化
することによりゲル状の感応膜を作製した場合は、溶媒
及び感応物質の膜外への流出が極めて少なく、感応膜を
長寿命化し得ると共に、著しく高い感度及び選択性を得
ることができるものである。
Although there are no particular limitations on the method for producing a sensitive membrane using the compound of formula (I) as a cation exchanger, it is possible to - A method of obtaining a sensitive film by plasticizing polyvinyl chloride with NPOE is preferably adopted, and by this method it is possible to obtain a sensitive film that has a long service life and can be stabilized over a long period of time. Yes, that is,
Conventionally, as a liquid model cation electrode, a vitamin B electrode using a sensitive membrane using tetraphenyl oxalic acid as a sensitive substance and 1,2 dichloroethane as a solvent has been proposed (Che.
Mistry Letters, pp 119-12
0°1973), but the above-mentioned sensitive membrane has a high vapor pressure of the solvent,
In addition, the sensitive substance has low fat solubility and is a pure liquid film type.
Elution of the solvent and the sensitive substance from the sensitive membrane easily occurred, and the sensitivity was poor at 10-smofl/Q, making it impractical. In contrast, highly fat-soluble (
I) salt of the compound of formula o -N P OE with low vapor pressure
When a gel-like sensitive film is prepared by dissolving polyvinyl chloride in O-NPOE and plasticizing it with this o-NPOE, the outflow of the solvent and sensitive substance to the outside of the film is extremely small, and the life of the sensitive film can be extended. At the same time, extremely high sensitivity and selectivity can be obtained.

この場合、感応膜における(I)式の化合物の塩の含量
は特に0.3〜1.3重量%とすることが好ましい。
In this case, the content of the salt of the compound of formula (I) in the sensitive membrane is particularly preferably 0.3 to 1.3% by weight.

なお、本発明液膜型陽イオン電極において電極本体の構
造、内部電極及び内部液の種類等に制限はなく、電極の
使用目的等に応じて適宜選択することができる。
In the liquid film type cation electrode of the present invention, there are no restrictions on the structure of the electrode body, the types of internal electrodes and internal liquid, etc., and they can be appropriately selected depending on the intended use of the electrode.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の液体膜型陽イオン電極は
、感応物質のイオン交換体として上記(I)式のテトラ
キス〔3,5−ビス(トリフルオロメチル)フェニル〕
ボレート(TFPB)を用いたことにより、種々の陽イ
オン、例えばビタミンBいアセチルコリン、カダベリン
等のジアミン類のイオン、ニュートラルキャリア型の感
応物質を用いる場合のナトリウムイオン、カリウムイオ
ン、カルシウムイオン等を高感度かつ高選択的に測定し
得るものである。
As explained above, the liquid film type cation electrode of the present invention uses tetrakis[3,5-bis(trifluoromethyl)phenyl] of the above formula (I) as an ion exchanger for a sensitive substance.
By using borate (TFPB), various cations such as vitamin B, acetylcholine, ions of diamines such as cadaverine, sodium ions, potassium ions, calcium ions, etc. when using neutral carrier type sensitive substances can be increased. It can be measured with high sensitivity and high selectivity.

以下、実施例により本発明を具体的に示すが、本発明は
下記実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically illustrated by examples, but the present invention is not limited to the following examples.

〔実施例〕〔Example〕

上記(I)式の化合物(TFPB)及びテトラフェニル
はう酸をそれぞれ陽イオン交換体とする感応膜を用い、
第1図に示す構成の液体膜型陽イオン電極をそれぞれ作
製した。また、陽イオン交換体としてジピクリルアミン
を用い、同様に電極を作製した。この場合、各陽イオン
交換体のナトリウム塩Q、009gをo−NPOElg
に溶解し、このo −N P OEで0.4gのポリ塩
化ビニルを可塑化することにより感応膜を作製した。な
お、第1図中1は支持管2と下部外管3とが○−リング
4を介して連結された電極本体、5は本体1内に収容さ
れた内部電極、6は内部液、7は感応膜(イオン感応性
液体膜)、8はキャップ、9はリード線である。
Using a sensitive membrane containing the compound of the above formula (I) (TFPB) and tetraphenyl oxalic acid as cation exchangers,
Liquid film type cation electrodes having the configuration shown in FIG. 1 were each produced. Further, an electrode was prepared in the same manner using dipicrylamine as a cation exchanger. In this case, o-NPOElg
A sensitive film was prepared by dissolving 0.4 g of polyvinyl chloride in this o -N P OE. In FIG. 1, 1 is an electrode body in which a support tube 2 and a lower outer tube 3 are connected via a ring 4, 5 is an internal electrode housed in the main body 1, 6 is an internal liquid, and 7 is an electrode body. A sensitive membrane (ion-sensitive liquid membrane), 8 is a cap, and 9 is a lead wire.

