JPH0268999A - Conductive thermoplastic resin sheet and molding thereof - Google Patents

Conductive thermoplastic resin sheet and molding thereof

Info

Publication number
JPH0268999A
JPH0268999A JP63220475A JP22047588A JPH0268999A JP H0268999 A JPH0268999 A JP H0268999A JP 63220475 A JP63220475 A JP 63220475A JP 22047588 A JP22047588 A JP 22047588A JP H0268999 A JPH0268999 A JP H0268999A
Authority
JP
Japan
Prior art keywords
conductive
thermoplastic resin
fibers
resin sheet
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63220475A
Other languages
Japanese (ja)
Inventor
Takashi Daimon
大門 孝
Shuji Sakamoto
坂本 秀志
Osamu Akimoto
治 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP63220475A priority Critical patent/JPH0268999A/en
Priority to US07/376,566 priority patent/US4939027A/en
Priority to CA 605141 priority patent/CA1305035C/en
Priority to KR89009665A priority patent/KR960008292B1/en
Priority to DE1989615623 priority patent/DE68915623T2/en
Priority to EP19890112467 priority patent/EP0350056B1/en
Publication of JPH0268999A publication Critical patent/JPH0268999A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a see-through conductive thermoplastic resin sheet having low specific gravity, high mechanical strength, excellent electromagnetic wave shielding performance and excellent moldability through a simple production system with low cost by laminating a specific conductive unwoven fabric onto a basic layer, i.e., a thermoplastic resin film, then further laminating a protective layer, i.e., a thermoplastic resin film, thereon. CONSTITUTION:Conductive unwoven fabric mainly composed of conductive fibers and thermally fusible fibers is applied onto one or both faces of a basic layer, i.e., a thermoplastic resin film, then a protective layer, i.e., a thermoplastic resin film, is further applied thereon thereafter it is heated and pressure contacted under a temperature higher than the melting point of the thermally fusible fiber, thus producing a conductive thermoplastic resin sheet. After being heated to softening state, the conductive thermoplastic resin sheet is secured between a pair of molds A and B made of rubber D where the surface of at least one mold A has heat resistance, then the molds A, B are fitted each other to produce a conductive thermoplastic resin molding. The conductive fiber includes such as stainless copper fiber, copper or copper alloy fiber or metal or metal compound coated synthetic fiber.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電磁波遮蔽性を有する熱可塑性樹脂シート及び
熱可塑性樹脂成形物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a thermoplastic resin sheet and a thermoplastic resin molded article having electromagnetic wave shielding properties.

〔従来の技術] 近年、O/11器、メディカル機器、民生通信機器、コ
ンピュータ機器等各種の電子機器の酋及に伴い、これら
の機器から放射される電磁波による障害が大きな社会問
題どなり、電磁波遮蔽に対する要望が強くなってきてい
る。
[Prior Art] In recent years, with the proliferation of various electronic devices such as O/11 units, medical equipment, consumer communication equipment, and computer equipment, interference caused by electromagnetic waves emitted from these devices has become a major social problem, and electromagnetic wave shielding has become a major social problem. There is a growing demand for

電子機器のハウジング等に電磁波遮蔽性を付与する方法
どしては導電性フィラーを高濃度に充填した樹脂を成形
加J、して用いる方法、樹脂成形品の内壁に¥l電性塗
利金塗布する方法がある。
A method of imparting electromagnetic wave shielding properties to electronic equipment housings, etc. is to mold and process resin filled with a high concentration of conductive filler, and apply conductive paint to the inner wall of the resin molded product. There is a way to apply it.

〔発明が解決しようとする:!!!題〕しかし、前者は
導電性フィラーを多聞に充填する必要があり、その結果
、比重が高くなること、機械的特性の低下、コスト高と
なること、外観の悪化、成形性の低下等の問題点が生じ
る。又、後者は塗膜の剥離による電磁波遮蔽性の低下、
生産工程が複雑であり生産性が悪いという問題点を抱え
ている。又、両者共導電性フィラーを高濃度に充填して
いる為、透視性がなく内容物の確認が必要な用途には使
用できない等の問題点もあった。
[The invention tries to solve:! ! ! [Problem] However, the former requires a large amount of conductive filler, which results in problems such as increased specific gravity, decreased mechanical properties, increased cost, deterioration of appearance, and decreased moldability. A point occurs. In addition, the latter is caused by a decrease in electromagnetic wave shielding properties due to peeling of the paint film,
The problem is that the production process is complicated and productivity is low. In addition, since both of them are filled with conductive filler at a high concentration, there is a problem that they are not transparent and cannot be used in applications where confirmation of the contents is required.

