JPH0268829A - Lead relay for micro-signal - Google Patents

Lead relay for micro-signal

Info

Publication number
JPH0268829A
JPH0268829A JP22169988A JP22169988A JPH0268829A JP H0268829 A JPH0268829 A JP H0268829A JP 22169988 A JP22169988 A JP 22169988A JP 22169988 A JP22169988 A JP 22169988A JP H0268829 A JPH0268829 A JP H0268829A
Authority
JP
Japan
Prior art keywords
relay
contact point
conductive layer
reed
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22169988A
Other languages
Japanese (ja)
Inventor
Shinji Yoshida
信司 吉田
Satoshi Nonaka
智 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN II M KK
Japan EM Co Ltd
Original Assignee
JAPAN II M KK
Japan EM Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN II M KK, Japan EM Co Ltd filed Critical JAPAN II M KK
Priority to JP22169988A priority Critical patent/JPH0268829A/en
Publication of JPH0268829A publication Critical patent/JPH0268829A/en
Pending legal-status Critical Current

Links

Landscapes

  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

PURPOSE:To make it possible to reduce or completely eliminate the leak current flowing over the surface of an insulation sleeve by forming a conductive layer on the external surface of the insulation sleeve, and installing a power source means to equalize the potential of the conductive layer with that of a lead switch contact point. CONSTITUTION:Conductor belts 3, 4 for guard having lead wires 9, 10 are wound around the surface of insulation sleeves 7, 8 in a way not to leave any gap between them respectively. The conductor belt 3 and a relay contact point 5 and the conductor belt 4 and a relay contact point 6 are respectively maintained at a same potential by applying a voltage of a same potential to the lead wires 9, 10 and relay contact points 5, 6. Since electric current does not flow between two conductors with the same potential, any leak current from a contact point lead 12 does not flow to the surface of the insulation sleeve 7. Similarly, no leak current flows from the contact point lead 13 to the surface of the insulation sleeve 8 which is held between the conductor belt 4 and the relay contact point 6. This enables to reduce the flow of leak current from contact points to the surface of insulation sleeves of relays.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は微小信号用リードリレーに関し、特に、リード
スイッチの絶縁スリーブ表面を流れる漏れ電流を減少し
、異種金属接合部に生じる熱起電力の変動を緩和した微
小信号用リードリレーに関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a reed relay for minute signals, and in particular, to reducing leakage current flowing through the surface of an insulating sleeve of a reed switch and reducing thermoelectromotive force generated at the joint of dissimilar metals. This invention relates to a reed relay for minute signals that reduces fluctuations.

〔従来の技術〕[Conventional technology]

従来のリードリレーとして、例えば、特開昭57−76
730号公報に示されるものがある。このリードリレー
は励磁コイルとリードスイッチの間に配置された銅箔等
より成る静電シールド部を有する。このように静電シー
ルド部を設けることにより励磁コイルとリードスイッチ
を静電的に分離し、かつ、複数のリードスイッチが静電
的に結合しないようにすることができる。
As a conventional reed relay, for example, JP-A-57-76
There is one shown in Publication No. 730. This reed relay has an electrostatic shield made of copper foil or the like placed between the excitation coil and the reed switch. By providing the electrostatic shield portion in this manner, the excitation coil and the reed switch can be electrostatically separated, and the plurality of reed switches can be prevented from being electrostatically coupled.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来のり一ドリレーによって微小信号を開閉し
ようとすると、リレーの漏れ電流や熱起電力の発生およ
びその変動が問題になることがある。
However, when attempting to open and close minute signals using conventional glued relays, the leakage current of the relay and the generation and fluctuation of thermoelectromotive force may become a problem.

漏れ電流は、主にリレーを封入しているガラス等の絶縁
物で作られた絶縁スリーブの外側表面を伝わって流れる
。この電流は絶縁スリーブの表面状態によって変化し、
汚れ、水分の付着等によって大きくなる。微小電流回路
にリレーを使用する場合、接点を閉じた時に流れる信号
電流に対して接点を開いた時に流れる漏れ電流が無視で
きなくなると、回路への影響が大きくなる。
Leakage current mainly flows through the outer surface of an insulating sleeve made of an insulating material such as glass that encloses the relay. This current changes depending on the surface condition of the insulating sleeve,
It becomes larger due to dirt, moisture, etc. When using a relay in a microcurrent circuit, if the leakage current that flows when the contacts are opened cannot be ignored compared to the signal current that flows when the contacts are closed, the effect on the circuit will be significant.