次に、上記各電極を種々濃度のビタミンBi溶液に浸漬
してビタミンBi濃度を測定し、検量線を作成して感度
の比較を行なった。結果を第2図に示す。
Next, each of the electrodes was immersed in vitamin Bi solutions of various concentrations to measure the vitamin Bi concentration, a calibration curve was created, and the sensitivity was compared. The results are shown in Figure 2.

第2図の結果より、陽イオン交換体としてTFPBを用
いた本発明電極は、陽イオン交換体としてテトラフェニ
ルはう酸やジピクリルアミンを用いたものと比べ、感度
が低濃度に100倍程度のびていることがわかる。
From the results shown in Figure 2, the electrode of the present invention using TFPB as a cation exchanger has about 100 times the sensitivity at low concentrations compared to the electrode using tetraphenyl oxalic acid or dipicrylamine as a cation exchanger. You can see that it is growing.

また、下記■〜■の試験を行なった。In addition, the following tests (1) to (2) were conducted.

■直線性 TFPBを陽イオン交換体とした電極(本発明fl極)
と、感応膜の感応物質をテトラフェニルはう酸のナトリ
ウム塩、溶媒を1,2ジクロロエタンとした前記ビタミ
ンBi電極(従来電極)とを使用し、0.1M酢酸−0
,025M酢酸リチウムバッファーを用いてビタミンB
 、:lR定時の直線性を調べた。その結果1本発明電
極は10−7〜IM/Qで直線性を示し、電位勾配は2
9mVであったのに対し、従来電極が直線性を示したの
は10−5〜10−”M/Rであり、本発明ビタミンB
L電極は従来のビタミンB1電極に比べ低濃度側に感度
が100倍改善され、高濃度側にも定量範囲が100倍
のびているものであった。
■Electrode using linear TFPB as a cation exchanger (fl electrode of the present invention)
0.1M acetic acid-0
Vitamin B using .025M lithium acetate buffer
, :lR fixed time linearity was investigated. As a result 1, the electrode of the present invention showed linearity at 10-7 to IM/Q, and the potential gradient was 2.
9mV, whereas the conventional electrode showed linearity at 10-5 to 10-''M/R.
Compared to the conventional vitamin B1 electrode, the L electrode had a 100-fold improvement in sensitivity on the low-concentration side, and a 100-fold extension of the quantification range on the high-concentration side.

■選択性 ビタミンB、、B、、B6.C,E、グルコース。■Selectivity Vitamin B,,B,,B6. C, E, glucose.

グルタミン酸、エタノール、乳酸、Na”、K”CR−
、F−の影響を混合溶液法で調べた。その結果、影響を
受けるのはビタミンB、、 B、のみであり、選択係数
は次のようになった。
Glutamic acid, ethanol, lactic acid, Na", K"CR-
, F- was investigated using the mixed solution method. As a result, only vitamin B, B, was affected, and the selection coefficient was as follows.

kρ”  −5xlO3k”t =  7081、B、
           13□、8にの場合、従来電極
は gl’lBG ” 2oであるから、ビタミンB6
に対する選択係数も3.5倍改善されていることがわか
る。
kρ"-5xlO3k"t = 7081, B,
In the case of 13□ and 8, the conventional electrode is gl'lBG" 2o, so vitamin B6
It can be seen that the selection coefficient for the sample was also improved by 3.5 times.