本発明の目的は前記の課題を解決し、簡単な生産方式で
優れた電磁波遮蔽性を有し、比重が軽く、コストも安く
、機械的強度、成形性にも浸れ、しかも透視性のある導
電性熱可塑性樹脂シー1〜および成形物を提供すること
である。
The purpose of the present invention is to solve the above-mentioned problems, and to provide a conductive material that has excellent electromagnetic shielding properties with a simple production method, has a light specific gravity, is low in cost, has good mechanical strength and formability, and has transparency. An object of the present invention is to provide thermoplastic resin sheets 1 to 1 and molded products.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は上記問題点を解決すべく鋭Q研究を重ねた
結果、基材層である熱可塑性樹脂膜(△)の片面もしく
は両面に導電性lJiM、と熱溶融性繊維を主構成tl
維とする導電性不織布を重ね合わせ、更に、該不織布に
接して保護層となる熱可塑性樹脂膜(B)を重ね合わせ
て熱溶融性繊維の融点以上の温度で加熱・圧着して得ら
れる導電性熱可塑性樹脂シート及び該シートを特殊な方
法rM形して得られる成形物がプラスチック本来の特性
を全く損なうことなく、しかも、簡単な生産方式で電磁
波遮蔽性を付与することができ、しかも、透視性がある
為、内容物の確認が必要な用途にも使用できることを見
出し本発明に到達した。
As a result of intensive Q research in order to solve the above problems, the present inventors have found that conductive lJiM and thermofusible fibers are mainly formed on one or both sides of the thermoplastic resin film (△) which is the base layer.
Conductive fibers obtained by overlapping conductive nonwoven fabrics as fibers, and then overlaying a thermoplastic resin film (B) that serves as a protective layer in contact with the nonwoven fabrics and heating and pressing at a temperature equal to or higher than the melting point of the thermofusible fibers. The thermoplastic resin sheet and the molded product obtained by molding the sheet using a special method do not impair the original properties of the plastic at all, and can be provided with electromagnetic wave shielding properties using a simple production method, and furthermore, Because of its transparency, it was discovered that it can be used in applications where it is necessary to confirm the contents, and the present invention was achieved.

すなわち、本発明は、 1、基材層である熱可塑性樹脂1t!I(A)の片面も
しくは両面に導電性繊維と熱溶融性繊維を主構成繊維と
する導電性不織イh@重ね合わせ、更に、該不織布に接
して保護層となる熱可塑性樹脂膜(B)を重ね合わせて
熱溶融性繊維の融点以上の温度で加熱・圧着して得られ
る導電性熱可塑性樹脂シート。
That is, the present invention has the following features: 1. 1t of thermoplastic resin as the base material layer! A conductive non-woven fabric whose main constituent fibers are conductive fibers and thermofusible fibers are overlaid on one or both sides of I(A), and a thermoplastic resin film (B ) conductive thermoplastic resin sheet obtained by heating and pressing at a temperature above the melting point of the thermofusible fibers.

2、基材層である熱可塑性樹脂膜(A)の片面もしくは
両面に導電性繊維と熱溶融性繊維を主構成ta雑とする
導電性不織布を重ね合わせ、更に、該不織布に接して保
護層となる熱可塑性樹脂膜(B)を重ね合わせて熱溶融
性繊維の融点以上の温度で加熱・圧着して19られる導
電性熱可塑性樹脂シートを軟化状態まで加熱した後、少
なくとも一方の型の表面が耐熱性を有するゴムよりなる
雌雄一対の型の間に固定した後、両型を嵌合することに
よって賦形された導電性熱可塑性樹脂成形物。
2. A conductive nonwoven fabric mainly composed of conductive fibers and thermofusible fibers is superimposed on one or both sides of the thermoplastic resin film (A) that is the base layer, and a protective layer is further applied in contact with the nonwoven fabric. After heating the conductive thermoplastic resin sheet (19) to a softened state by overlapping the thermoplastic resin films (B) and heating and pressing them at a temperature higher than the melting point of the thermofusible fibers, the surface of at least one mold is heated. A conductive thermoplastic resin molded article that is fixed between a pair of male and female molds made of heat-resistant rubber, and then shaped by fitting the two molds together.

3、導電性II維がステンレス鋼繊維、銅もしくは銅合
金繊維、金属もしくは金属化合物被覆合成繊維、金属も
しくは金属化合物複合合成繊維およびこれらの混合繊維
である前項1に記載の導電性熱可塑性樹脂シート。
3. The conductive thermoplastic resin sheet according to item 1 above, wherein the conductive II fiber is a stainless steel fiber, a copper or copper alloy fiber, a metal or metal compound coated synthetic fiber, a metal or metal compound composite synthetic fiber, or a mixed fiber thereof. .

4、導電性繊維の単位面積当りの使用量が15〜50g
/y4であることを特徴とする前項1に記載の導電性熱
可塑性樹脂シート。
4. The amount of conductive fiber used per unit area is 15 to 50 g.
/y4, The conductive thermoplastic resin sheet according to item 1 above.

5、耐熱性を有するゴムがシリコンゴム、アクリルゴム
、フッ素ゴムであることを特徴とする前項2に記載の導
電性熱可塑性樹脂成形物。
5. The conductive thermoplastic resin molded product according to item 2 above, wherein the heat-resistant rubber is silicone rubber, acrylic rubber, or fluororubber.

に関するものである。It is related to.

本発明で熱可塑性樹脂膜(A)及び(B)に用いられる
熱可塑性樹脂としては、例えば、ポリエチレン、ポリプ
ロピレン、エチレン・酢酸ビニル共重合体、エチレン・
エチルアクリレート共重合体等のポリオレフィン系樹脂
;ポリスチレン、アクリロニトリル・ブタジェン・スチ
レン共重合体、アクリロニトリル・スチレン共重合体等
のスチレン系樹脂;ポリメチルメタアクリレート等のア
クリル系樹脂;6−ナイロン、6ローナイロン、12−
ナイロン、6・12−ナイロン等のポリアミド系樹脂;
ポリエチレンテレフタレート、ボリブヂレンテレフタレ
ート等のポリエステル系樹脂;ポリ塩化ビニル系樹脂、
ポリカーボネート、ポリフェニレンオキサイドおよびこ
れらの混合物が挙げられる。
Examples of the thermoplastic resin used in the thermoplastic resin films (A) and (B) in the present invention include polyethylene, polypropylene, ethylene/vinyl acetate copolymer, and ethylene/vinyl acetate copolymer.
Polyolefin resins such as ethyl acrylate copolymer; Styrenic resins such as polystyrene, acrylonitrile-butadiene-styrene copolymer, acrylonitrile-styrene copolymer; Acrylic resins such as polymethyl methacrylate; 6-nylon, 6-row Nylon, 12-
Polyamide resin such as nylon, 6,12-nylon;
Polyester resins such as polyethylene terephthalate and polybutylene terephthalate; polyvinyl chloride resins,
Mention may be made of polycarbonate, polyphenylene oxide and mixtures thereof.