熱起電力は、リードリレーおよびその接続導体中に異種
の金属があり、これらの接続箇所間に温度差があるとき
に生じる。従来のり一ドリレーは接点の開閉を励磁コイ
ルの電流の断続によって行っているが、この断続はコイ
ルの発熱温度を変化させ、リードリレーの温度変化を起
こす原因となり、これに伴って熱起電力も変動する。
Thermoelectromotive force occurs when there are dissimilar metals in the reed relay and its connecting conductors and there is a temperature difference between these connecting points. Conventional reed relays open and close their contacts by interrupting the current in the excitation coil, but this interruption changes the heat generation temperature of the coil, causing a temperature change in the reed relay, which also causes thermoelectromotive force. fluctuate.

従って、本発明の目的は絶縁スリーブ表面に流れる漏れ
電流を減少、あるいは零にする微小信号用リードリレー
を提供することである。
Therefore, an object of the present invention is to provide a reed relay for minute signals that reduces or eliminates leakage current flowing on the surface of an insulating sleeve.

本発明の他の目的は熱起電力の変動を緩和、あるいは無
くする微小信号用リードリレーを提供することである。
Another object of the present invention is to provide a reed relay for minute signals that reduces or eliminates fluctuations in thermoelectromotive force.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記の目的を実現するために、第1の手段とし
て、絶縁スリーブ表面を導電性にし、ここに接点と同電
位の電圧を印加する。
In order to achieve the above-mentioned object, the present invention, as a first means, makes the surface of the insulating sleeve conductive and applies a voltage having the same potential as the contact.

導電性にする手段として、例えば、絶縁スリーブに銅箔
を空隙がないように巻きつける。
As a means for making it conductive, for example, a copper foil is wrapped around an insulating sleeve so that there are no gaps.

第2の手段として、励磁巻線を2つ以上設け、そこに電
流を流し続ける。接点の開閉はそこに流れる電流の方向
の組み合わせによって行う。例えば、2個の励磁巻線を
設け、この2個の巻線が発生する磁束が互いに加わるよ
うに通電すると接点は閉となり、一方の巻線の電流の向
きを反転させ、巻線が発生する磁束が互いに打ち消しあ
うように通電すると開となる。巻線は常に通電状態でし
かも全電流は一定であるため、発熱状態は一定になり、
接点の温度が安定する。従って、温度変化に伴う熱起電
力の変化が少なくなる。
As a second means, two or more excitation windings are provided and current continues to flow there. The contacts open and close depending on the direction of the current flowing through them. For example, if two excitation windings are provided and current is applied so that the magnetic fluxes generated by these two windings are added to each other, the contacts close, the direction of the current in one winding is reversed, and the winding is generated. When energized so that the magnetic fluxes cancel each other out, it becomes open. Since the winding is always energized and the total current is constant, the heat generation state is constant,
The temperature of the contacts becomes stable. Therefore, changes in thermoelectromotive force due to temperature changes are reduced.

以上の2つの手段を有するリードリレーを2回路構成に
し、それぞれの回路の接点を互いに熱結合すると、一対
の接点の熱起電力は互いに等しくなる。この一対の接点
を介して同相分除去比の大きい差動アンプの一対の入力
を被測定端子に接続すれば、熱起電力の相殺が可能にな
り、その影響はさらに少なくなる。
When a reed relay having the above two means is configured with two circuits and the contacts of each circuit are thermally coupled to each other, the thermoelectromotive force of the pair of contacts becomes equal to each other. By connecting a pair of inputs of a differential amplifier with a high common-mode rejection ratio to the terminal under test via this pair of contacts, it becomes possible to cancel out the thermal electromotive force, and its influence is further reduced.

以上述べた手段を施すことによって、リードリレーを微
小信号の開閉に使用することができる。
By implementing the means described above, the reed relay can be used to open and close minute signals.

〔実施例〕〔Example〕

以下、本発明の微小信号用リードリレーを詳細に説明す
る。
Hereinafter, the reed relay for minute signals of the present invention will be explained in detail.