■寿命 フローセルを用いて上記本発明電極に10−’Mビタミ
ンB□水溶液を連続的に流している状態、10−’Mビ
タミンB1水溶液に本発明電極を浸漬している状態及び
蓋をして本発明電極を保管し、10日に一度測定してい
る状態について、1o−4MビタミンB1の電位の経時
変化及び10−410−3.10−”M間の傾きをそれ
ぞれ測定し、寿命を調べた。
■A state in which a 10-'M vitamin B□ aqueous solution is continuously flowing through the electrode of the invention using a lifespan flow cell, a state in which the electrode of the invention is immersed in a 10-'M vitamin B1 aqueous solution, and a state in which the electrode of the invention is covered with a lid. When the electrode of the present invention was stored and measured once every 10 days, the change in potential of 1o-4M vitamin B1 over time and the slope between 10-410-3.10-''M were measured to determine its lifespan. Ta.

その結果を第3図に示すが、本発明電極の寿命は250
日以上である。これに対し、上記従来電極の寿命を同様
に調べたところ、約1日であり、本発明電極が寿命の点
で著しく改善されていることが認められる。
The results are shown in Figure 3, and the life of the electrode of the present invention is 250
More than a day. On the other hand, when the lifespan of the above-mentioned conventional electrode was similarly investigated, it was found to be about 1 day, which indicates that the electrode of the present invention has significantly improved lifespan.

■ 他法との相関 上記本発明電極を用いて栄養飲料(商品名リポビタンD
)中のビタミンB工濃度を測定し、高速液体クロマトグ
ラフィーによる測定結果との相関を調べた。この場合、
原液及びその希釈液のビタミンB□濃度を測定し、更に
原液にビタミンB工標準液を任意に添加して測定した。
■ Correlation with other methods Nutritional drinks (trade name Lipovitan D
) was measured, and the correlation with the measurement results by high performance liquid chromatography was investigated. in this case,
The vitamin B□ concentration of the stock solution and its diluted solution was measured, and a vitamin B standard solution was optionally added to the stock solution for measurement.

結果を第4図に示すがy=0.98x+23.6゜γ=
0.954であり、本発明電極の実用性が確認された。
The results are shown in Figure 4, y=0.98x+23.6°γ=
0.954, confirming the practicality of the electrode of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は本発
明電極及び比較品を用いてビタミンB1電極を測定した
場合の検量線を示すグラフ、第3図は本発明電極の寿命
を示すグラフ、第4図は本発明電極と高速液体クロマト
グラフィによる測定結果の相関を示すグラフである。 7・・・感応膜。 出願人  電気化学計器株式会社 代理人  弁理士 小 島 隆 司 第1図 第2図 10g レダミンB1
Fig. 1 is a cross-sectional view showing an example of the present invention, Fig. 2 is a graph showing a calibration curve when a vitamin B1 electrode is measured using the inventive electrode and a comparative product, and Fig. 3 is a graph showing the calibration curve of the inventive electrode. FIG. 4, a graph showing the life span, is a graph showing the correlation between the electrode of the present invention and measurement results by high performance liquid chromatography. 7...Sensitive membrane. Applicant Denki Kagaku Keiki Co., Ltd. Agent Patent Attorney Takashi Kojima Figure 1 Figure 2 10g Redamin B1

Claims (1)

【特許請求の範囲】 1、電極本体の検出端に有機溶媒に溶解した感応物質を
含有する感応膜を配設し、この感応膜に試料を接触させ
て試料中の陽イオンと上記感応物質中の陽イオン交換体
とのイオン交換反応を行なわせることにより該試料中の
陽イオン濃度を検出するようにした液体膜型電極におい
て、上記感応物質の陽イオン交換体として下記式( I
) ▲数式、化学式、表等があります▼ で表されるテトラフェニルほう酸誘導体を用いたことを
特徴とする液体膜型陽イオン電極。
[Claims] 1. A sensitive membrane containing a sensitive substance dissolved in an organic solvent is provided at the detection end of the electrode body, and a sample is brought into contact with this sensitive membrane to separate the cations in the sample from the sensitive substance in the sensitive substance. In a liquid membrane type electrode that detects the cation concentration in the sample by performing an ion exchange reaction with the cation exchanger of the sensitive substance, the cation exchanger of the sensitive substance is expressed by the following formula (I
) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ A liquid membrane type cation electrode characterized by using a tetraphenylborate derivative represented by.
JP63221571A 1988-09-05 1988-09-05 Liquid film type cation electrode Pending JPH0269651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63221571A JPH0269651A (en) 1988-09-05 1988-09-05 Liquid film type cation electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63221571A JPH0269651A (en) 1988-09-05 1988-09-05 Liquid film type cation electrode