これらの樹脂には耐熱安定剤、耐候安定剤、可塑剤、滑
剤、スリップ剤、帯電防止剤、荷電移動型ポリマー、核
剤、難燃剤、粘着性付与剤(石油樹脂等)、顔料、染料
、無機質充填材(ガラス繊維、マイカ、タルク等)、有
機質充填材(木粉、パルプ、合成繊維、天然繊維等)を
その目的に応じて配合することができる。
These resins include heat stabilizers, weather stabilizers, plasticizers, lubricants, slip agents, antistatic agents, charge transfer polymers, nucleating agents, flame retardants, tackifiers (petroleum resins, etc.), pigments, dyes, Inorganic fillers (glass fiber, mica, talc, etc.) and organic fillers (wood flour, pulp, synthetic fibers, natural fibers, etc.) can be blended depending on the purpose.

熱可塑性樹脂膜(△)の厚みは特に制限はなく0.05
〜5.Os++の範囲内で自由に選択できる。
The thickness of the thermoplastic resin film (△) is not particularly limited and is 0.05
~5. It can be freely selected within the range of Os++.

又、熱可塑性樹脂11!J(B)の厚みも特に制限はな
いが導電性miが樹脂層からはみ出すと通電の危険性が
あるので導電性繊維が樹脂層からはみださない程度の厚
みは必要であり、少なくとも0.02m+以上であるこ
とが望ましい。
Also, thermoplastic resin 11! There is no particular limit to the thickness of J(B), but if the conductive mi protrudes from the resin layer, there is a risk of electricity passing, so the thickness must be such that the conductive fibers do not protrude from the resin layer, and at least 0. It is desirable that it is .02m+ or more.

又、導電性不織布に用いる熱溶融性繊維としてはアクリ
ル系$l維、ポリアミド系繊維、ポリニスデル系樹脂、
ポリオレフィン系繊維、ポリ塩化ビニル系繊維等或いは
これらの混合物であって基材の熱可塑性樹脂に熱融着で
きるものであれば特に制限はない。これらの繊維には必
要に応じて難燃剤、着色剤、帯電防止剤、電荷移動型ポ
リマー等を配合して用いてもよい。
In addition, heat-melting fibers used in the conductive nonwoven fabric include acrylic $l fibers, polyamide fibers, polynisdel resins,
There are no particular limitations on the material as long as it is polyolefin fiber, polyvinyl chloride fiber, etc., or a mixture thereof, and can be heat-sealed to the thermoplastic resin of the base material. These fibers may be blended with flame retardants, colorants, antistatic agents, charge transfer polymers, etc., if necessary.

熱溶融性繊維は繊維長が5〜100m、繊維径が0.5
〜10デニ一ル程度のものが好ましく用いられる。
The heat-fusible fiber has a fiber length of 5 to 100 m and a fiber diameter of 0.5
About 10 deniers are preferably used.

次ぎに本発明に用いられる導電性繊維としては、金属も
しくは金属化合物複合合成繊維、金属もしくは金属化合
物被覆合成繊維、金属もしくは金属化合物被覆炭素繊維
、金属もしくは金属化合物被覆ガラス繊維、金属繊維等
およびこれらの混合繊維が挙げられる。これらの中では
ステンレス鋼繊維、銅もしくは銅合金繊維、金属もしく
は金属化合物被覆合成m帷、金属もしくは金属化合物複
合合成IIIおよびこれらの混合繊維が好ましく用いら
れる。
Next, the conductive fibers used in the present invention include metal or metal compound composite synthetic fibers, metal or metal compound coated synthetic fibers, metal or metal compound coated carbon fibers, metal or metal compound coated glass fibers, metal fibers, etc. Mixed fibers are included. Among these, stainless steel fibers, copper or copper alloy fibers, metal or metal compound coated synthetic threads, metal or metal compound composite synthetic III fibers, and mixed fibers thereof are preferably used.

導電性繊維の繊維径は5〜50μmの範囲にあることが
望ましい。導電性m雑の繊維径が5μm未満では繊維の
塊〈ネップ)が発生するので好ましくなく、逆に50μ
mを超えると成形性が悪化するので好ましくない。
The fiber diameter of the conductive fibers is preferably in the range of 5 to 50 μm. If the fiber diameter of the conductive material is less than 5 μm, fiber clumps (nep) will occur, which is undesirable;
If it exceeds m, moldability deteriorates, which is not preferable.

尚、導電性繊維の単位面積当りの使用量は15〜50p
/尻の範囲にあることが望ましい。導電性VI&Hの単
位面積当りの使用量が15g/TIt未満では充分な電
磁波遮蔽効果が現れない。又、50g/Tdを超えると
電磁波遮蔽効果は良好となるも透視性が著しく悪化する
ので好ましくない。
The amount of conductive fiber used per unit area is 15 to 50 p.
/ It is desirable that it be within the range of the buttocks. If the amount of conductive VI&H used per unit area is less than 15 g/TIt, a sufficient electromagnetic wave shielding effect will not be obtained. Moreover, if it exceeds 50 g/Td, although the electromagnetic wave shielding effect is good, the transparency is significantly deteriorated, which is not preferable.