第1図および第2図は本発明の一実施例を示し、ガラス
等の絶縁スリーブ7に、例えば、銅箔より成るガード用
導体帯3を巻きつけたリレー接点5と、ガラス等の絶縁
スリーブ8に、例えば、銅箔より成るガード用導体帯4
を巻きつけたリレー接点6に、同一の特性を持つ接点開
閉用励磁巻線1,2を取り付け、例えば、プラスチック
のモールド体より成る1つの外装ケース11に収めたも
のである。リレー接点5を封入している絶縁スリーブ7
の表面、リレー接点6を封入している絶縁スリーブ8の
表面には、それぞれ空隙ができないようにしてリード線
9を持つガード用導体帯3、リード線10を持つガード
用導体帯4が巻きつけられ、更に導体帯3.4は外装ケ
ース11から外部に突出している。このリード線9にリ
レー接点5と同電位の電圧、リード線10にリレー接点
6と同電位の電圧を印加することによって、導体帯3と
リレー接点5、導体帯4とリレー接点6はそれぞれ同電
位になる。
FIGS. 1 and 2 show an embodiment of the present invention, which shows a relay contact 5 in which a guard conductor band 3 made of copper foil, for example, is wrapped around an insulating sleeve 7 made of glass, and an insulating sleeve 7 made of glass or the like. 8, a guard conductor band 4 made of copper foil, for example.
Excitation windings 1 and 2 for contact opening/closing having the same characteristics are attached to a relay contact 6 which is wound with a wire, and the excitation windings 1 and 2 are housed in a single exterior case 11 made of, for example, a molded plastic body. Insulating sleeve 7 enclosing relay contact 5
A guard conductor band 3 having a lead wire 9 and a guard conductor band 4 having a lead wire 10 are wound around the surface of the insulating sleeve 8 enclosing the relay contact 6, respectively, so as not to form a gap. Furthermore, the conductor band 3.4 protrudes from the outer case 11 to the outside. By applying a voltage with the same potential as the relay contact 5 to the lead wire 9 and a voltage with the same potential as the relay contact 6 to the lead wire 10, the conductor band 3 and the relay contact 5, and the conductor band 4 and the relay contact 6 are at the same potential. Becomes electric potential.

同電位の2つの導体間には電流は流れないので、この導
体帯3とリレー接点5の間に挟まれる絶縁スリーブ70
表面には接点リード12からの漏れ電流は流れず、同様
に導体帯4とリレー接点6の間に挟まれる絶縁スリーブ
8の表面には接点リード13からの漏れ電流は流れない
。また、導体帯3は外装ケース11から突出しているた
め、接点リード12から外装ケース11への漏れ電流が
流れず、同様に導体帯4も外装ケース11から突出して
いるため、接点リード13から外装ケース11への漏れ
電流が流れない。
Since no current flows between two conductors of the same potential, an insulating sleeve 70 is sandwiched between the conductor band 3 and the relay contact 5.
No leakage current from the contact lead 12 flows on the surface, and similarly no leakage current from the contact lead 13 flows on the surface of the insulating sleeve 8 sandwiched between the conductor band 4 and the relay contact 6. Further, since the conductor band 3 protrudes from the outer case 11, no leakage current flows from the contact lead 12 to the outer case 11. Similarly, since the conductor band 4 also protrudes from the outer case 11, the leakage current does not flow from the contact lead 13 to the outer case 11. Leakage current to case 11 does not flow.

リレーの励磁巻線1.2は、その巻線の巻数、線材の径
等の諸条件が全く等しい。リレーの接点5.6を閉じる
際は、第3図(a)に示すように励磁巻線1の発生する
磁束φ1と励磁巻線2の発生する磁束φ2が互いに加わ
るような方向にそれぞれの励磁巻線に電流■1゜I2を
流し、接点5.6を開く際は、第3図(b)に示すよう
に励磁巻線1の発生する磁束φ、と励磁巻線2の発生す
る磁束φ2が互いに打ち消し合うような方向に電流を流
す。このため励磁巻線1.2には接点5.6の開閉動作
に関係なく常に一定の電流が流れ、通電に伴う巻線の発
熱量も一定となり、リレー接点5,6の温度は一定に保
たれ、熱起電力の変動が起こりにくい。
The excitation windings 1.2 of the relay have exactly the same conditions such as the number of turns and the diameter of the wire. When closing the contacts 5 and 6 of the relay, each excitation is turned in a direction such that the magnetic flux φ1 generated by the excitation winding 1 and the magnetic flux φ2 generated by the excitation winding 2 are added to each other, as shown in FIG. 3(a). When a current ■1°I2 is applied to the winding and the contact 5.6 is opened, the magnetic flux φ generated by the excitation winding 1 and the magnetic flux φ2 generated by the excitation winding 2 are separated as shown in FIG. 3(b). Flow the current in such a direction that they cancel each other out. Therefore, a constant current always flows through the excitation winding 1.2 regardless of the opening/closing operation of the contacts 5.6, and the amount of heat generated in the winding due to energization is also constant, and the temperature of the relay contacts 5 and 6 is kept constant. Sagging and fluctuations in thermoelectromotive force are less likely to occur.