Publications (1)

Publication Number Publication Date
JPH0269651A true JPH0269651A (en) 1990-03-08

Family

ID=16768821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63221571A Pending JPH0269651A (en) 1988-09-05 1988-09-05 Liquid film type cation electrode

Country Status (1)

Country Link
JP (1) JPH0269651A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449263B1 (en) * 2005-02-14 2008-11-11 The United States Of America As Represented By The Secretary Of The Army Phosphate-free electrolyte for rechargeable lithium ion cells
JP2009534680A (en) * 2006-04-24 2009-09-24 エレクトゥリスィテ ドゥ フランス Lithium ion selective membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449263B1 (en) * 2005-02-14 2008-11-11 The United States Of America As Represented By The Secretary Of The Army Phosphate-free electrolyte for rechargeable lithium ion cells
JP2009534680A (en) * 2006-04-24 2009-09-24 エレクトゥリスィテ ドゥ フランス Lithium ion selective membrane

Similar Documents

Publication Publication Date Title
Hassan et al. Determination of metformin in pharmaceutical preparations using potentiometry, spectrofluorimetry and UV–visible spectrophotometry
Zhang et al. Multi-wall carbon nanotube film-based electrochemical sensor for rapid detection of Ponceau 4R and Allura Red
Gupta et al. Anion recognition using newly synthesized hydrogen bonding disubstituted phenylhydrazone-based receptors: poly (vinyl chloride)-based sensor for acetate
Chang et al. Rapid and simple determination of homovanillic acid in plasma using high performance liquid chromatography with electrochemical detection
Chen et al. Calixarene derivative as the neutral carrier in silver ion-selective electrode and liquid membrane transport
Ekmekci et al. A novel iron (III) selective membrane electrode based on benzo-18-crown-6 crown ether and its applications
Othman et al. Polymer membrane sensors for sildenafil citrate (Viagra) determination in pharmaceutical preparations
Babaei et al. A sensitive determination of acetaminophen in pharmaceutical preparations and biological samples using multi-walled carbon nanotube modified glassy carbon electrode
Ibrahim et al. New selenite ion-selective electrodes based on 5, 10, 15, 20-tetrakis-(4-methoxyphenyl)-21H, 23H-porphyrin-Co (II)
Gil et al. HPLC-potentiometric method for determination of biogenic amines in alcoholic beverages: A reliable approach for food quality control
Frag et al. Electroanalytical determination of sildenafil in Viagra tablets using screen-printed and conventional carbon paste electrodes
Elhassan et al. In-line monitoring of sitagliptin dissolution profile from tablets utilizing an eco-friendly potentiometric sensor
Ensafi et al. Novel and selective potentiometric membrane sensor for amiloride determination in pharmaceutical compounds and urine
Tumur et al. A novel potentiometric PVC-membrane cysteamine-selective electrode based on cysteamine-phosphomolybdate ion-pair
Ganjali et al. Potentiometric Determination of Cyclizine by a PVC membrane Sensor
Cavus et al. Development of a potentiometric maprotiline-selective electrode and its application in pharmaceutıcal samples
JPH0269651A (en) Liquid film type cation electrode
Othman et al. Potentiometric determination of dopamine in pharmaceutical preparations by crown ether-PVC membrane sensors
Badawy et al. Construction and performance characterization of ion-selective electrodes for potentiometric determination of phenylpropanolamine hydrochloride applying batch and flow injection analysis techniques
Marks et al. Determination of residual chlorine in sewage
Waddill et al. Determination of Cysteine with Ferricyanide by Amperometric Titration with Two Polarized Electrodes
Al-Haideri et al. Polymeric membrane sensors for the selective determination of metoclopramide hydrochloride and their applications to pharmaceutical analysis
Ensafi et al. A Novel Selective Coated-Wire Potentiometric Sensor for Venlafaxine Determination in Pharmaceutical Compounds, Plasma and Urine
Lenik et al. Ketoprofen ion-selective electrode and its application to pharmaceutical analysis
Pan et al. A novel amperometric sensor for the detection of difenidol hydrochloride based on the modification of Ru (bpy) 32+ on a glassy carbon electrode