次ぎに、導電性不織布は、上記導電性繊維及び熱溶融性
繊維とからバインダー法、ニードルパンチング法、スパ
ンボンディングによる水圧路み合わせ法、熱融着法、湿
式抄造法等の公知の方法によって1!1られるものであ
り日付ff115(1/m以下、特に20〜1009/
TItの範囲のものが好ましく用いられる。
Next, a conductive nonwoven fabric is prepared from the conductive fibers and thermofusible fibers by a known method such as a binder method, a needle punching method, a hydraulic path joining method using spun bonding, a heat fusion method, a wet paper forming method, etc. !1 and the date ff115 (1/m or less, especially 20-1009/
Those within the range of TIt are preferably used.

本発明の導電性不織布には上記の熱溶融性繊維および導
電性繊維の他に高融点の繊維、又は、溶融性を示さない
1ilffを導電性不織布の機能を損なわない範囲で配
合しても構わない。
In addition to the above-mentioned thermofusible fibers and conductive fibers, the conductive nonwoven fabric of the present invention may contain fibers with a high melting point or 1ilff, which does not exhibit meltability, as long as it does not impair the function of the conductive nonwoven fabric. do not have.

本発明の導電性熱可塑性樹脂シートは押出ラミネート法
、熱ロール圧着法、熱板プレス法等公知の方法を用いて
基材となる熱可塑性樹脂膜(A)と導電性不織布と保護
層となる熱可塑性樹脂膜(B)の3者を重ね合わせ、醜
名一体化させる。
The conductive thermoplastic resin sheet of the present invention is formed by forming a thermoplastic resin film (A) as a base material, a conductive nonwoven fabric, and a protective layer using a known method such as an extrusion lamination method, a hot roll crimping method, or a hot plate pressing method. The three thermoplastic resin films (B) are superimposed and integrated into one.

この時、導電性不織布を構成している熱溶融性繊維が完
全に溶融し基材層及び保護層と一体になるような温度条
件を選定することが必要である。
At this time, it is necessary to select temperature conditions such that the thermofusible fibers constituting the conductive nonwoven fabric are completely melted and integrated with the base layer and the protective layer.

押出ラミネート法の場合は、先ず基材層の熱可塑性樹脂
膜(A)を押出機内で180〜300℃程度の樹脂温度
に溶融混練し、Tダイを通して膜状に押出す。次いで溶
融もしくは軟化状態にある熱可塑性樹脂1(A)の上に
導電性不織布を重ね合わせ、更に、該不織布に接して保
m層となる熱可塑性樹脂11!J(B)を重ね合わせる
。この時、保vIi層となる熱可塑性樹脂膜(B)は予
めフィルム状に成形したものでも良いし、あるいは溶融
状態の樹脂膜であっても構わない。この後、上記熱可塑
性樹脂膜(A)あるいは(B)の熱を利用して熱溶融性
llNを完全に溶融させると同時に30〜120℃程度
に加熱された一対のロールで圧着し、基材層と導電性不
織布と保護層を一体化する。
In the case of the extrusion lamination method, first, the thermoplastic resin film (A) of the base material layer is melt-kneaded in an extruder to a resin temperature of about 180 to 300°C, and extruded into a film through a T-die. Next, a conductive non-woven fabric is superimposed on the thermoplastic resin 1 (A) which is in a molten or softened state, and the thermoplastic resin 11 is further brought into contact with the non-woven fabric to form a retaining layer! Overlap J(B). At this time, the thermoplastic resin film (B) serving as the vIi layer may be formed into a film shape in advance, or may be a resin film in a molten state. After this, the thermoplastic resin film (A) or (B) is used to completely melt the thermofusible LLN, and at the same time it is pressed with a pair of rolls heated to about 30 to 120°C, and the base material is Integrate the protective layer with the conductive nonwoven fabric.

方、熱ロール圧着法の場合は、固化した熱可塑性樹脂膜
(A>と導電性不織布を重ね合わせ、更に、該不織布に
接して熱可塑性樹脂膜(B)を重ね合わせると同時に、
もしくは、重ね合わせた後、100〜280℃程度に加
熱した熱ロールを用いて圧6・溶融一体止する。
On the other hand, in the case of the hot roll crimping method, a solidified thermoplastic resin film (A>) and a conductive nonwoven fabric are superimposed, and a thermoplastic resin film (B) is superimposed in contact with the nonwoven fabric, and at the same time,
Alternatively, after overlapping, they are melted and fixed together using a hot roll heated to about 100 to 280°C.

次ぎに、本発明の導電性熱可塑性樹脂成形物は以下の方
法によって得ることができる。
Next, the conductive thermoplastic resin molded article of the present invention can be obtained by the following method.