また、この2個のリレー回路は互いに外装ケース11に
よって熱結合され、その温度環境は一致しているためそ
れぞれのリレー回路の発生する熱起電力は同じである。
Further, these two relay circuits are thermally coupled to each other by the outer case 11, and their temperature environments are the same, so that the thermoelectromotive force generated by each relay circuit is the same.

従って、2個のリレー回路を同相分除去比の大きい差動
アンプの正および負の端子に接続すると、信号電流は、
2回路間の差は増幅されるが、熱起電力は相殺されその
影響をさらに低減できる。
Therefore, when two relay circuits are connected to the positive and negative terminals of a differential amplifier with a large common-mode rejection ratio, the signal current is
Although the difference between the two circuits is amplified, the thermal electromotive force is canceled out and its influence can be further reduced.

〔発明の効果〕〔Effect of the invention〕

以上述べた通り、本発明の微小信号用リドリレーによる
と、以下の効果を奏することができる。
As described above, according to the redo relay for minute signals of the present invention, the following effects can be achieved.

(1)  リレーの絶縁スリーブに、例えば、導体帯を
巻いてこれに接点と同電位の電圧を加えることにより、
接点からの漏れ電流を低減することができる。
(1) For example, by wrapping a conductor band around the insulating sleeve of the relay and applying a voltage of the same potential as the contacts,
Leakage current from the contacts can be reduced.

(2)励磁巻線を2つにして常時通電し、リレー接点の
温度を安定させることにより、そこで発生する熱起電力
の変動を少なくし、接点で開閉される微小電圧信号に対
し熱起電力が及ぼす影響を小さくすることができる。
(2) By making two excitation windings and constantly energizing them to stabilize the temperature of the relay contacts, fluctuations in the thermoelectromotive force generated there are reduced, and thermoelectromotive force is generated in response to minute voltage signals that are opened and closed at the contacts. It is possible to reduce the influence of

(3)2個のリレー回路を熱結合し、それぞれの接点に
発生する熱起電力を互いに等しくしたため差動増幅器等
を用いればこれを相殺することができ、微小信号に対す
る影響を低減することができる。
(3) Since the two relay circuits are thermally coupled and the thermoelectromotive force generated at each contact point is made equal to each other, this can be canceled out by using a differential amplifier, etc., and the influence on minute signals can be reduced. can.