上記導電性熱可塑性樹脂シートを公知の種々の加熱方法
を用いて樹脂の軟化状態まで加熱した後、第1図に示す
様な雌雄一対の型の間に挿入固定しプレス圧力0 、 
1〜20 Kg/ ci、型温10〜100℃程度で両
型を嵌合さゼ賦形する。この時、少なくとも一方の型の
表層の材質は加熱された導電性熱可塑性樹脂シートの熱
によって変形、変質、劣化等を起こさない程度の耐熱性
を有するゴム、例えば、シリコンゴム、アクリルゴム、
フッ素ゴム等を用いることが好ましく、又、型の母材に
は、木、石膏、樹脂(熱硬化性樹脂)鋳物、金属等でプ
レス圧に充分耐えられる強度を有する素材が用いられる
。又、雄型と雌型との間隙CL(導電性熱可塑性樹脂シ
ートを挿入しない状態で雄型と雌型とを嵌合させた時の
)は型の絞り比(成形品の深さを成形品の直径もしくは
短辺で徐した値)により異なるが、目標となる成形品の
厚みを王とするとT≧CL≧ONの範囲にあることが望
ましい。
After the conductive thermoplastic resin sheet is heated to a softened state using various known heating methods, it is inserted and fixed between a pair of male and female molds as shown in FIG. 1, and press pressure is 0.
Both molds are fitted and shaped at a pressure of 1 to 20 Kg/ci and a mold temperature of approximately 10 to 100°C. At this time, the material of the surface layer of at least one mold is a heat-resistant rubber that does not cause deformation, deterioration, deterioration, etc. due to the heat of the heated conductive thermoplastic resin sheet, such as silicone rubber, acrylic rubber, etc.
It is preferable to use fluororubber or the like, and the base material of the mold is made of wood, plaster, resin (thermosetting resin) casting, metal, etc., which has sufficient strength to withstand press pressure. In addition, the gap CL between the male mold and the female mold (when the male mold and female mold are fitted without inserting a conductive thermoplastic resin sheet) is determined by the drawing ratio of the mold (the depth of the molded product). Although it differs depending on the diameter of the product (or the value multiplied by the short side), it is desirable that the target thickness of the molded product be in the range of T≧CL≧ON.

ちなみに、真空成形法もしくは圧空成形法で上記の導電
性熱可塑性樹脂シートを成形すると、保護層が金型と接
する様に挿入した場合には成形品のコーナ一部で導電性
ll維が基材層に食い込み、割れが発生するという現象
が見られる。逆に、基材層を金型と接する様に挿入した
場合には成形品のコーナ一部で導電性繊維が保護層を突
き破って表面に顔をだすので好ましくない。
By the way, when the above-mentioned conductive thermoplastic resin sheet is molded by vacuum forming or pressure forming, if the protective layer is inserted so that it is in contact with the mold, the conductive fibers will break into the base material at some corners of the molded product. There is a phenomenon in which it digs into the layer and causes cracks. On the other hand, if the base material layer is inserted so as to be in contact with the mold, the conductive fibers will break through the protective layer at some of the corners of the molded product, which is undesirable.

又、プレス成形法も雄型とIをのクリアランスが導電性
熱可塑性樹脂シートの厚みよりも大きい場合には真空成
形法や圧空成形法と同様な現象が発生するので好ましく
ない。
Further, the press molding method is also not preferred because the same phenomenon as the vacuum molding method and the pressure molding method occurs when the clearance between the male mold and the I is larger than the thickness of the conductive thermoplastic resin sheet.

〔実施例〕〔Example〕

以下、実施例、比較例によって本発明を具体的に説明す
るが、本発明はこれによって限定されるものではない。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

(実施例1・2、比較例1〜4) 厚み0.8mの硬質塩化ビニルシート(幅500間)の
片面に繊維径2デニール、繊維長51m+の塩化ビニル
系am<帝人@製テビロン)と繊維径8μm、1!維長
35rR1Rのオーステナイト系ステンレス繊維(日木
精線■ナスロン)とを第1表に示す割合で配合し、アク
リル系樹脂をバインダーとして製造した各種導電性不織
布(幅450姻)を重ねた。
(Examples 1 and 2, Comparative Examples 1 to 4) On one side of a hard vinyl chloride sheet (width: 500 mm) with a thickness of 0.8 m, a vinyl chloride type am < Teviron made by Teijin@) with a fiber diameter of 2 denier and a fiber length of 51 m + was applied. Fiber diameter 8 μm, 1! Various conductive nonwoven fabrics (width: 450 mm) prepared by blending fiber length 35rR1R austenitic stainless steel fibers (Hiki Seisen Naslon) in the proportions shown in Table 1 and using acrylic resin as a binder were layered.

次ぎに、各々の不織布の上に更に厚み0.2mの硬質塩
化ビニルフィルム(幅500 m )を重ねた後、18
0℃に加熱された二本の熱ロール間に通し、3Rを融着
一体止して導電性塩化ビニルシートを得た。得られたシ
ートの電磁波遮蔽効果を実測し、その結果を第1表に示
した1゜表から明らかなように特定量のステンレス繊維
を混合した導電性不織布を用いた導電性塩化ビニルシー
トは優れた電磁波遮蔽効果を有しており、しかも、・透
視性にも優れていることが分かる。
Next, a hard vinyl chloride film (width 500 m) with a thickness of 0.2 m was further layered on top of each nonwoven fabric, and then
It was passed between two hot rolls heated to 0° C., and 3R was fused and fixed to obtain a conductive vinyl chloride sheet. The electromagnetic wave shielding effect of the obtained sheet was actually measured, and the results are shown in Table 1.As is clear from the table 1, the conductive vinyl chloride sheet made of conductive non-woven fabric mixed with a specific amount of stainless steel fiber is excellent. It can be seen that it has a good electromagnetic wave shielding effect and also has excellent transparency.

尚、電磁波遮蔽効果はサンプルサイズ150m×150
IIIIIのシートをスペクトラム・アナライザーTR
4172、プロッタ7470A、プラスチックシールド
材評価器TR17301の装置を用いてアトパンテスト
法(M I L−3TD −285準′W&)で測定し
た。又、透視性については日本電色工業@製濁度計(N
DH−200,ASTMD−1003準拠)を用いて測
定した全光線透過率で表した。
In addition, the electromagnetic wave shielding effect is based on a sample size of 150 m x 150
Spectrum Analyzer TR
4172, a plotter 7470A, and a plastic shielding material evaluator TR17301. In addition, regarding transparency, Nippon Denshoku Kogyo @ turbidity meter (N
It was expressed as the total light transmittance measured using DH-200, based on ASTM D-1003).

〔第1表〕 (実施例3) 結晶性プロピレン単独重合体(VFR=22g/10m
1n)を芯成分とし、プロピレン・エチレン・ブテン−
1ランダム共重合体(エチレン含量5.0重量%、ブテ
ン−1含吊4.5重量%、VFR=12’j/1 ol
in )を鞘成分とTる?!合繊H(繊維径3デニール
、All長51M)15g/Trtとオーステナイト系
ステンレス繊維(日木精線■装ナスロン、繊維径8μm
1繊維長35 rm )25g/ゴとから熱融着法で導
電性不織布を得た。
[Table 1] (Example 3) Crystalline propylene homopolymer (VFR=22g/10m
1n) as the core component, propylene, ethylene, butene.
1 random copolymer (ethylene content 5.0% by weight, butene-1 content 4.5% by weight, VFR = 12'j/1 ol
In ) is considered a sheath component? ! Synthetic fiber H (fiber diameter 3 denier, all length 51M) 15g/Trt and austenitic stainless fiber (Hiki Seisen ■ Naslon, fiber diameter 8μm)
A conductive nonwoven fabric was obtained by a heat fusion method from 25g/g/fiber length (35 rm).

次ぎに、結晶性プロピレン単独重合体(MFR−2,5
g/10m1n >99.45重量%に1・3.2・4
−ビス(p−メチルベンジリデン)ソルビトール0.2
5重量%とトリス(2,4−ジ−t−ブチルフェニル)
フォスファイトOo 1重量%とテトラキス〔メチレン
(3,5−ジーしブチル−4−ハイドロキシ−ハイドロ
シナメイト)〕メメン00.1量%とカルシウムステア
レイト0.1fflffi%とを配合したポリプロピレ
ンベレットを口径65#Iの押出機で溶融混練し、幅6
00rMのTダイより樹脂温度250°Cで膜状に押出
し、厚み1.2mの導電性ポリプロピレンシートを得た
。次ぎに、該シートの片面に前記導電性不織布を重ね合
わせ、更に、該不織布に接して厚み50μmのポリプロ
ピレンフィルムを市ね合わせ170℃に加熱された2本
の熱ロールを用いて融着一体化し、導電性ポリプロピレ
ンシートを得た。
Next, crystalline propylene homopolymer (MFR-2,5
g/10m1n >99.45% by weight 1・3.2・4
-Bis(p-methylbenzylidene)sorbitol 0.2
5% by weight and tris(2,4-di-t-butylphenyl)
A polypropylene pellet containing 1% by weight of phosphite Oo, 0.1% by weight of tetrakis [methylene (3,5-di-butyl-4-hydroxy-hydrocinamate)] memene, and 0.1fffffi% of calcium stearate was made into a caliber. Melt and knead with a 65#I extruder, width 6
It was extruded into a film at a resin temperature of 250° C. through a T-die of 00 rM to obtain a conductive polypropylene sheet with a thickness of 1.2 m. Next, the conductive nonwoven fabric was layered on one side of the sheet, and a 50 μm thick polypropylene film was then placed in contact with the nonwoven fabric and fused together using two thermo rolls heated to 170°C. , a conductive polypropylene sheet was obtained.

該シートを加熱軟化させ第1図に示す型の間に挿入し、
7 Ky / ci Gのプレス圧力で上下の型を嵌合
し、第2図のような直径350間、深さ80mの円筒型
トレーを成形した。この時、雄型の表層にはシリコンゴ
ム(硬度60)を用い、雄型と雌型の間隙(CL)は0
.9〜1.1#Iとした。
The sheet is heated and softened and inserted between the molds shown in FIG.
The upper and lower molds were fitted together with a press pressure of 7 Ky/ci G to form a cylindrical tray with a diameter of 350 m and a depth of 80 m as shown in Fig. 2. At this time, silicone rubber (hardness 60) is used for the surface layer of the male mold, and the gap (CL) between the male mold and the female mold is 0.
.. 9 to 1.1#I.

次ぎに、得られた成形物2個を用いて箱を作り、この箱
の中に100〜300MH2の周波数帯域で4000μ
V/mの電界強度を有する電磁波を放射する発信源をセ
ットし、更にこの箱から3m離れた位置にダイボールア
ンブナを置いてこの位置における電界強度を測定したと
ころ、82μ■/TrLであった。従って、本発明の成
形物は優れた電磁波遮蔽効果を有することがわかる。又
、全光線透過率も75%と透視性にも優れていた。
Next, a box was made using the two obtained molded products, and a 400μ
A source that emits electromagnetic waves with an electric field strength of V/m was set up, and a die ball amplifier was placed 3 m away from the box to measure the electric field strength at this position, which was 82 μ/TrL. Ta. Therefore, it can be seen that the molded product of the present invention has an excellent electromagnetic wave shielding effect. In addition, the total light transmittance was 75%, and the transparency was also excellent.