尚、絶縁スリーブの外表面を導電性にするため、実施例
では、銅箔を用いたが、アルミ箔等でも良く、あるいは
金属を蒸着しても良い。また、励磁巻線は2つ以上にし
ても良い。
In order to make the outer surface of the insulating sleeve conductive, copper foil was used in the embodiment, but aluminum foil or the like may be used, or metal may be vapor-deposited. Further, the number of excitation windings may be two or more.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の一実施例を示し、第1図
は一部破断斜視図。第2図は一部を展開した説明図。第
3図(a)、 (b)は本発明の動作を示す説明図。 符号の説明 ■、2・・・−・−・励磁巻線  3 、 、t−−−
−−−・・・−導電層5.6− ・−リレー接点 7,
8・・・−・−絶縁スリーブ9 、10−−−一−・−
導電層リード線1工・・・−外装モールド 12、13・・・−・−・リレー導体 特許出願人 ジャパン・イー・エム株式会社代理人  
弁理士  平 1)忠 雄 励磁巻線 励磁巻線 導電層 導電層 糸色縁スリーブ 導電層リード線 導電層リード線 外装モールド リレー導体 リレー導体 励磁巻線 励磁巻線 導電層 4電層 リレー接点 リレー接点 絶縁スリーブ 絶縁スリーブ 導電層リード線 導電層リード線 外装モールド リレー導体 リレー導体 第2図 L−一一一一一一 第3図
1 and 2 show one embodiment of the present invention, and FIG. 1 is a partially cutaway perspective view. FIG. 2 is a partially expanded explanatory diagram. FIGS. 3(a) and 3(b) are explanatory diagrams showing the operation of the present invention. Explanation of symbols ■, 2...--- Excitation winding 3, , t---
--- Conductive layer 5.6- - Relay contact 7,
8...--Insulating sleeve 9, 10--1--
Conductive layer lead wire 1 piece...-Exterior mold 12, 13...--Relay conductor patent applicant Japan EM Co., Ltd. agent
Patent Attorney Taira 1) Tadashi Exciting winding Exciting winding Conductive layer Conductive layer Thread colored edge sleeve Conductive layer lead wire Conductive layer lead wire Exterior mold relay Conductor relay Conductor Exciting winding Exciting winding Conductive layer 4 conductive layer Relay contact Relay contact Insulating sleeve Insulating sleeve Conductive layer Lead wire Conductive layer Lead wire Exterior mold Relay conductor Relay conductor Figure 2 L-11111 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)リードスイッチを封入した絶縁スリーブの外表面
に形成された導電層と、 前記導電層の電位をリードスイッチ接点の 電位に等しくする電源手段を備えたことを特徴とする微
小信号用リードリレー。
(1) A reed relay for minute signals, comprising a conductive layer formed on the outer surface of an insulating sleeve enclosing a reed switch, and a power supply means for making the potential of the conductive layer equal to the potential of the reed switch contact. .
(2)リードスイッチをそれぞれ封入した一対の絶縁ス
リーブの外表面に形成された一対の導電層と、 前記一対の導電層の電位をそれぞれ対応す るリードスイッチ接点の電位に等しくする電源手段と、 前記リードスイッチ接点を開閉する2つ以 上の励磁巻線を備え、 前記2つ以上の励磁巻線は常時励磁されて おり、その磁界の方向の組合わせに基づいて前記リード
リレー接点を開閉することを特徴とする微小信号用リー
ドリレー。
(2) a pair of conductive layers formed on the outer surfaces of a pair of insulating sleeves each enclosing a reed switch; and a power supply means for equalizing the potential of the pair of conductive layers to the potential of the corresponding reed switch contact. Two or more excitation windings are provided for opening and closing the reed switch contacts, and the two or more excitation windings are constantly excited, and the reed relay contacts are opened and closed based on a combination of directions of the magnetic fields. Features: Reed relay for minute signals.
(3)前記導電層で被覆された前記一対の絶縁スリーブ
が熱結合体としてのモールド体によって被覆されている
構成の請求項第2項記載の微小信号用リードリレー。
(3) The reed relay for minute signals according to claim 2, wherein the pair of insulating sleeves covered with the conductive layer are covered with a molded body serving as a thermal bonding body.
JP22169988A 1988-09-05 1988-09-05 Lead relay for micro-signal Pending JPH0268829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22169988A JPH0268829A (en) 1988-09-05 1988-09-05 Lead relay for micro-signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22169988A JPH0268829A (en) 1988-09-05 1988-09-05 Lead relay for micro-signal

Publications (1)

Publication Number Publication Date
JPH0268829A true JPH0268829A (en) 1990-03-08

Family

ID=16770891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22169988A Pending JPH0268829A (en) 1988-09-05 1988-09-05 Lead relay for micro-signal

Country Status (1)

Country Link
JP (1) JPH0268829A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271740B1 (en) 1999-06-29 2001-08-07 Agilent Technologies, Inc. Reed relay
US7119643B2 (en) 2003-10-27 2006-10-10 Agilent Technologies, Inc. Reed relay having conductive bushing and offset current canceling method therewith

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271740B1 (en) 1999-06-29 2001-08-07 Agilent Technologies, Inc. Reed relay
US7119643B2 (en) 2003-10-27 2006-10-10 Agilent Technologies, Inc. Reed relay having conductive bushing and offset current canceling method therewith

Similar Documents

Publication Publication Date Title
CA2109700A1 (en) Electromagnetic actuator
US4321652A (en) Low voltage transformer relay
JPH0268829A (en) Lead relay for micro-signal
EP0348909A3 (en) On-load electromagnetic relay
WO2015072001A1 (en) Superconducting magnet
US4214220A (en) Wide range magnetically biased reed switch
US6075428A (en) Magnetic system for an electromagnetic relay
US4084142A (en) Reed relay having low differential thermal emf
EP0484558A4 (en) High frequency coil and method of manufacturing the same
CA2258411A1 (en) Electromagnetic relay
US3470505A (en) Bistable diaphragm relay
JP4663062B2 (en) Clamp current sensor
US5576921A (en) Aggregate current transformer
JP2000032730A (en) Electromagnetic actuator
JP2001135536A (en) Electric signal transmitting device
JPS5844718Y2 (en) Speaker switching circuit
JPH0532921Y2 (en)
US3441882A (en) Vacuum relay
JP2001135534A (en) Electric signal transmitting device
JPS6023875Y2 (en) reed switch
JPH01109628A (en) Electromagnetic relay
JPH02837Y2 (en)
JPH01253138A (en) Electromagnetic relay coil delaying response
JPS5844513Y2 (en) lead relay
JPS6318818B2 (en)