(比較例5) 実施例3で用いたポリプロピレンシートを加熱軟化させ
、保2!層が金型と接しない状態で真空成形を行って直
径350HR1深さ8011IIIの円筒型トレーを得
た。(金型はgi型を使用) しかし、トレーのコーナ一部付近では導電性繊維が保:
a層を突き破って表面に露出しており、実用に耐えなか
った。
(Comparative Example 5) The polypropylene sheet used in Example 3 was softened by heating and kept for 2! Vacuum forming was performed with the layer not in contact with the mold to obtain a cylindrical tray with a diameter of 350 HR and a depth of 8011 III. (GI type mold is used.) However, the conductive fibers are retained near some corners of the tray.
It broke through the a-layer and was exposed on the surface, making it unusable.

(比較例6) 実施例3で用いたポリプロピレンシートを加熱軟化させ
、保3fJが金型と接するような状態で真空成形を行っ
て直径350s+、深さ80mの円筒型トレーを得た。
(Comparative Example 6) The polypropylene sheet used in Example 3 was heated and softened, and vacuum forming was performed in a state where the 3fJ was in contact with the mold to obtain a cylindrical tray with a diameter of 350s+ and a depth of 80m.

(金型は雄型を使用)しかし、トレーのコーナ一部付近
で【ま導電性繊維が基材層に食い込み、割れが発生し、
実用に耐えなかった。
(A male mold was used.) However, near some corners of the tray, the conductive fibers dug into the base material layer, causing cracks.
It was not practical.

〔発明の効果〕〔Effect of the invention〕

基材層である熱可塑性樹脂11!(A>の片面もしくは
両面に導電性繊維と熱溶融性繊維を主構成繊維とする導
電性不織布を重ね合わせ、更に、該不織布に接して保護
層となる熱可塑性樹脂膜(B)を重ね合わせて熱溶融性
繊維の融点以上の温度で加熱・圧着して得られる導電性
熱可塑性樹脂シート及び該シートを特殊な方法で賦形し
て得られる成形物は生産性も優れ、比重が軽く、機械的
強度、成形性も良好で優れた電磁波遮蔽効果を有すると
共に透視性も具備している為、フロッピーディスり・C
D−ICカード用ケース、CRT用シールド材、シール
ドルーム・クリーンルーム用間仕切り、電子機器ハウジ
ング用シールド材等に好適に活用できる。
Thermoplastic resin 11 which is the base material layer! A conductive non-woven fabric whose main constituent fibers are conductive fibers and thermofusible fibers is superimposed on one or both sides of (A>, and a thermoplastic resin film (B) that serves as a protective layer is further superimposed in contact with the non-woven fabric. The conductive thermoplastic resin sheet obtained by heating and press-bonding at a temperature higher than the melting point of the heat-fusible fiber, and the molded product obtained by shaping the sheet using a special method, have excellent productivity, have a light specific gravity, It has good mechanical strength and formability, and has an excellent electromagnetic wave shielding effect as well as transparency, making it suitable for floppy disks and C.
It can be suitably used for D-IC card cases, CRT shielding materials, shield room/clean room partitions, electronic equipment housing shielding materials, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は母材の表面に耐熱性ゴムよりなる型を張りイζ
1けた雄型とfu材のみの雌型よりなる雌雄−対の型の
断面立面図を示す。 第2図は実施例3において成形した円筒型トレーの斜視
図である。
Figure 1 shows a mold made of heat-resistant rubber placed on the surface of the base material.
A cross-sectional elevational view of a male and female mold pair consisting of a single-digit male mold and a female mold made of only FU material is shown. FIG. 2 is a perspective view of a cylindrical tray molded in Example 3.

Claims (5)

【特許請求の範囲】[Claims] 1.基材層である熱可塑性樹脂膜(A)の片面もしくは
両面に導電性繊維と熱溶融性繊維を主構成繊維とする導
電性不織布を重ね合わせ、更に、該不織布に接して保護
層となる熱可塑性樹脂膜(B)を重ね合わせて熱溶融性
繊維の融点以上の温度で加熱・圧着して得られる導電性
熱可塑性樹脂シート。
1. A conductive nonwoven fabric whose main constituent fibers are conductive fibers and thermofusible fibers is superimposed on one or both sides of the thermoplastic resin film (A), which is the base material layer, and a thermal layer is further applied to form a protective layer in contact with the nonwoven fabric. A conductive thermoplastic resin sheet obtained by laminating plastic resin films (B) and heating and pressing them at a temperature higher than the melting point of the thermofusible fibers.
2.基材層である熱可塑性樹脂膜(A)の片面もしくは
両面に導電性繊維と熱溶融性繊維を主構成繊維とする導
電性不織布を重ね合わせ、更に、該不織布に接して保護
層となる熱可塑性樹脂膜(B)を重ね合わせて熱溶融性
繊維の融点以上の温度で加熱・圧着して得られる導電性
熱可塑性樹脂シートを軟化状態まで加熱した後、少なく
とも一方の型の表面が耐熱性を有するゴムよりなる雌雄
一対の型の間に固定した後、両型を嵌合することによっ
て賦形された導電性熱可塑性樹脂成形物。
2. A conductive nonwoven fabric whose main constituent fibers are conductive fibers and thermofusible fibers is superimposed on one or both sides of the thermoplastic resin film (A), which is the base material layer, and a thermal layer is further applied to form a protective layer in contact with the nonwoven fabric. After heating the conductive thermoplastic resin sheet obtained by overlapping the plastic resin films (B) and heating and pressing them at a temperature higher than the melting point of the thermofusible fibers to a softened state, the surface of at least one mold is heat-resistant. 1. A conductive thermoplastic resin molded article that is fixed between a pair of male and female molds made of rubber and then shaped by fitting both molds together.
3.導電性繊維がステンレス鋼繊維、銅もしくは銅合金
繊維、金属もしくは金属化合物被覆合成繊維、金属もし
くは金属化合物複合合成繊維およびこれらの混合繊維で
ある請求項1に記載の導電性熱可塑性樹脂シート。
3. 2. The conductive thermoplastic resin sheet according to claim 1, wherein the conductive fibers are stainless steel fibers, copper or copper alloy fibers, metal or metal compound coated synthetic fibers, metal or metal compound composite synthetic fibers, and mixed fibers thereof.
4.導電性繊維の単位面積当りの使用量が 15〜50g/m^2であることを特徴とする請求項1
に記載の導電性熱可塑性樹脂シート。
4. Claim 1, characterized in that the amount of conductive fiber used per unit area is 15 to 50 g/m^2.
The conductive thermoplastic resin sheet described in .
5.耐熱性を有するゴムがシリコンゴム、アクリルゴム
、フッ素ゴムであることを特徴とする請求項2に記載の
導電性熱可塑性樹脂成形物。
5. 3. The conductive thermoplastic resin molded article according to claim 2, wherein the heat-resistant rubber is silicone rubber, acrylic rubber, or fluororubber.
JP63220475A 1988-07-08 1988-09-05 Conductive thermoplastic resin sheet and molding thereof Pending JPH0268999A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63220475A JPH0268999A (en) 1988-09-05 1988-09-05 Conductive thermoplastic resin sheet and molding thereof
US07/376,566 US4939027A (en) 1988-07-08 1989-07-07 Electroconductive thermoplastic resin sheets and molded articles
CA 605141 CA1305035C (en) 1988-07-08 1989-07-07 Electroconductive thermoplastic resin sheets and molded articles
KR89009665A KR960008292B1 (en) 1988-07-08 1989-07-07 Electroconductive thermoplastic resin sheets and molded articles
DE1989615623 DE68915623T2 (en) 1988-07-08 1989-07-07 Electroconductive thermoplastic film and molded articles.
EP19890112467 EP0350056B1 (en) 1988-07-08 1989-07-07 Electroconductive thermoplastic resin sheets and molded articles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63220475A JPH0268999A (en) 1988-09-05 1988-09-05 Conductive thermoplastic resin sheet and molding thereof

Publications (1)

Publication Number Publication Date
JPH0268999A true JPH0268999A (en) 1990-03-08

Family

ID=16751682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63220475A Pending JPH0268999A (en) 1988-07-08 1988-09-05 Conductive thermoplastic resin sheet and molding thereof

Country Status (1)

Country Link
JP (1) JPH0268999A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046899A (en) * 1990-04-24 1992-01-10 Chisso Corp Wallpaper for electromagnetic shield
JPH05315785A (en) * 1992-05-08 1993-11-26 Suzuki Sogyo Co Ltd Method for fabricating molded part containing metallic long fibers
JP3306665B2 (en) * 1996-08-05 2002-07-24 セーレン株式会社 Conductive material and method of manufacturing the same
JP2009180016A (en) * 2008-01-31 2009-08-13 Ykk Ap株式会社 Door mounting member
JP2012174444A (en) * 2011-02-21 2012-09-10 Sumitomo Wiring Syst Ltd Wire harness

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046899A (en) * 1990-04-24 1992-01-10 Chisso Corp Wallpaper for electromagnetic shield
JPH05315785A (en) * 1992-05-08 1993-11-26 Suzuki Sogyo Co Ltd Method for fabricating molded part containing metallic long fibers
JP3306665B2 (en) * 1996-08-05 2002-07-24 セーレン株式会社 Conductive material and method of manufacturing the same
JP2009180016A (en) * 2008-01-31 2009-08-13 Ykk Ap株式会社 Door mounting member
JP2012174444A (en) * 2011-02-21 2012-09-10 Sumitomo Wiring Syst Ltd Wire harness

Similar Documents

Publication Publication Date Title
CA1307732C (en) Electroconductive thermoplastic sheet
US4939027A (en) Electroconductive thermoplastic resin sheets and molded articles
US4863789A (en) Electromagnetic wave shielding laminate
EP0352729B1 (en) Sheet for forming article having electromagnetic wave shieldability
CA2114249A1 (en) Formed body with agglomerated thermoplastic material and/or plastic foil material
US3547753A (en) Release paper-polyurethane film-polyurethane foam laminate
JPS6097852A (en) Coextruded multilayer article
JPH0268999A (en) Conductive thermoplastic resin sheet and molding thereof
JPH0212175B2 (en)
JPH11245317A (en) Functional plastic expanded sheet, and method and device for manufacture thereof
JPH0829573B2 (en) Thermoforming material
CA1328068C (en) Process for producing electroconductive sheet
JP2641561B2 (en) Molding sheet having electromagnetic wave shielding properties and molded article using the sheet
JPS58166035A (en) Manufacture of conductive sheet or film
US3580769A (en) Method of making corrugated thermoplastic articles
JPH0539673Y2 (en)
JP4049301B2 (en) Twisted tie
JPH01139235A (en) Manufacture of conductive thermoplastic resin molded product
KR100256554B1 (en) Method of preparing a biaxially oriented and extrusion coated polyolefin film having excellent heat adhesion property
JPH0220333A (en) Conductive thermoplastic resin sheet and molded product
JPH02238939A (en) Electrically-conductive thermoplastic resin sheet
JPH01150528A (en) Thermoplastic resin sheet-like object excellent in antistatic property
JPH0513831B2 (en)
JPH04263935A (en) Transparent conductive sheet like article and manufacture thereof
KR100732320B1 (en) A method of preparing conductive resin composition and molded articles using it